1
|
Celikovic S, Poms J, Khinast J, Horn M, Rehrl J. Development and Application of Control Concepts for Twin-Screw Wet Granulation in the ConsiGma TM-25: Part 1 Granule Composition. Int J Pharm 2024; 657:124124. [PMID: 38636678 DOI: 10.1016/j.ijpharm.2024.124124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Continuous manufacturing of pharmaceuticals offers several benefits, such as increased production efficiency, enhanced product quality control, and lower environmental footprint. To fully exploit these benefits, standard operation mode (production processes with no or minimal disturbance mitigation measures) should be supported by adopting novel quality-by-control (QbC) methodologies. The paper at hand is the first part of a study focused on developing QbC algorithms for optimizing twin-screw wet granulation in the industrial manufacturing line ConsiGmaTM-25, specifically addressing granule composition. This work relies on previously established process-analytical-technology (PAT) equipment for real-time monitoring of the granule composition, i.e., the active pharmaceutical ingredient (API) and liquid content in wet granules. The developed control platform integrates model-based process control algorithms that aim to keep the API- and liquid content at target values through real-time adjustments of the process parameters. Furthermore, the platform integrates a digital operator assistant, which aims to detect and classify granulation disturbances and provides messages and instructions for the plant operator. The present manuscript systematically outlines all design steps from the development phase in the simulation environment to the final real system application and validation. The control platform's performance is demonstrated through selected test scenarios on the ConsiGmaTM-25 manufacturing line. The obtained results indicate improved disturbance robustness and an increase in intermediate/final product quality (compared to conventional operating modes): The process control algorithms successfully maintained the API- and liquid content at target values despite process disturbances. Furthermore, realistic disturbances (feeder, pump, and material) were accurately detected and classified by the digital assistant algorithm. The information was provided through a user interface, offering real-time support for plant personnel.
Collapse
Affiliation(s)
- Selma Celikovic
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria; Institute of Automation and Control, Graz University of Technology, Inffeldgasse 21b, 8010 Graz, Austria
| | - Johannes Poms
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria
| | - Johannes Khinast
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13/3, 8010 Graz, Austria
| | - Martin Horn
- Institute of Automation and Control, Graz University of Technology, Inffeldgasse 21b, 8010 Graz, Austria
| | - Jakob Rehrl
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria.
| |
Collapse
|
2
|
Destro F, Nagy ZK, Barolo M. A benchmark simulator for quality-by-design and quality-by-control studies in continuous pharmaceutical manufacturing - Intensified filtration-drying of crystallization slurries. Comput Chem Eng 2022; 163:107809. [PMID: 38178942 PMCID: PMC10765423 DOI: 10.1016/j.compchemeng.2022.107809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This article introduces ContCarSim, a benchmark simulator for the development and testing of quality-by-design and quality-by-control strategies in the continuous intensified filtration-drying of paracetamol/ethanol slurries on a novel carousel technology, developed by Alconbury Weston Ltd (United Kingdom). The simulator is based on a detailed mechanistic mathematical modeling framework, and has been validated with filtration and drying experiments on a prototype equipment. A set of design- and control-relevant challenges to be addressed through ContCarSim are proposed. A case study is developed, to demonstrate the features of the simulator and its suitability to design, test and optimize the unit operation. ContCarSim is expected to promote the transition to end-to-end continuous pharmaceutical manufacturing and the adoption of closed-loop quality control by the pharmaceutical industry. The simulator can also be employed as a benchmark for data analytics and process monitoring studies.
Collapse
Affiliation(s)
- Francesco Destro
- CAPE-Lab – Computer-Aided Process Engineering Laboratory, Department of Industrial Engineering, University of Padova, via Marzolo 9, 35131 Padova PD (Italy)
| | - Zoltan K. Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Massimiliano Barolo
- CAPE-Lab – Computer-Aided Process Engineering Laboratory, Department of Industrial Engineering, University of Padova, via Marzolo 9, 35131 Padova PD (Italy)
| |
Collapse
|
3
|
Destro F, Barolo M. A review on the modernization of pharmaceutical development and manufacturing - Trends, perspectives, and the role of mathematical modeling. Int J Pharm 2022; 620:121715. [PMID: 35367580 DOI: 10.1016/j.ijpharm.2022.121715] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 01/20/2023]
Abstract
Recently, the pharmaceutical industry has been facing several challenges associated to the use of outdated development and manufacturing technologies. The return on investment on research and development has been shrinking, and, at the same time, an alarming number of shortages and recalls for quality concerns has been registered. The pharmaceutical industry has been responding to these issues through a technological modernization of development and manufacturing, under the support of initiatives and activities such as quality-by-design (QbD), process analytical technology, and pharmaceutical emerging technology. In this review, we analyze this modernization trend, with emphasis on the role that mathematical modeling plays within it. We begin by outlining the main socio-economic trends of the pharmaceutical industry, and by highlighting the life-cycle stages of a pharmaceutical product in which technological modernization can help both achieve consistently high product quality and increase return on investment. Then, we review the historical evolution of the pharmaceutical regulatory framework, and we discuss the current state of implementation and future trends of QbD. The pharmaceutical emerging technology is reviewed afterwards, and a discussion on the evolution of QbD into the more effective quality-by-control (QbC) paradigm is presented. Further, we illustrate how mathematical modeling can support the implementation of QbD and QbC across all stages of the pharmaceutical life-cycle. In this respect, we review academic and industrial applications demonstrating the impact of mathematical modeling on three key activities within pharmaceutical development and manufacturing, namely design space description, process monitoring, and active process control. Finally, we discuss some future research opportunities on the use of mathematical modeling in industrial pharmaceutical environments.
Collapse
Affiliation(s)
- Francesco Destro
- CAPE-Lab - Computer-Aided Process Engineering Laboratory, Department of Industrial Engineering, University of Padova, via Marzolo 9, 35131 Padova PD, Italy
| | - Massimiliano Barolo
- CAPE-Lab - Computer-Aided Process Engineering Laboratory, Department of Industrial Engineering, University of Padova, via Marzolo 9, 35131 Padova PD, Italy.
| |
Collapse
|
4
|
Impedance Spectroscopy Sensing Material Properties for Self-Tuning Ratio Control in Pharmaceutical Industry. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Following the paradigm shift in the pharmaceutical industry from batch to continuous production, additional instrumentation and revision of control strategies to optimize material flow throughout the downstream processes are required. Tableting manufacturing is one of the most productive in terms of turnover and investment into new sensor technologies is an important decision-making step. This paper proposes a continuous solution to detect changes in material properties, and a control algorithm to aid in minimizing risk at the end-product line. Some of the sub-processes involved in tableting manufacturing perform changes in powder and liquid mixtures, granulation, density, therefore changing flow conditions of the raw material. Using impedance spectroscopy in a continuous sensing and monitoring context, it is possible to perform online identification of generalized (fractional) order parametric models where the coefficients are correlated to changes in material properties. The model parameters are then included in a self-tuning control gain used in ratio control as part of the local process control loop. The solution proposed here is easy to implement and poses a significant added value to the current state of art in pharmaceutical manufacturing technologies.
Collapse
|
5
|
Huang YS, Medina-González S, Straiton B, Keller J, Marashdeh Q, Gonzalez M, Nagy Z, Reklaitis GV. Real-Time Monitoring of Powder Mass Flowrates for Plant-Wide Control of a Continuous Direct Compaction Tablet Manufacturing Process. J Pharm Sci 2022; 111:69-81. [PMID: 34126119 PMCID: PMC10009918 DOI: 10.1016/j.xphs.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022]
Abstract
While measurement and monitoring of powder/particulate mass flow rate are not essential to the execution of traditional batch pharmaceutical tablet manufacturing, in continuous operation, it is an important additional critical process parameter. It has a key role both in establishing that the process is in a state of control, and as a controlled variable in process control system design. In current continuous tableting line operations, the pharmaceutical community relies on loss-in-weight feeders to monitor and understand upstream powder flow dynamics. However, due to the absence of established sensing technologies for measuring particulate flow rates, the downstream flow of the feeders is monitored and controlled using various indirect strategies. For example, the hopper level of the tablet press is maintained as a controlled process output by adjusting the turret speed of the tablet press, which indirectly controlling the flow rate. This gap in monitoring and control of the critical process flow motivates our investigation of a novel PAT tool, a capacitance-based sensor (ECVT), and its effective integration into the plant-wide control of a direct compaction process. First, the results of stand-alone experimental studies are reported, which confirm that the ECVT sensor can provide real-time measurements of mass flow rate with measurement error within -1.8 ~ 3.3% and with RMSE of 0.1 kg/h over the range of flow rates from 2 to 10 kg/h. The key caveat is that the powder flowability has to be good enough to avoid powder fouling on the transfer line walls. Next, simulation case studies are carried out using a dynamic flowsheet model of a continuous direct compression line implemented in Matlab/Simulink to demonstrate the potential structural and performance advantages in plant-wide process control enabled by mass flow sensing. Finally, experimental studies are performed on a direct compaction pilot plant in which the ECVT sensor is located at the exit of the blender, to confirm that the powder flow can be monitored instantaneously and controlled effectively at the specified setpoint within a plant-wide feedback controller system.
Collapse
Affiliation(s)
- Yan-Shu Huang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States.
| | - Sergio Medina-González
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | | | | | | | - Marcial Gonzalez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Zoltan Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Gintaras V Reklaitis
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
6
|
Sacher S, Poms J, Rehrl J, Khinast JG. PAT implementation for advanced process control in solid dosage manufacturing - A practical guide. Int J Pharm 2021; 613:121408. [PMID: 34952147 DOI: 10.1016/j.ijpharm.2021.121408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 01/14/2023]
Abstract
The implementation of continuous pharmaceutical manufacturing requires advanced control strategies rather than traditional end product testing or an operation within a small range of controlled parameters. A high level of automation based on process models and hierarchical control concepts is desired. The relevant tools that have been developed and successfully tested in academic and industrial environments in recent years are now ready for utilization on the commercial scale. To date, the focus in Process Analytical Technology (PAT) has mainly been on achieving process understanding and quality control with the ultimate goal of real-time release testing (RTRT). This work describes the workflow for the development of an in-line monitoring strategy to support PAT-based real-time control actions and its integration into solid dosage manufacturing. All stages are discussed in this paper, from process analysis and definition of the monitoring task to technology assessment and selection, its process integration and the development of data acquisition.
Collapse
Affiliation(s)
- Stephan Sacher
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria.
| | - Johannes Poms
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria
| | - Jakob Rehrl
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria
| | - Johannes G Khinast
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/2, 8010 Graz, Austria; Institute for Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13/3, 8010 Graz, Austria
| |
Collapse
|
7
|
Huang YS, Sheriff MZ, Bachawala S, Gonzalez M, Nagy ZK, Reklaitis GV. Evaluation of a Combined MHE-NMPC Approach to Handle Plant-Model Mismatch in a Rotary Tablet Press. Processes (Basel) 2021; 9:10.3390/pr9091612. [PMID: 36776491 PMCID: PMC9912115 DOI: 10.3390/pr9091612] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The transition from batch to continuous processes in the pharmaceutical industry has been driven by the potential improvement in process controllability, product quality homogeneity, and reduction of material inventory. A quality-by-control (QbC) approach has been implemented in a variety of pharmaceutical product manufacturing modalities to increase product quality through a three-level hierarchical control structure. In the implementation of the QbC approach it is common practice to simplify control algorithms by utilizing linearized models with constant model parameters. Nonlinear model predictive control (NMPC) can effectively deliver control functionality for highly sensitive variations and nonlinear multiple-input-multiple-output (MIMO) systems, which is essential for the highly regulated pharmaceutical manufacturing industry. This work focuses on developing and implementing NMPC in continuous manufacturing of solid dosage forms. To mitigate control degradation caused by plant-model mismatch, careful monitoring and continuous improvement strategies are studied. When moving horizon estimation (MHE) is integrated with NMPC, historical data in the past time window together with real-time data from the sensor network enable state estimation and accurate tracking of the highly sensitive model parameters. The adaptive model used in the NMPC strategy can compensate for process uncertainties, further reducing plant-model mismatch effects. The nonlinear mechanistic model used in both MHE and NMPC can predict the essential but complex powder properties and provide physical interpretation of abnormal events. The adaptive NMPC implementation and its real-time control performance analysis and practical applicability are demonstrated through a series of illustrative examples that highlight the effectiveness of the proposed approach for different scenarios of plant-model mismatch, while also incorporating glidant effects.
Collapse
Affiliation(s)
- Yan-Shu Huang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - M Ziyan Sheriff
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sunidhi Bachawala
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Marcial Gonzalez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN 47907, USA
| | - Zoltan K Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Gintaras V Reklaitis
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Soft sensor for real-time estimation of tablet potency in continuous direct compression manufacturing operation. Int J Pharm 2021; 602:120624. [PMID: 33892055 DOI: 10.1016/j.ijpharm.2021.120624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 11/20/2022]
Abstract
One of the critical quality attributes of the solid oral dosage forms produced in continuous direct compression operations is the tablet potency. A novel soft sensor comprising of a combination of first principle-based and empirical models has been developed to enable real-time monitoring of blend and tablet potency, and concentrations of other excipients at various stream levels along the direct compression line. The soft sensor model has only three adjustable parameters, primarily associated with the equipment design and operation, so the model is product agnostic which is key to enable flexible manufacturing. The estimation accuracy of the soft sensor is demonstrated through a series of real time experiments which include steady state and dynamic transitions of potency during the runs, compared with offline analytically tested tablet cores. The results indicate that the proposed soft sensor can be utilized as a robust tool for real-time monitoring of potency, suggesting an extension of its utilization to higher levels of control. Two potential applications of the soft sensor are: 1. An element of a control strategy for product diversion; 2. A predictive model for advanced process control strategy to minimize the variability in tablet composition.
Collapse
|
9
|
Shi G, Lin L, Liu Y, Chen G, Luo Y, Wu Y, Li H. Pharmaceutical application of multivariate modelling techniques: a review on the manufacturing of tablets. RSC Adv 2021; 11:8323-8345. [PMID: 35423324 PMCID: PMC8695199 DOI: 10.1039/d0ra08030f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/26/2021] [Indexed: 11/21/2022] Open
Abstract
The tablet manufacturing process is a complex system, especially in continuous manufacturing (CM). It includes multiple unit operations, such as mixing, granulation, and tableting. In tablet manufacturing, critical quality attributes are influenced by multiple factorial relationships between material properties, process variables, and interactions. Moreover, the variation in raw material attributes and manufacturing processes is an inherent characteristic and seriously affects the quality of pharmaceutical products. To deepen our understanding of the tablet manufacturing process, multivariable modeling techniques can replace univariate analysis to investigate tablet manufacturing. In this review, the roles of the most prominent multivariate modeling techniques in the tablet manufacturing process are discussed. The review mainly focuses on applying multivariate modeling techniques to process understanding, optimization, process monitoring, and process control within multiple unit operations. To minimize the errors in the process of modeling, good modeling practice (GMoP) was introduced into the pharmaceutical process. Furthermore, current progress in the continuous manufacturing of tablets and the role of multivariate modeling techniques in continuous manufacturing are introduced. In this review, information is provided to both researchers and manufacturers to improve tablet quality.
Collapse
Affiliation(s)
- Guolin Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Gongsen Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yuting Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yanqiu Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| |
Collapse
|
10
|
Içten E, Maloney AJ, Beaver MG, Shen DE, Zhu X, Graham LR, Robinson JA, Huggins S, Allian A, Hart R, Walker SD, Rolandi P, Braatz RD. A Virtual Plant for Integrated Continuous Manufacturing of a Carfilzomib Drug Substance Intermediate, Part 1: CDI-Promoted Amide Bond Formation. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Elçin Içten
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Andrew J. Maloney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew G. Beaver
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Dongying Erin Shen
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Xiaoxiang Zhu
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Lauren R. Graham
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jo Anna Robinson
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Seth Huggins
- Process Development, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Ayman Allian
- Process Development, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Roger Hart
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Shawn D. Walker
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Pablo Rolandi
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Richard D. Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Determining key parameters of continuous wet granulation for tablet quality and productivity: A case in ethenzamide. Int J Pharm 2020; 579:119160. [PMID: 32081803 DOI: 10.1016/j.ijpharm.2020.119160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/29/2020] [Accepted: 02/16/2020] [Indexed: 11/24/2022]
Abstract
This paper aims to determine key parameters that affect tablet quality and productivity in continuous tablet manufacturing. Experiments were performed based on design of experiments using a continuous high-shear granulator and ethenzamide as the active pharmaceutical ingredient. To guide a systematic and comprehensive parameter analysis, a parameter framework was defined that comprised five input parameters on raw material properties and process parameters, 11 intermediate parameters on granule properties, and 11 output parameters on tablet quality and productivity. The interrelationships were analyzed statistically and were described as matrix functions. The liquid/solid ratio was the key parameter that affected circularity, density, and flowability as the granule properties, and disintegration and dissolution as the tablet quality. The maximum acceptable manufacturing rate that governs productivity was also affected by the liquid/solid ratio. Circularity was found to affect disintegration and dissolution. This result was specific to the setup of the study, but suggested development opportunities for a new process analytical technology system/quality-by-design application based on circularity. In addition, practical findings were obtained as follows: (1) high-speed manufacturing favored a lower liquid/solid ratio, and (2) high circularity slowed down disintegration/dissolution. This obtained knowledge will enhance the applicability of continuous technology in an actual manufacturing environment.
Collapse
|
12
|
Rehrl J, Kirchengast M, Celikovic S, Sacher S, Kruisz J, Khinast J, Horn M. Improving Pellet Quality in a Pharmaceutical Hot Melt Extrusion Process via PID Control and LOLIMOT-Based MPC. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09417-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Purpose
The aim of this paper is the development of a process control concept for a hot melt extrusion (HME) and pelletization process. The new concept should improve the particle size distribution of the pellets produced.
Methods
Production of pellets containing an active pharmaceutical ingredient (API) can be achieved by means of HME, followed by a pelletization process step. The quality of pellets produced depends on the strand temperature at the pelletizer’s inlet and the pelletizer’s intake speed. This paper presents a strategy for the strand diameter and temperature control based on adjusting the cooling intensity on the cooling track between the HME and the pelletization step and altering the pelletizer’s intake speed. Two concepts are presented and compared to the open-loop operation of the system: the first one is model predictive control (MPC) in combination with a model based on the local linear model tree (LOLIMOT) algorithm, and the second one is PID control. The quality of the pellets produced was analyzed in terms of particle size distribution (PSD).
Results
By implementation of the two control concepts, strand temperature and diameter could be kept close to the desired set points. Consequently, the presented concepts yielded pellets with a narrower particle size distribution than the open-loop operation of the plant.
Conclusions
The application of the presented control strategies can improve the quality of the pellets produced by an HME and pelletization system in terms of their particle size distribution.
Collapse
|
13
|
Li Y, Anderson CA, Drennen JK, Airiau C, Igne B. Development of an In-Line Near-Infrared Method for Blend Content Uniformity Assessment in a Tablet Feed Frame. APPLIED SPECTROSCOPY 2019; 73:1028-1040. [PMID: 30990067 DOI: 10.1177/0003702819842189] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Process analytical technology (PAT) has shown great potential for in-line tableting process monitoring. The study focuses on the development and validation of an in-line near-infrared (NIR) spectroscopic method for the determination of content uniformity of blends in a tablet feed frame. An in-line NIR method was developed after careful evaluation of the impact of potential experimental factors on the robustness and model accuracy and precision. The NIR method was validated according to the principles outlined in International Conference on Harmonization-Q2 for validation of analytical procedures and was demonstrated to be suitable for monitoring blend content for the formulation under evaluation. Reliable measurements of blend homogeneity rely on representative sampling. To reach the appropriate scale of scrutiny for a unit dose, the study assessed factors that influence the effective sample size measured by NIR. Spectral averaging, integration time, and feed frame paddle wheel speed were found to influence the effective sample size measured by the NIR probe. The effective sampling size was also estimated by comparing the distribution of predicted values with the reference values. The development of a robust, in-line PAT method was facilitated by thorough understanding of the sensitivity of PAT sensors to factors affecting pharmaceutical processes and products.
Collapse
Affiliation(s)
- Yi Li
- Duquesne University, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Carl A Anderson
- Duquesne University, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - James K Drennen
- Duquesne University, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Christian Airiau
- GlaxoSmithKline, Analytical Sciences and Development, Collegeville, PA, USA
| | - Benoît Igne
- GlaxoSmithKline, Analytical Sciences and Development, Collegeville, PA, USA
| |
Collapse
|
14
|
Su Q, Ganesh S, Moreno M, Bommireddy Y, Gonzalez M, Reklaitis GV, Nagy ZK. A perspective on Quality-by-Control (QbC) in pharmaceutical continuous manufacturing. Comput Chem Eng 2019; 125:216-231. [PMID: 36845965 PMCID: PMC9948678 DOI: 10.1016/j.compchemeng.2019.03.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Quality-by-Design (QbD) guidance issued by the US Food and Drug Administration (FDA) has catalyzed the modernization of pharmaceutical manufacturing practices including the adoption of continuous manufacturing. Active process control was highlighted recently as a means to improve the QbD implementation. This advance has since been evolving into the concept of Quality-by-Control (QbC). In this study, the concept of QbC is discussed, including a definition of QbC, a review of the recent developments towards the QbC, and a perspective on the challenges of QbC implementation in continuous manufacturing. The QbC concept is demonstrated using a rotary tablet press, integrated into a pilot scale continuous direct compaction process. The results conclusively showed that active process control, based on product and process knowledge and advanced model-based techniques, including data reconciliation, model predictive control (MPC), and risk analysis, is indispensable to comprehensive QbC implementation, and ensures robustness and efficiency.
Collapse
Affiliation(s)
- Qinglin Su
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sudarshan Ganesh
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Mariana Moreno
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yasasvi Bommireddy
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Marcial Gonzalez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.,Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN 47907, USA
| | - Gintaras V Reklaitis
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Zoltan K Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
15
|
Su Q, Bommireddy Y, Shah Y, Ganesh S, Moreno M, Liu J, Gonzalez M, Yazdanpanah N, O’Connor T, Reklaitis GV, Nagy ZK. Data reconciliation in the Quality-by-Design (QbD) implementation of pharmaceutical continuous tablet manufacturing. Int J Pharm 2019; 563:259-272. [PMID: 30951859 PMCID: PMC9976296 DOI: 10.1016/j.ijpharm.2019.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 11/25/2022]
Abstract
Data provided by in situ sensors is always affected by some level of impreciseness as well as uncertainty in the measurements due to process operation disturbance or material property variance. In-process data precision and reliability should be considered when implementing active product quality control and real-time process decision making in pharmaceutical continuous manufacturing. Data reconciliation is an important strategy to address such imperfections effectively, and to exploit the data redundancy and data correlation based on process understanding. In this study, a correlation between tablet weight and main compression force in a rotary tablet press was characterized by the classical Kawakita equation. A load cell, situated at the exit of the tablet press chute, was also designed to measure the tablet production rate as well as the tablet weight. A novel data reconciliation strategy was proposed to reconcile the tablet weight measurement subject to the correlation between tablet weight and main compression force, in such, the imperfect tablet weight measurement can be reconciled with the much more precise main compression force measurement. Special features of the Welsch robust estimator to reject the measurement gross errors and the Kawakita model parameter estimation to monitor the material property variance were also discussed. The proposed data reconciliation strategy was first evaluated with process control open-loop and closed-loop experimental data and then integrated into the process control system in a continuous tablet manufacturing line. Specifically, the real-time reconciled tablet weight measurements were independently verified with an at-line Sotax Auto Test 4 tablet weight measurements every five minutes. Promising and reliable performance of the reconciled tablet weight measurement was demonstrated in achieving process automation and quality control of tablet weight in pilot production runs.
Collapse
Affiliation(s)
- Qinglin Su
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States.
| | - Yasasvi Bommireddy
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Yash Shah
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Sudarshan Ganesh
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Mariana Moreno
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Jianfeng Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Marcial Gonzalez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States,Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN 47907, USA
| | - Nima Yazdanpanah
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Thomas O’Connor
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Gintaras V. Reklaitis
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Zoltan K. Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States,Corresponding authors. (Q. Su), (Z.K. Nagy)
| |
Collapse
|
16
|
Su Q, Ganesh S, Le Vo DB, Nukala A, Bommireddy Y, Gonzalez M, Reklaitis GV, Nagy ZK. A Quality-by-Control Approach in Pharmaceutical Continuous Manufacturing of Oral Solid Dosage via Direct Compaction. ESCAPE. EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING 2019; 46:1327-1332. [PMID: 36790944 PMCID: PMC9923508 DOI: 10.1016/b978-0-12-818634-3.50222-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The pharmaceutical industry has been undergoing a paradigm shift towards continuous manufacturing, under which novel approaches to real-time product quality assurance have been investigated. A new perspective, entitled Quality-by-Control (QbC), has recently been proposed as an important extension and complementary approach to enable comprehensive Quality-by-Design (QbD) implementation. In this study, a QbC approach was demonstrated for a commercial scale tablet press in a continuous direct compaction process. First, the necessary understanding of the compressibility of a model formulation was obtained under QbD guidance using a pilot scale tablet press, Natoli BLP-16. Second, a data reconciliation strategy was used to reconcile the tablet weight measurement based on this understanding on a commercial scale tablet press, Natoli NP-400. Parameter estimation to monitor and update the material property variance was also considered. Third, a hierarchical three-level control strategy, which addressed the fast process dynamics of the commercial scale tablet press was designed. The strategy consisted of the Level 0 built-in machine control, Level 1 decoupled Proportional Integral Derivative (PID) control loops for tablet weight, pre-compression force, main compression force, and production rate control, and Level 2 data reconciliation of sensor measurements. The effective and reliable performance, which could be demonstrated on the rotary tablet press, confirmed that a QbC approach, based on product and process knowledge and advanced model-based techniques, can ensure robustness and efficiency in pharmaceutical continuous manufacturing.
Collapse
Affiliation(s)
- Qinglin Su
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Sudarshan Ganesh
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Dan Bao Le Vo
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Anushaa Nukala
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Yasasvi Bommireddy
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Marcial Gonzalez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Gintaras V Reklaitis
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Zoltan K Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
17
|
Nagy B, Farkas A, Borbás E, Vass P, Nagy ZK, Marosi G. Raman Spectroscopy for Process Analytical Technologies of Pharmaceutical Secondary Manufacturing. AAPS PharmSciTech 2018; 20:1. [PMID: 30560395 DOI: 10.1208/s12249-018-1201-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/01/2018] [Indexed: 01/03/2023] Open
Abstract
As the process analytical technology (PAT) mindset is progressively introduced and adopted by the pharmaceutical companies, there is an increasing demand for effective and versatile real-time analyzers to address the quality assurance challenges of drug manufacturing. In the last decades, Raman spectroscopy has emerged as one of the most promising tools for non-destructive and fast characterization of the pharmaceutical processes. This review summarizes the achieved results of the real-time application of Raman spectroscopy in the field of the secondary manufacturing of pharmaceutical solid dosage forms, covering the most common secondary process steps of a tablet production line. In addition, the feasibility of Raman spectroscopy for real-time control is critically reviewed, and challenges and possible approaches to moving from real-time monitoring to process analytically controlled technologies (PACT) are discussed.
Collapse
|
18
|
Residence Time Distribution (RTD)-Based Control System for Continuous Pharmaceutical Manufacturing Process. J Pharm Innov 2018. [DOI: 10.1007/s12247-018-9356-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Su Q, Moreno M, Ganesh S, Reklaitis GV, Nagy ZK. Resilience and risk analysis of fault-tolerant process control design in continuous pharmaceutical manufacturing. J Loss Prev Process Ind 2018; 55:411-422. [PMID: 36777050 PMCID: PMC9912099 DOI: 10.1016/j.jlp.2018.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The shift from batch to continuous manufacturing, which is occurring in the pharmaceutical manufacturing industry has implications on process safety and product quality. It is now understood that fault-tolerant process control of critical process parameters (CPPs) and critical quality attributes (CQAs) is of paramount importance to the realization of safe operations and quality products. In this study, a systematic framework for fault-tolerant process control system design, analysis, and evaluation of pharmaceutical continuous oral solid dosage manufacturing is proposed. The framework encompasses system identification, controller design and analysis (controllability, stability, resilience, etc.), hierarchical three-level control structures (model predictive control, state estimation, data reconciliation, etc.), risk mapping, assessment and planning (Risk MAP) strategies, and control performance evaluation. The key idea of the proposed framework is to identify the potential risks associated with the control system design itself, the material property variations, and other process uncertainties, under which the control strategies must be evaluated. The framework is applied to a continuous direct compaction process, specifically the feeding-blending subsystem, wherein the major source of variance in the process operation and product quality arises. It is demonstrated, using simulations and experimentally, that the process operation failures and product quality variations in the feeding-blending system can be mitigated and managed through the proposed systematic fault-tolerant process control system design and risk analysis framework.
Collapse
Affiliation(s)
- Qinglin Su
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Mariana Moreno
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Sudarshan Ganesh
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Gintaras V. Reklaitis
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Zoltan K. Nagy
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| |
Collapse
|
20
|
Multivariate monitoring for the industrialisation of a continuous wet granulation tableting process. Int J Pharm 2018; 547:506-519. [DOI: 10.1016/j.ijpharm.2018.06.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 11/18/2022]
|
21
|
Su Q, Bommireddy Y, Gonzalez M, Reklaitis GV, Nagy ZK. Variation and Risk Analysis in Tablet Press Control for Continuous Manufacturing of Solid Dosage via Direct Compaction. INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING 2018; 44:679-684. [PMID: 36790947 PMCID: PMC9923512 DOI: 10.1016/b978-0-444-64241-7.50108-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A continuous rotary tablet press is a multi-stage process with many punch stations running in parallel, in which each punch undergoes the following steps: die filling and metering, pre-compaction, main-compaction, tablet ejection, and tablet take-off from lower punch. Process uncertainties or disturbances within a punch station or among stations in the tablet press are a major source of variation in final product quality attributes, e.g., hardness, weight, etc., which in turn imposes challenges for the real-time release in pharmaceutical continuous manufacturing of solid dosage. In this study, the direct compression line at Purdue University was investigated and a Natoli BLP-16 tablet press was used to characterize powder compressibility, system dynamics and variation, as well as the interaction effects on process control development. The compressibility of tablets made from a blend of Acetaminophen (API), Avicel Microcrystalline Cellulose PH-200 (excipient), and SiO2 (lubricant) was found to be largely independent of tableting speed. By contrast, filling depth or dosing level, turret speed, feed-frame speed, and compression force were interacting and significantly affected the die-filling process and the final product quality attributes. Thus, the design of the process control structure plays an important role in reducing process and product quality variations. A hierarchical three-level control design was proposed and evaluated, consisting of Level 0 Natoli built-in control, Level 1 decoupled Proportional Integral Derivative (PID) cascaded control loops for tablet weight and production rate control, and Level 2 advanced model predictive control. Process variations, e.g., in powder bulk density changes, during continuous steady-state operation were also investigated. Finally, a risk analysis of the effects of the process dynamics on variation on the product quality control was briefly discussed and summarized.
Collapse
Affiliation(s)
- Qinglin Su
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, US
| | - Yasasvi Bommireddy
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, US
| | - Marcial Gonzalez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, US
| | - Gintaras V Reklaitis
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, US
| | - Zoltan K Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, US
| |
Collapse
|
22
|
Ganesh S, Moreno M, Liu J, Gonzalez M, Nagy Z, Reklaitis G. Sensor Network for Continuous Tablet Manufacturing. INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING 2018; 44:2149-2154. [PMID: 36790945 PMCID: PMC9923509 DOI: 10.1016/b978-0-444-64241-7.50353-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The progress in the mechanistic understanding of the unit operations and the availability of multiple sensor technologies enable the inline implementation of data reconciliation and gross error detection methods in continuous pharmaceutical manufacturing. In this work, we demonstrate the benefits of accurate real-time monitoring of the process state in a continuous tableting process, with case studies representative of common situations in pilot-plant or manufacturing line implementation.
Collapse
Affiliation(s)
- Sudarshan Ganesh
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Mariana Moreno
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jianfeng Liu
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Marcial Gonzalez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Zoltan Nagy
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Gintaras Reklaitis
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
23
|
A Validated Model for Design and Evaluation of Control Architectures for a Continuous Tablet Compaction Process. Processes (Basel) 2017. [DOI: 10.3390/pr5040076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|