1
|
Wang C, Xu L, Du C, Yun H, Wang K, Liu H, Ye M, Fan J, Zhou Y, Cheng H. CDK11 requires a critical activator SAP30BP to regulate pre-mRNA splicing. EMBO J 2023; 42:e114051. [PMID: 38059508 PMCID: PMC10711644 DOI: 10.15252/embj.2023114051] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 12/08/2023] Open
Abstract
CDK11 is an emerging druggable target for cancer therapy due to its prevalent roles in phosphorylating critical transcription and splicing factors and in facilitating cell cycle progression in cancer cells. Like other cyclin-dependent kinases, CDK11 requires its cognate cyclin, cyclin L1 or cyclin L2, for activation. However, little is known about how CDK11 activities might be modulated by other regulators. In this study, we show that CDK11 forms a tight complex with cyclins L1/L2 and SAP30BP, the latter of which is a poorly characterized factor. Acute degradation of SAP30BP mirrors that of CDK11 in causing widespread and strong defects in pre-mRNA splicing. Furthermore, we demonstrate that SAP30BP facilitates CDK11 kinase activities in vitro and in vivo, through ensuring the stabilities and the assembly of cyclins L1/L2 with CDK11. Together, these findings uncover SAP30BP as a critical CDK11 activator that regulates global pre-mRNA splicing.
Collapse
Affiliation(s)
- Changshou Wang
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Lin Xu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Chen Du
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Hubei Key Laboratory of Cell HomeostasisWuhan UniversityWuhanChina§
| | - Hao Yun
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Keyun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Hui Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Jing Fan
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Yu Zhou
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Hubei Key Laboratory of Cell HomeostasisWuhan UniversityWuhanChina§
| | - Hong Cheng
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| |
Collapse
|
2
|
Roth JF, Braunschweig U, Wu M, Li JD, Lin ZY, Larsen B, Weatheritt RJ, Gingras AC, Blencowe BJ. Systematic analysis of alternative exon-dependent interactome remodeling reveals multitasking functions of gene regulatory factors. Mol Cell 2023; 83:4222-4238.e10. [PMID: 38065061 DOI: 10.1016/j.molcel.2023.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/09/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
Alternative splicing significantly expands biological complexity, particularly in the vertebrate nervous system. Increasing evidence indicates that developmental and tissue-dependent alternative exons often control protein-protein interactions; yet, only a minor fraction of these events have been characterized. Using affinity purification-mass spectrometry (AP-MS), we show that approximately 60% of analyzed neural-differential exons in proteins previously implicated in transcriptional regulation result in the gain or loss of interaction partners, which in some cases form unexpected links with coupled processes. Notably, a neural exon in Chtop regulates its interaction with the Prmt1 methyltransferase and DExD-Box helicases Ddx39b/a, affecting its methylation and activity in promoting RNA export. Additionally, a neural exon in Sap30bp affects interactions with RNA processing factors, modulating a critical function of Sap30bp in promoting the splicing of <100 nt "mini-introns" that control nuclear RNA levels. AP-MS is thus a powerful approach for elucidating the multifaceted functions of proteins imparted by context-dependent alternative exons.
Collapse
Affiliation(s)
- Jonathan F Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Mingkun Wu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jack Daiyang Li
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada
| | - Robert J Weatheritt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
3
|
Sarafidou T, Galliopoulou E, Apostolopoulou D, Fragkiadakis GA, Moschonas NK. Reconstruction of a Comprehensive Interactome and Experimental Data Analysis of FRA10AC1 May Provide Insights into Its Biological Role in Health and Disease. Genes (Basel) 2023; 14:genes14030568. [PMID: 36980839 PMCID: PMC10048706 DOI: 10.3390/genes14030568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
FRA10AC1, the causative gene for the manifestation of the FRA10A fragile site, encodes a well-conserved nuclear protein characterized as a non-core spliceosomal component. Pre-mRNA splicing perturbations have been linked with neurodevelopmental diseases. FRA10AC1 variants have been, recently, causally linked with severe neuropathological and growth retardation phenotypes. To further elucidate the participation of FRA10AC1 in spliceosomal multiprotein complexes and its involvement in neurological phenotypes related to splicing, we exploited protein–protein interaction experimental data and explored network information and information deduced from transcriptomics. We confirmed the direct interaction of FRA10AC1with ESS2, a non-core spliceosomal protein, mapped their interacting domains, and documented their tissue co-localization and physical interaction at the level of intracellular protein stoichiometries. Although FRA10AC1 and SF3B2, a major core spliceosomal protein, were shown to interact under in vitro conditions, the endogenous proteins failed to co-immunoprecipitate. A reconstruction of a comprehensive, strictly binary, protein–protein interaction network of FRA10AC1 revealed dense interconnectivity with many disease-associated spliceosomal components and several non-spliceosomal regulatory proteins. The topological neighborhood of FRA10AC1 depicts an interactome associated with multiple severe monogenic and multifactorial neurodevelopmental diseases mainly referring to spliceosomopathies. Our results suggest that FRA10AC1 involvement in pre-mRNA processing might be strengthened by interconnecting splicing with transcription and mRNA export, and they propose the broader role(s) of FRA10AC1 in cell pathophysiology.
Collapse
Affiliation(s)
- Theologia Sarafidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece
- Correspondence: (T.S.); (N.K.M.)
| | - Eleni Galliopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, 41500 Larissa, Greece
| | | | - Georgios A. Fragkiadakis
- Department of Nutrition and Dietetics Sciences, Hellenic Mediterranean University, Tripitos, 72300 Siteia, Greece
| | - Nicholas K. Moschonas
- School of Medicine, University of Patras, 26500 Patras, Greece
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras, Greece
- Correspondence: (T.S.); (N.K.M.)
| |
Collapse
|
4
|
Liu Z, Lei X, Wang P, Wang Y, Lv J, Li X, Gao C. Overexpression of ThSAP30BP from Tamarix hispida improves salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:124-132. [PMID: 31743857 DOI: 10.1016/j.plaphy.2019.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Histone deacetylases (HDACs) play an important regulatory role in plant response to biotic and abiotic stresses. They improve plant stress resistance by increasing the degree of histone acetylation associated with stress-responsive genes. SAP30BP, a human transcriptional regulatory protein, can increase histone deacetylase activity by regulating the deacetylation levels of lysines 9 and 14 in histone H3. In this study, a ThSAP30BP gene was cloned and characterized from Tamarix hispida (a kind of woody halophyte). The expression patterns of ThSAP30BP under different abiotic stresses and hormone treatments were detected by qRT-PCR. The results showed that ThSAP30BP was significantly upregulated at most time points under various stress treatments, suggesting that ThSAP30BP may be related to the abiotic stress response of T. hispida. To further analyze the salt stress resistance function of the ThSAP30BP gene, the plant overexpression vector pROKII-ThSAP30BP was instantaneously constructed and transformed into T. hispida. Meanwhile, the empty vector pROKII was also transformed as a control. The activities of SOD and POD, the contents of H2O2 and MDA, the relative conductance and the staining of NBT, DAB and Evans blue were analyzed and compared under salt stress. The results showed that the overexpression of ThSAP30BP in T. hispida reduced the accumulation of ROS in plants and the cell death rate under salt stress. These results suggested that ThSAP30BP may play an important physiological role in salt tolerance of T. hispida.
Collapse
Affiliation(s)
- Zhongyuan Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Xiaojin Lei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Peilong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yuanyuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jiaxin Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Xinpin Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
5
|
Xie T, He Y, Korkeamaki H, Zhang Y, Imhoff R, Lohi O, Radhakrishnan I. Structure of the 30-kDa Sin3-associated protein (SAP30) in complex with the mammalian Sin3A corepressor and its role in nucleic acid binding. J Biol Chem 2011; 286:27814-24. [PMID: 21676866 PMCID: PMC3149371 DOI: 10.1074/jbc.m111.252494] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ∼2-megadalton evolutionarily conserved histone deacetylase-associated Rpd3L/Sin3L complex plays critical roles in altering the histone code and repressing transcription of a broad range of genes involved in many aspects of cellular physiology. Targeting of this complex to specific regions of the genome is presumed to rely on interactions involving one or more of at least 10 distinct subunits in the complex. Here we describe the solution structure of the complex formed by the interacting domains of two constitutively associated subunits, mSin3A and SAP30. The mSin3A paired amphipathic helix 3 (PAH3) domain in the complex adopts the left-handed four-helix bundle structure characteristic of PAH domains. The SAP30 Sin3 interaction domain (SID) binds to PAH3 via a tripartite structural motif, including a C-terminal helix that targets the canonical PAH hydrophobic cleft while two other helices and an N-terminal extension target a discrete surface formed largely by the PAH3 α2, α3, and α3' helices. The protein-protein interface is extensive (∼1400 Å(2)), accounting for the high affinity of the interaction and the constitutive association of the SAP30 subunit with the Rpd3L/Sin3L complex. We further show using NMR that the mSin3A PAH3-SAP30 SID complex can bind to nucleic acids, hinting at a role for a nucleolar localization sequence in the SID αA helix in targeting the Rpd3L/Sin3L complex for silencing ribosomal RNA genes.
Collapse
Affiliation(s)
- Tao Xie
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208 and
| | - Yuan He
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208 and
| | - Hanna Korkeamaki
- the Pediatric Research Center, University of Tampere Medical School and Tampere University Hospital, 33520 Tampere, Finland
| | - Yongbo Zhang
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208 and
| | - Rebecca Imhoff
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208 and
| | - Olli Lohi
- the Pediatric Research Center, University of Tampere Medical School and Tampere University Hospital, 33520 Tampere, Finland, To whom correspondence may be addressed. E-mail:
| | - Ishwar Radhakrishnan
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208 and , To whom correspondence may be addressed. E-mail:
| |
Collapse
|