1
|
Alkholief M, Kalam MA, Alshememry AK, Ali R, Alhudaithi SS, Alsaleh NB, Raish M, Alshamsan A. Topical Application of Linezolid-Loaded Chitosan Nanoparticles for the Treatment of Eye Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:681. [PMID: 36839049 PMCID: PMC9964951 DOI: 10.3390/nano13040681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Linezolid (LZ) loaded chitosan-nanoparticles (CSNPs) was developed by the ionic-gelation method using Tripolyphosphate-sodium as a crosslinker for topical application for the treatment of bacterial eye infections. Particles were characterized by Zeta-Sizer (Malvern Nano-series). TEM was used for structural morphology. Encapsulation and drug loading were estimated by measuring the unencapsulated drug. In-vitro drug release in STF (pH 7) was performed through a dialysis membrane. Storage stability of LZ-CSNPs was checked at 25 °C and 40 °C for six months. The antimicrobial potency of NPs was evaluated on different Gram-positive strains. Ocular irritation and pharmacokinetic studies were completed in rabbits. Ex-vivo transcorneal permeation of the drug was determined through the rabbit cornea. Ionic interaction among the oppositely charged functional groups of CS and TPP generated the CSNPs. The weight ratio at 3:1, wt/wt (CS/TPP) with 21.7 mg of LZ produced optimal NPs (213.7 nm with 0.387 of PDI and +23.1 mV of ZP) with 71% and 11.2% encapsulation and drug loading, respectively. Around 76.7% of LZ was released from LZ-AqS within 1 h, while 79.8% of LZ was released from CSNPs at 12 h and 90% at 24 h. The sustained drug release property of CSNPS was evaluated by applying kinetic models. The linearity in the release profile suggested that the release of LZ from CSNPs followed the Higuchi-Matrix model. LZ-CSNPs have shown 1.4 to 1.6-times improved antibacterial activity against the used bacterial strains. The LZ-CSNPs were "minimally-irritating" to rabbit eyes and exhibited 4.4-times increased transcorneal permeation of LZ than from LZ-AqS. Around 3-, 1.2- and 3.1-times improved Tmax, Cmax, and AUC0-24 h, respectively were found for LZ-CSNPs during the ocular pharmacokinetic study. AqS has shown 3.1-times faster clearance of LZ. Conclusively, LZ-CSNPs could offer a better alternative for the prolonged delivery of LZ for the treatment of bacterial infections in the eyes.
Collapse
Affiliation(s)
- Musaed Alkholief
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohd Abul Kalam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah K. Alshememry
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Raisuddin Ali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sulaiman S. Alhudaithi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nasser B. Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Aws Alshamsan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Development and Evaluation of Chitosan Nanoparticles for Ocular Delivery of Tedizolid Phosphate. Molecules 2022; 27:molecules27072326. [PMID: 35408724 PMCID: PMC9000411 DOI: 10.3390/molecules27072326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
This study investigates the development of topically applied non-invasive chitosan-nanoparticles (CSNPs) for ocular delivery of tedizolid phosphate (TZP) for the treatment of MRSA-related ocular and orbital infections. An ionic-gelation method was used to prepare TZP-encapsulated CSNPs using tripolyphosphate-sodium (TPP) as cross-linker. Particle characterization was performed by the DLS technique (Zeta-Sizer), structural morphology was observed by SEM. The drug encapsulation and loading were determined by the indirect method. In-vitro release was conducted through dialysis bags in simulated tear fluid (pH 7) with 0.25% Tween-80. Physicochemical characterizations were performed for ocular suitability of CSNPS. An antimicrobial assay was conducted on different strains of Gram-positive bacteria. Eye-irritation from CSNPs was checked in rabbits. Transcorneal flux and apparent permeability of TZP from CSNPs was estimated through excised rabbit cornea. Ionic interaction between the anionic and cationic functional groups of TPP and CS, respectively, resulted in the formation of CSNPs at varying weight ratios of CS/TPP with magnetic stirring (700 rpm) for 4 h. The CS/TPP weight ratio of 3.11:1 with 10 mg of TZP resulted in optimal-sized CSNPs (129.13 nm) with high encapsulation (82%) and better drug loading (7%). Release profiles indicated 82% of the drug was released from the TZP aqueous suspension (TZP-AqS) within 1 h, while it took 12 h from F2 to release 78% of the drug. Sustained release of TZP from F2 was confirmed by applying different release kinetics models. Linearity in the profile (suggested by Higuchi’s model) indicated the sustained release property CSNPs. F2 has shown significantly increased (p < 0.05) antibacterial activity against some Gram-positive strains including one MRSA strain (SA-6538). F2 exhibited a 2.4-fold increased transcorneal flux and apparent permeation of TZP as compared to TZP-AqS, indicating the better corneal retention. No sign or symptoms of discomfort in the rabbits’ eyes were noted during the irritation test with F2 and blank CSNPs, indicating the non-irritant property of the TZP-CSNPs. Thus, the TZP-loaded CSNPs have strong potential for topical use in the treatment of ocular MRSA infections and related inflammatory conditions.
Collapse
|
3
|
Shadambikar G, Marathe S, Patil A, Joshi R, Bandari S, Majumdar S, Repka M. Novel Application of Hot Melt Extrusion Technology for Preparation and Evaluation of Valacyclovir Hydrochloride Ocular Inserts. AAPS PharmSciTech 2021; 22:48. [PMID: 33447869 DOI: 10.1208/s12249-020-01916-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/21/2020] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to investigate the processability of hot-melt extrusion (HME) to formulate ocular inserts of valacyclovir hydrochloride and evaluate the in vivo bioavailability of the formulation. To optimize the formulation of this drug, different physical mixtures of the polymers and plasticizer were prepared. The physical mixture was extruded through a co-rotating twin-screw extruder, and the obtained ocular inserts were cut with dimensions of 4 mm × 2 mm × 1 mm to enhance the formulation instillation in the eye. Ocular inserts were evaluated for drug content, weight variation, uniformity of thickness, in vitro drug release, and in vivo drug bioavailability. The ocular inserts were thermally characterized using differential scanning calorimetry (DSC). The attributes observed for the ocular inserts were within the target specifications. The ocular inserts of valacyclovir hydrochloride were successfully prepared using the HME. They provided sustained drug release along with enhanced drug permeation when compared with the eyedrop solution and dissolve completely in 8 h. Additionally, the obtained results demonstrated that the formulation of ocular inserts of valacyclovir hydrochloride using HME was reproducible, robust, and effective method.
Collapse
|
4
|
Varela-Garcia A, Gomez-Amoza JL, Concheiro A, Alvarez-Lorenzo C. Imprinted Contact Lenses for Ocular Administration of Antiviral Drugs. Polymers (Basel) 2020; 12:polym12092026. [PMID: 32899893 PMCID: PMC7565425 DOI: 10.3390/polym12092026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 11/23/2022] Open
Abstract
A variety of ocular diseases are caused by viruses, and most treatments rely on the use of systemic formulations and eye drops. The efficient ocular barriers that oppose antiviral drug penetration have prompted the development of improved topical delivery platforms. The aim was to design hydrogel contact lenses endowed with an affinity for acyclovir (ACV) and its prodrug valacyclovir (VACV), first-choice drugs against herpes simplex virus (HSV) ocular keratitis, and that can sustain the release of therapeutic doses during daily wearing. Functional monomers suitable for interaction with these drugs were screened using computational modeling. Imprinted and non-imprinted hydrogels were prepared with various contents in the functional monomer methacrylic acid (MAA) and characterized in terms of swelling, transmittance, mechanical properties, and ocular compatibility (hen’s egg test on chorioallantoic membrane (HET-CAM) assay). The values were in the range typical of soft contact lenses. Compared to ACV, the capability to load VACV was remarkably higher due to stronger electrostatic interactions with MAA. The advantages of the imprinting technology were evidenced for VACV. Stability of VACV loading solution/hydrogels under steam heat sterilization and subsequent drug release was investigated. Permeability studies through bovine and porcine cornea and sclera of the drug released from the hydrogels revealed that VACV accumulates in the cornea and can easily cross the sclera, which may facilitate the treatment of both anterior and posterior eye segments diseases.
Collapse
|
5
|
Madni A, Rahem MA, Tahir N, Sarfraz M, Jabar A, Rehman M, Kashif PM, Badshah SF, Khan KU, Santos HA. Non-invasive strategies for targeting the posterior segment of eye. Int J Pharm 2017; 530:326-345. [PMID: 28755994 DOI: 10.1016/j.ijpharm.2017.07.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 01/02/2023]
Abstract
The safe and effective treatment of eye diseases has been remained a global myth. Several advancements have been done and various drug delivery and treatment techniques have been suggested. The Posterior segment disorders are the leading cause of visual impairments and blindness. Targeting the therapeutic agents to the anterior and posterior segments of the eye has attracted extensive attention from the scientific community. Significant key factors in the success of ocular therapy are the development of safe, effective, economic and non-invasive novel drug delivery systems. These specialized non-invasive ocular drug delivery systems revolutionized the drug delivery strategies by overcoming the limitations, provided targeted delivery to the ocular tissues by avoiding larger doses, and reducing the toxicity encountered by the conventional approaches. These non-invasive systems are fabricated by ingredients encompassing biodegradability, biocompatibility, mucoadhesion, solubility and permeability enhancement and stimuli responsiveness. The variety of routes are utilized to provide minimally invasive drug delivery to the patients without any discomfort and pain. This review is focused on the brief introduction, types, significance, preparation techniques, components and mechanism of drug release of non-invasive systems, including in situ gelling systems, microspheres, iontophoresis, nanoparticles, nanosuspensions and specialized novel emulsions.
Collapse
Affiliation(s)
- Asadullah Madni
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan.
| | - Muhammad Abdur Rahem
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Nayab Tahir
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Muhammad Sarfraz
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Abdul Jabar
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Mubashar Rehman
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Prince Muhammad Kashif
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Syed Faisal Badshah
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Kifayat Ullah Khan
- Department of Pharmacy, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
6
|
Kalam MA. Development of chitosan nanoparticles coated with hyaluronic acid for topical ocular delivery of dexamethasone. Int J Biol Macromol 2016; 89:127-36. [DOI: 10.1016/j.ijbiomac.2016.04.070] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/17/2016] [Accepted: 04/22/2016] [Indexed: 11/28/2022]
|