1
|
Larcombe E, Alexander ME, Snellgrove D, Henriquez FL, Sloman KA. Current disease treatments for the ornamental pet fish trade and their associated problems. REVIEWS IN AQUACULTURE 2025; 17. [DOI: 10.1111/raq.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/21/2024] [Indexed: 01/05/2025]
Abstract
AbstractThe trade in live ornamental fishes to be held as companion animals or displayed in public aquaria has an estimated global annual value of US$15–20 billion. Supply chains for ornamental pet fishes often involve many more parties than for fish farmed as food fishes, and at each stage, fishes are exposed to stressors including handling, confinement, crowding, mechanical disturbance, and poor water quality. If chronic, these stressors can compromise their immune system, making fishes more susceptible to pathogens. Mortality and morbidity from infectious disease can result in considerable welfare impacts and massive economic losses for the industry, and the range of infective agents seen in ornamental species is well documented. However, treating these diseases is not straightforward with practices varying greatly across the trade and with several approaches having unintended consequences, such as the emergence of resistant strains of pathogens. While disease treatments for a handful of fish species (e.g., koi, goldfish) have received focused research attention, for the home aquarium owner, there is an increasing reliance on products based on natural compounds which have received far less scientific attention. This review aims to highlight the gaps in our knowledge surrounding the range of disease treatments used across the ornamental pet fish trade, with a particular focus on freshwater tropical species destined for home aquaria. Consideration is given to the potential problems arising from these treatments, including microbial resistance and effects of treatments themselves on fish health and welfare.
Collapse
Affiliation(s)
- E. Larcombe
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| | - M. E. Alexander
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| | - D. Snellgrove
- Waltham Petcare Science Institute Waltham‐on‐the‐Wolds Leicestershire UK
| | - F. L. Henriquez
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| | - K. A. Sloman
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| |
Collapse
|
2
|
Duman M, Lalucat J, Burcin Saticioglu I, Mulet M, Gomila M, Altun S, Ajmi N, García-Valdés E. Description of three new Pseudomonas species isolated from aquarium fish: Pseudomonas auratipiscis sp. nov., Pseudomonas carassii sp. nov. and Pseudomonas ulcerans sp. nov. Syst Appl Microbiol 2024; 47:126552. [PMID: 39340979 DOI: 10.1016/j.syapm.2024.126552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Pseudomonas species constitute a significant group of pathogens in aquarium fish and frequently cause haemorrhagic septicaemia. This study conducted a taxonomic characterization of Pseudomonas isolates from aquarium fish exhibiting deep ulceration and general disease signs. A polyphasic approach was employed to ascertain the taxonomic affiliation of the strains. The overall genome relatedness indices of digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) between the strains and the other members of the genus Pseudomonas were found to be below the established thresholds of 70 and 95-96%, respectively. Whole-genome based phylogenetic analysis revealed that strains 119PT and 120P were closely related to P. arcuscaelestis. Strain 137PT was related to P. peradeniyensis, while strains 147PT and 148P were closely related to P. japonica. The morphological, physiological, and biochemical characteristics of the strains and the genome relatedness indices of dDDH and ANI below the established thresholds confirmed the classification of the strains as three novel species. Genome analyses of the strains were also conducted to determine their biosynthesis-related gene clusters, virulence features and ecological distribution patterns. Based on polyphasic characterization, the strains 119PT, 120P, 137PT, 147PT, and 148P are novel species within the genus Pseudomonas, for which the following names are proposed: Pseudomonas auratipiscis sp. nov., with the strain 119PT as the type strain (=DSM 117162 T, =LMG 33381T); Pseudomonas carassii sp. nov., with the strain 137PT as the type strain (=DSM 117060T, =LMG 33378T); and Pseudomonas ulcerans sp. nov. 147PT, as the type strain (=DSM 117163T, =LMG 33377T).
Collapse
Affiliation(s)
- Muhammed Duman
- Department of Aquatic Animal Diseases, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey
| | - Jorge Lalucat
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain; Institut Mediterrani d'Estudis Avançats (IMEDEA, CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
| | | | - Magdalena Mulet
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain
| | - Margarita Gomila
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain
| | - Soner Altun
- Department of Aquatic Animal Diseases, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey
| | - Nihed Ajmi
- Department of Aquatic Animal Diseases, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey
| | - Elena García-Valdés
- Microbiologia, Departament de Biologia, Edifici Guillem Colom, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain; Institut Mediterrani d'Estudis Avançats (IMEDEA, CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain.
| |
Collapse
|
3
|
Hu G, Yin L, Luo X, Miao Y, Yu J. A Duplex PCR Assay for Rapid Detection of Klebsiella pneumoniae and Chryseobacterium in Large Yellow Croaker Fish. Foodborne Pathog Dis 2024; 21:508-516. [PMID: 38708669 DOI: 10.1089/fpd.2023.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
Both Klebsiella pneumoniae and Chryseobacterium cause an increasing number of diseases in fish, resulting in great economic losses in aquaculture. In addition, the disease infected with Klebsiella pneumoniae or Chryseobacterium exhibited the similar clinical symptoms in aquatic animals. However, there is no effective means for the simultaneous detection of co-infection and discrimination them for these two pathogens. Here, we developed a duplex polymerase chain reaction (PCR) method based on the outer membrane protein A (ompA) gene of Klebsiella pneumoniae and Chryseobacterium. The specificity and validity of the designed primers were confirmed experimentally using simplex PCR. The expected amplicons for Klebsiella pneumoniae and Chryseobacterium had a size of 663 and 1404 bp, respectively. The optimal condition for duplex PCR were determined to encompass a primer concentration of 0.5 μM and annealing temperature of 57°C. This method was analytical specific with no amplification being observed from the genomic DNA of Escherichia coli, Vibrio harveyi, Pseudomonas plecoglossicida, Aeromonas hydrophila and Acinetobacter johnsonii. The limit of detection was estimated to be 20 fg of genomic DNA for Chryseobacterium and 200 fg for Klebsiella pneumoniae, or 100 colony-forming units (CFU) of bacterial cells in both cases. The duplex PCR was capable of simultaneously amplifying target fragments from genomic DNA extracted from the bacteria and fish liver. For practical validation of the method, 20 diseased fish were collected from farms, among which 4 samples were PCR-positive for Klebsiella pneumoniae and Chryseobacterium. The duplex PCR method developed here is time-saving, specific, convenient, and may prove to be an invaluable tool for molecular detection and epidemiological investigation of Klebsiella pneumoniae and Chryseobacterium in the field of aquaculture.
Collapse
Affiliation(s)
- Gaowei Hu
- College of Life Sciences, Taizhou key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, China
| | - Longfei Yin
- College of Life Sciences, Taizhou key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, China
| | - Xi Luo
- College of Life Sciences, Taizhou key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, China
| | - Yingjie Miao
- College of Life Sciences, Taizhou key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, China
| | - Jianyun Yu
- College of Life Sciences, Taizhou key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou, China
| |
Collapse
|
4
|
Reda RM, El-Murr A, Abdel-Basset NA, Metwally MMM, Ibrahim RE. Infection dynamics of Shewanella spp. in Nile tilapia under varied water temperatures: A hematological, biochemical, antioxidant-immune analysis, and histopathological alterations. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109588. [PMID: 38677630 DOI: 10.1016/j.fsi.2024.109588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
In aquaculture, fluctuating water temperatures can act as a potent stressor, influencing the virulence and transmission dynamics of pathogenic bacteria, potentially triggering outbreaks and impacting fish health. The purpose of this work was to examine the impact of Shewanella spp. infection on hematological, biochemical, and antioxidant-immune parameters of Nile tilapia (Oreochromis niloticus) under different water temperatures. For this purpose, 180 fish were divided into 6 groups in triplicate (30 fish per group; 10 fish per replicate). Group 1 (G1), G2, and G3 were reared at varying water temperatures (22 °C, 28 °C, and 31 °C, respectively) without infection. While G4, G5, and G6 were IP-injected with 0.2 mL of Shewanella spp. (0.14 × 105) and reared at 22 °C, 28 °C, and 31 °C, respectively. Shewanella spp. infection induced significant lowering (p < 0.05) in hematological parameters (red and white blood cells, hemoglobin, and packed cell volume%) and immune-antioxidant responses (phagocytic activity%, phagocytic index, lysozyme, nitric oxide), total antioxidant capacity, catalase, and reduced glutathione, especially at 22 °C. Moreover, a significant increase (p < 0.05) in the hepato-renal function indicators (alanine aminotransferase, aspartate aminotransferase, urea, and creatinine), stress biomarkers (glucose and cortisol), malondialdehyde, and pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α) were the consequences of the Shewanella spp. infection, especially at 22 °C. The Shewanella spp. infection exhibited marked histopathological changes in the hepatic and renal tissues. Worthily, Shewanella spp. can cause detrimental alterations in Nile tilapia's hematological, biochemical, and antioxidant-immune parameters at various water temperatures, but the major detrimental changes were observed at a water temperature of 22 °C. Consequently, we can conclude that the infection dynamics of Shewanella spp. are exaggerated at 22 °C. These outcomes could help in understanding the nature of such an infection in Nile tilapia.
Collapse
Affiliation(s)
- Rasha M Reda
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| | - Abdelhakeem El-Murr
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Nehal A Abdel-Basset
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt; Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sidr, Egypt
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| |
Collapse
|
5
|
Swedha M, Okla MK, Abdel-Maksoud MA, Balasurya S, Al-Amri SS, Alaraidh IA, Alatar AA, Alsakkaf WAA, Khan SS. Construction of Ag/CdZnS QDs nanocomposite for enhanced visible light photoinactivation of Staphylococcus aureus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123749. [PMID: 38521393 DOI: 10.1016/j.envpol.2024.123749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
With increasing use of antibiotics, the development of antibiotic-resistant pathogens poses a serious threat to human health and the environment. Photocatalytic inactivation of these harmful pathogens is one of the novel and non-antibiotic treatments. The study fabricated Ag NPs decorated CdZnS QDs via a facile and biological co-precipitation method using L. camara plant extract as a green alternative to treat the toxic chemicals. The fabricated Ag/CdZnS QDs (NCs) were prepared for the efficient treatment of antibiotic-resistant pathogens as they raise a major global concern. The fabricated NCs were characterized with various characterization techniques to verify its physicochemical properties. The fabricated NCs have shown excellent photo-sterilization performance of 97 % against S. aureus. The excellent activity was attributed to the decoration of Ag NPs on CdZnS QDs as it helped in shortening band gap, improved visible light absorption ability, increased active sites, and boosted photogenerated electron/hole pairs stability. Radical trapping experiment and ESR analysis indicated the involvement of •OH and h+ in the photoinactivation of bacteria. The photo sterilization reaction of NCs was carried out under different environmental conditions, including light and dark conditions and different pH conditions. The experiment was carried out in sewage-treated water in order to test the real-time application, and the fabricated NCs achieved excellent 95.9 % photo-inactivation of S. aureus cells in sewage treated water and the Chemical Oxygen Demand (COD) of the system was increased after photo inactivation treatment. The fabricated NCs have also shown excellent reusable efficiency of 95% after six runs and the photostability and anti-corrosive nature of NCs were confirmed. The study provides an insight for the employment of photocatalysis for the sterilization of pathogens in real time aquatic environment across the globe.
Collapse
Affiliation(s)
- M Swedha
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - S Balasurya
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India; Centre Énergie, Matériaux et Télécommunications, INRS, Varennes, Québec, J3X1S2, Canada
| | - Saud S Al-Amri
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ibrahim A Alaraidh
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman A Alatar
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Waleed A A Alsakkaf
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - S Sudheer Khan
- Department of Oral Medicine and Radiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
6
|
Duman M, Satıcıoğlu IB, Janda JM. A Review of the Industrial Importance, Common Bacterial Diseases, and Zoonotic Risks of Freshwater Aquarium Fish. Vector Borne Zoonotic Dis 2024; 24:69-85. [PMID: 38133524 DOI: 10.1089/vbz.2023.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Background: The ever-increasing popularity of home aquariums, most often involving freshwater varieties, has exploded in recent years partially due to the Coronavirus pandemic and related to stay-at-home public health precautions for social distancing. With this ever-increasing popularity of aquariums as a hobby, and whether this involves freshwater or marine fish species, a number of important economic, ecological, and public health issues arise for both fish and hobbyists alike. Materials and Methods: This review highlights the history and genesis of aquariums as both a hobby and an important economic factor (industrial, commercial) for many countries on a global basis. Types of aquarium fish are described, and culture conditions leading to homeostasis in aquatic environments are detailed. When these conditions are not met and aquatic systems are out of balance, the disease can result due to stressed fish. Results: Major bacterial diseases associated with freshwater aquarium fish are reviewed, as are potential human infections related to the care and maintenance of home aquaria. Conclusion: Besides, scientific information was also combined with the false facts of hobbyists who tried to identify and treat diseases during an outbreak in the aquarium. Finally, unresolved issues and important misconceptions regarding the field are discussed.
Collapse
Affiliation(s)
- Muhammed Duman
- Aquatic Animal Disease Department, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Izzet Burçin Satıcıoğlu
- Aquatic Animal Disease Department, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - J Michael Janda
- Department of Public Health Services, Kern County, Bakersfield, California, USA
| |
Collapse
|
7
|
Zuarez-Chamba M, Rajendran S, Herrera-Robledo M, Priya AK, Navas-Cárdenas C. Bi-based photocatalysts for bacterial inactivation in water: Inactivation mechanisms, challenges, and strategies to improve the photocatalytic activity. ENVIRONMENTAL RESEARCH 2022; 209:112834. [PMID: 35122745 DOI: 10.1016/j.envres.2022.112834] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Bi-based photocatalysts have been considered suitable materials for water disinfection under natural solar light due to their outstanding optical and electronic properties. However, until now, there are not extensive reviews about the development of Bi-based materials and their application in bacterial inactivation in aqueous solutions. For this reason, this work has focused on summarizing the state of the art related to the inactivation of Gram- and Gram + pathogenic bacteria under visible light irradiation using different Bi-based micro and nano structures. In this sense, the photocatalytic bacterial inactivation mechanisms are analyzed, considering several modifications. The factors that can affect the photocatalytic performance of these materials in real conditions and at a large scale (e.g., water characteristics, pH, light intensity, photocatalyst dosage, and bacteria level) have been studied. Furthermore, current alternatives for improving the photocatalytic antibacterial activity and reuse of Bi-based materials (e.g., surface engineering, crystal facet engineering, doping, noble metal coupling, heterojunctions, Z-scheme junctions, coupling with graphene derivatives, magnetic composites, immobilization) have been explored. According to several reports, inactivation rate values higher than 90% can be achieved by using the modified Bi-based micro/nano structures, which become them excellent candidates for photocatalytic water disinfection. However, these innovative photocatalytic materials bring a variety of future difficulties and opportunities in water disinfection.
Collapse
Affiliation(s)
| | - Saravanan Rajendran
- Department of Mechanical Engineering, Faculty of Engineering, University of Tarapaca, Avda. General Velásquez, Arica, Chile
| | | | - A K Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, India
| | - Carlos Navas-Cárdenas
- School of Chemical Sciences and Engineering, Universidad Yachay Tech, Urcuquí, Ecuador.
| |
Collapse
|
8
|
Zhang J, Xu H, Yang H, Li J, Xiao S, Hu S, Yan F, Xia L, Zhang Y. Screening of a Plesiomonas shigelloides phage and study of the activity of its lysis system. Virus Res 2021; 306:198581. [PMID: 34560184 DOI: 10.1016/j.virusres.2021.198581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Plesiomonas shigelloides is an important fish pathogen that causes significant losses in aquaculture. Phage therapy is a new approach to overcome the problem of multidrug-resistant bacteria. Herein, a virulent phage of P. shigelloides was isolated from the intestines of grass carp. This phage belongs to the Siphoviridae family and was designated PSP01. The optimal multiplicity of infection of PSP01 was 1 with a latent period of 30 min and a lytic period of 140 min. Good activity was observed over a wide range of temperatures (-20 °C-50 °C), pH values (3-12), and NaCl concentrations (0.1-3.5%). The phage PSP01 lysis cassette is composed of 3 genes, HolPSP, LysPSP-1 and LysPSP-2. Expression of HolPSP or LysPSP-2 in Escherichia coli resulted in bacterial lysis, and a synergistic effect was observed when the HolPSP and LysPSP-1 proteins were co-expressed. In-frame deletion uncovered an important role of the transmembrane domain (TMD) in HolPSP and the signal peptide (SP) in LysPSP-2 for bacterial lysis function. The protective effects of phage PSP01 were investigated by intraperitoneal injection into grass carp infected with P. shigelloides, showing a 33.3% increase in the survival rate of the infected grass carp. Pathological analysis of the spleens from the infected grass carp revealed alleviation of the pathological symptoms. In conclusion, isolation and bacterial lysis investigations of phage PSP01 provide a new tool for the control of fish pathogens and possesses potential for aquaculture applications.
Collapse
Affiliation(s)
- Jingdan Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fishes, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Huizhong Xu
- State Key Laboratory of Developmental Biology of Freshwater Fishes, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Hu Yang
- State Key Laboratory of Developmental Biology of Freshwater Fishes, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Jia Li
- State Key Laboratory of Developmental Biology of Freshwater Fishes, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Shuai Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fishes, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fishes, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Fu Yan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fishes, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China.
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|