1
|
Chen X, Yu Z, Li W. Molecular mechanism of autophagy in porcine reproductive and respiratory syndrome virus infection. Front Cell Infect Microbiol 2024; 14:1434775. [PMID: 39224702 PMCID: PMC11366741 DOI: 10.3389/fcimb.2024.1434775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), a significant pathogen affecting the swine industry globally, has been shown to manipulate host cell processes, including autophagy, to facilitate its replication and survival within the host. Autophagy, an intracellular degradation process crucial for maintaining cellular homeostasis, can be hijacked by viruses for their own benefit. During PRRSV infection, autophagy plays a complex role, both as a defense mechanism of the host and as a tool exploited by the virus. This review explores the current understanding of the molecular mechanisms underlying autophagy induction under PRRSV infection, its impact on virus replication, and the potential implications for viral pathogenesis and antiviral strategies. By synthesizing the latest research findings, this article aims to enhance our understanding of the intricate relationship between autophagy and PRRSV, paving the way for novel therapeutic approaches against this swine pathogen.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Xingzhi College, Zhejiang Normal University, Jinhua, China
| | - Ziding Yu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenfeng Li
- College of Animal Sciences, Wenzhou Vocational College of Science and Technology, Wenzhou, China
| |
Collapse
|
2
|
Profiling of alternative polyadenylation and gene expression in PEDV-infected IPEC-J2 cells. Virus Genes 2021; 57:181-193. [PMID: 33620696 PMCID: PMC7900649 DOI: 10.1007/s11262-020-01817-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/04/2020] [Indexed: 12/23/2022]
Abstract
Since 2010, porcine epidemic diarrhea virus (PEDV) has received global attention with the emergence of variant strains characterized with high pathogenicity. The pathogen-host interaction after PEDV infection is still unclear. To investigate this issue, high-throughput-based sequencing technology is one of the optimal choices. In this study, we used in vitro transcription sequencing alternative polyadenylation sites (IVT-SAPAS) method, which allowed accurate profiling of gene expression and alternative polyadenylation (APA) sites to profile APA switching genes and differentially expressed genes (DEGs) in IPEC-J2 cells during PEDV variant strain infection. We found 804 APA switching genes, including switching in tandem 3' UTRs and switching between coding region and 3' UTR, and 1,677 DEGs in host after PEDV challenge. These genes participated in variety of biological processes such as cellular process, metabolism and immunity reactions. Moreover, 413 genes, most of which are the "focus" genes in interaction networks, were found to be involved in both APA switching genes and DEGs, suggesting these genes were synchronously regulated by different mechanisms. In summary, our results gave a relatively comprehensive insight into dynamic host-pathogen interactions in the regulation of host gene transcripts during PEDV infection.
Collapse
|
3
|
Kuitio C, Rasri N, Kiriwan D, Unajak S, Choowongkomon K. Development of a biosensor from aptamers for detection of the porcine reproductive and respiratory syndrome virus. J Vet Sci 2020; 21:e79. [PMID: 33016024 PMCID: PMC7533388 DOI: 10.4142/jvs.2020.21.e79] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Recently, the pork industry of Thailand faced an epidemic of highly virulent strains of porcine reproductive and respiratory syndrome virus (PRRSV), which spread throughout Southeast Asia, including the Lao People's Democratic Republic and Cambodia. Hence, the rapid and on-site screening of infected pigs on a farm is essential. OBJECTIVES To develop the new aptamer as a biosensor for detection PRRSV which are rapid and on-site screening of infected pig. METHODS New aptamers against PRSSV were identified using the combined techniques of capillary electrophoresis, colorimetric assay by gold nanoparticles, and quartz crystal microbalance (QCM). RESULTS Thirty-six candidate aptamers of the PRRSV were identified from the systematic evolution of ligands by exponential enrichment (SELEX) by capillary electrophoresis. Only 8 out of 36 aptamers could bind to the PRSSV, as shown in a colorimetric assay. Of the 8 aptamers tested, only the 1F aptamer could bind specifically to the PRSSV when presented with the classical swine fever virus and a pseudo rabies virus. The QCM was used to confirm the specificity and sensitivity of the 1F aptamer with a detection limit of 1.87 × 1010 particles. CONCLUSIONS SELEX screening of the aptamer equipped with capillary electrophoresis potentially revealed promising candidates for detecting the PRRSV. The 1F aptamer exhibited the highest specificity and selectivity against the PRRSV. These findings suggest that 1F is a promising aptamer for further developing a novel PRRSV rapid detection kit.
Collapse
Affiliation(s)
- Chakpetch Kuitio
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand
| | - Natchaya Rasri
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Duangnapa Kiriwan
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.,Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
4
|
Zhang K, Ge L, Dong S, Liu Y, Wang D, Zhou C, Ma C, Wang Y, Su F, Jiang Y. Global miRNA, lncRNA, and mRNA Transcriptome Profiling of Endometrial Epithelial Cells Reveals Genes Related to Porcine Reproductive Failure Caused by Porcine Reproductive and Respiratory Syndrome Virus. Front Immunol 2019; 10:1221. [PMID: 31231376 PMCID: PMC6559286 DOI: 10.3389/fimmu.2019.01221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) can cause respiratory disease and reproductive failure in pregnant pigs. Previous transcriptome analyses in susceptive cells have mainly concentrated on pulmonary alveolar macrophages (PAM) and Marc-145 cells, and on the respiratory system. Some studies reported that apoptosis of placental cells and pig endometrial epithelial cells (PECs) is an obvious sign linked to reproductive failure in pregnant sows, but the mechanism is still unknown. In this study, Sn-positive PECs were isolated and apoptosis rates were assessed by flow cytometry. PRRSV-infected PECs exhibited apoptosis, indicative of their susceptibility to PRRSV. Subsequently, the whole transcriptome was compared between mock- and PRRSV-infected PECs and 54 differentially expressed microRNAs (DEmiRNAs), 104 differentially expressed genes (DEGs), 22 differentially expressed lncRNAs (DElncRNAs), and 109 isoforms were obtained, which were mainly enriched in apoptosis, necroptosis, and p53 signal pathways. Integration analysis of DEmiRNA and DEG profiles revealed two microRNAs (ssc-miR-339-5p and ssc-miR-181d-5p) and five genes (SLA-DQB1, THBS1, SLC3A1, ZFP37, and LOC100517161) participating in the apoptosis signal, of which THBS1 and SLC3A1 were mainly linked to the p53 pathway. Integration analysis of DEGs with DElncRNA profiles identified genes involved in apoptosis signal pathway are regulated by LTCONS_00010766 and LTCONS_00045988. Pathway enrichment revealed that the phagosome and p53 pathways are the two main signals causing apoptosis of PECs, and functional analysis revealed a role of miR-339-5p in regulating apoptosis of PECs after PRRSV inoculation.
Collapse
Affiliation(s)
- Kang Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Lijiang Ge
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Shasha Dong
- Department of Cardiology, Shandong First Medical University and Shandong Academy of Medical Science, Taian, China
| | - Ying Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Dong Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Chunyan Zhou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Cai Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Yanchao Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Feng Su
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|