1
|
Nikmanesh N, Hosseini S, Mirbagheri F, Asadsangabi K, Fattahi MR, Safarpour AR, Abarghooee EF, Moravej A, Shamsdin SA, Akrami H, Saghi SA, Nikmanesh Y. Knowledge on Human Papillomavirus Infections, Cancer Biology, Immune Interactions, Vaccination Coverage and Common Treatments: A Comprehensive Review. Viral Immunol 2024; 37:221-239. [PMID: 38841885 DOI: 10.1089/vim.2023.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024] Open
Abstract
Human papillomavirus (HPV) is a circular, double-stranded DNA virus and recognized as the most prevalent sexually transmitted infectious agent worldwide. The HPV life cycle encompasses three primary stages. First, the virus infiltrates the basal cells of the stratified epidermis. Second, there is a low-level expression of viral genes and preservation of the viral genome in the basal layer. Lastly, productive replication of HPV occurs in differentiated cells. An effective immune response, involving various immune cells, including innate immunity, keratinocytes, dendritic cells, and natural killer T cells, is instrumental in clearing HPV infection and thwarting the development of HPV-associated tumors. Vaccines have demonstrated their efficacy in preventing genital warts, high-grade precancerous lesions, and cancers in females. In males, the vaccines can also aid in preventing genital warts, anal precancerous lesions, and cancer. This comprehensive review aims to provide a thorough and detailed exploration of HPV infections, delving into its genetic characteristics, life cycle, pathogenesis, and the role of high-risk and low-risk HPV strains. In addition, this review seeks to elucidate the intricate immune interactions that govern HPV infections, spanning from innate immunity to adaptive immune responses, as well as examining the evasion mechanisms used by the virus. Furthermore, the article discusses the current landscape of HPV vaccines and common treatments, contributing to a holistic understanding of HPV and its associated diseases.
Collapse
Affiliation(s)
- Nika Nikmanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - SeyedehZahra Hosseini
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | | | - Kimiya Asadsangabi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Fattahi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Moravej
- Department of Laboratory Sciences, School of Allied Medical Sciences, Fasa University of Medical Science, Fasa, Iran
| | - Seyedeh Azra Shamsdin
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Akrami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Amirreza Saghi
- Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, Iran
- Student Research Committee, Faculty of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Nikmanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Xu MN, Zhong MZ, Feng SN, Xu YQ, Peng XM, Zeng K, Huang XW. Production of recombinant HPV11/16 E6/E7-MBP-His 6 fusion proteins and their potential to induce cytokine secretion by immune cells in peripheral blood. Virol J 2024; 21:10. [PMID: 38183109 PMCID: PMC10768090 DOI: 10.1186/s12985-023-02281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024] Open
Abstract
Human papillomavirus (HPV) infection poses a significant threat to public health worldwide. Targeting the function of HPV E6 and E7 proteins and activating the host immune response against these proteins represent promising therapeutic strategies for combating HPV-related diseases. Consequently, the efficient production of soluble, high-purity E6 and E7 proteins is crucial for function and host immune response studies. In this context, we selected the pMCSG19 protein expression vector for Escherichia coli to produce soluble MBP-His6 tagged HPV11/16 E6/E7 proteins, achieving relatively high purity and yield. Notably, these proteins exhibited low toxicity to peripheral blood mononuclear cells (PBMCs) and did not compromise their viability. Additionally, the recombinant proteins were capable of inducing the secretion of multiple cytokines by immune cells in peripheral blood, indicating their potential to elicit immune responses. In conclusion, our study offers a novel approach for the production of HPV11/16 E6/E7 fusion proteins with relatively high purity and yield. The fusing HPV11/16 E6/E7 proteins to MBP-His6 tag may serve as a valuable method for large-scale protein production in future research endeavors.
Collapse
Affiliation(s)
- Mei-Nian Xu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mei-Zhen Zhong
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Si-Ning Feng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-Qin Xu
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Ming Peng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Xiao-Wen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Wang J, Zhang Z, Chen Y. Supramolecular immunotherapy on diversiform immune cells. J Mater Chem B 2023; 11:8347-8367. [PMID: 37563947 DOI: 10.1039/d3tb00924f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Supramolecular immunotherapy employs supramolecular materials to stimulate the immune system for inhibiting tumor cell growth and metastasis, reducing the cancer recurrence rate, and improving the quality of the patient's life. Additionally, it can lessen patient suffering and the deterioration of their illness, as well as increase their survival rate. This paper will outline the fundamentals of tumor immunotherapy based on supramolecular materials as well as its current state of development and potential applications. To be more specific, we will first introduce the basic principles of supramolecular immunotherapy, including the processes, advantages and limitations of immunotherapy, the construction of supramolecular material structures, and its benefits in treatment. Second, considering the targeting of supramolecular drugs to immune cells, we comprehensively discuss the unique advantages of applying supramolecular drugs with different types of immune cells in tumor immunotherapy. The current research advances in supramolecular immunotherapy, including laboratory research and clinical applications, are also described in detail. Finally, we reveal the tremendous promise of supramolecular materials in tumor immunotherapy, as well as discuss the opportunities and challenges that may be faced in future development.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P. R. China
| | - Ziyi Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P. R. China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P. R. China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P. R. China
| |
Collapse
|
4
|
Xia C, Xiao C, Luk HY, Chan PKS, Boon SS. The ubiquitin specific protease 7 stabilizes HPV16E7 to promote HPV-mediated carcinogenesis. Cell Mol Life Sci 2023; 80:278. [PMID: 37682346 PMCID: PMC11072444 DOI: 10.1007/s00018-023-04941-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
Human papillomavirus (HPV) encoded E7 oncoprotein plays an important role in supporting the viral productive cycle and inducing cancer phenotypes. The ability of E7 to exercise these functions, partly, depends upon its steady-state level. HPV manipulates the host de-ubiquitination pathway to maintain the stability of its viral proteins. In this study, we uncovered that HPV interacts with the host ubiquitin specific protease 7 (USP7), a universal de-ubiquitinating enzyme, leading to the stabilization of E7 oncoprotein. We observed that HPV16E7 complexes with USP7 via the E7-CR3 domain, and this E7-USP7 complex exists predominantly in the nucleus. Our results showed that USP7 stabilizes and prolongs the half-life of HPV16E7 by antagonizing ubiquitination and proteasomal degradation. Consistently, when we inhibited USP7 activity using HBX 19818, HPV16E7 protein level was reduced and its turnover was increased. We also provide evidence that HBX 19818-induced USP7 inhibition can halt HPV-mediated carcinogenesis, including cell proliferation, invasion, migration and transformation. These findings indicate that USP7 plays an essential role in stabilizing E7. The specific and potent inhibitory effects of HBX 19818 on HPV-induced carcinogenesis provide a molecular insight, suggesting the potential of targeting USP7 as a new therapeutic approach for the treatment of HPV-associated cancers.
Collapse
Affiliation(s)
- Chichao Xia
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Chuanyun Xiao
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Ho Yin Luk
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Paul K S Chan
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Siaw Shi Boon
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR.
| |
Collapse
|
5
|
Cruz-Gregorio A, Aranda-Rivera AK, Pedraza-Chaverri J. Nuclear factor erythroid 2-related factor 2 in human papillomavirus-related cancers. Rev Med Virol 2021; 32:e2308. [PMID: 34694662 DOI: 10.1002/rmv.2308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023]
Abstract
High-risk human papillomavirus (HR-HPV) infection is a necessary cause for the development of cervical cancer. Moreover, HR-HPV is also associated with cancers in the anus, vagina, vulva, penis and oropharynx. HR-HPVs target and modify the function of different cell biomolecules, such as glucose, amino acids, lipids and transcription factors (TF), such as p53, nuclear factor erythroid 2-related factor 2 (Nrf2), among others. The latter is a master TF that maintains redox homeostasis. Nrf2 also induces the transcription of genes associated with cell detoxification. Since both processes are critical for cell physiology, Nrf2 deregulation is associated with cancer development. Nrf2 is a crucial molecule in HPV-related cancer development but underexplored. Moreover, Nrf2 activation is also associated with resistance to chemotherapy and radiotherapy in these cancers. This review focusses on the importance of Nrf2 during HPV-related cancer development, resistance to therapy and potential therapies associated with Nrf2 as a molecular target.
Collapse
Affiliation(s)
- Alfredo Cruz-Gregorio
- Departmento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Ana Karina Aranda-Rivera
- Departmento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - José Pedraza-Chaverri
- Departmento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| |
Collapse
|
6
|
Aarthy M, Singh SK. Interpretations on the Interaction between Protein Tyrosine Phosphatase and E7 Oncoproteins of High and Low-Risk HPV: A Computational Perception. ACS OMEGA 2021; 6:16472-16487. [PMID: 34235319 PMCID: PMC8246469 DOI: 10.1021/acsomega.1c01619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/08/2021] [Indexed: 05/17/2023]
Abstract
The most prevalent and common sexually transmitted infection is caused by human papillomavirus (HPV) among sexually active women. Numerous genotypes of HPV are available, among which the major oncoproteins E6 and E7 lead to the progression of cervical cancer. The E7 oncoprotein interacts with cytoplasmic tumor suppressor protein PTPN14, which is the key regulator of cellular growth control pathways effecting the reduction of steady-state level. Disrupting the interaction between the tumor suppressor and the oncoprotein is vital to cease the development of cancer. Hence, the mechanism of interaction between E7 and tumor suppressor is explored through protein-protein and protein-ligand binding along with the conformational stability studies. The obtained results state that the LXCXE domain of HPV E7 of high and low risks binds with the tumor suppressor protein. Also, the small molecules bind in the interface of E7-PTPN14 that disrupts the interaction between the tumor suppressor and oncoprotein. These results were further supported by the dynamics simulation stating the stability over the bounded complex and the energy maintained during postdocking as well as postdynamics calculations. These observations possess an avenue in the drug discovery that leads to further validation and also proposes a potent drug candidate to treat cervical cancer caused by HPV.
Collapse
|
7
|
Cheng Y, Borcherding N, Ogunsakin A, Lemke-Miltner CD, Gibson-Corley KN, Rajan A, Choi AB, Wongpattaraworakul W, Chan CHF, Salem AK, Weiner GJ, Simons AL. The anti-tumor effects of cetuximab in combination with VTX-2337 are T cell dependent. Sci Rep 2021; 11:1535. [PMID: 33452311 PMCID: PMC7810827 DOI: 10.1038/s41598-020-80957-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 12/30/2020] [Indexed: 11/15/2022] Open
Abstract
The Toll-like receptor 8 (TLR8) agonist VTX-2337 (motolimod) is an anti-cancer immunotherapeutic agent that is believed to augment natural killer (NK) and dendritic cell (DC) activity. The goal of this work is to examine the role of TLR8 expression/activity in head and neck squamous cell carcinoma (HNSCC) to facilitate the prediction of responders to VTX-2337-based therapy. The prognostic role of TLR8 expression in HNSCC patients was assessed by TCGA and tissue microarray analyses. The anti-tumor effect of VTX-2337 was determined in SCCVII/C3H, mEERL/C57Bl/6 and TUBO-human EGFR/BALB/c syngeneic mouse models. The effect of combined VTX-2337 and cetuximab treatment on tumor growth, survival and immune cell recruitment was assessed. TLR8 expression was associated with CD8+ T cell infiltration and favorable survival outcomes. VTX-2337 delayed tumor growth in all 3 syngeneic mouse models and significantly increased the survival of cetuximab-treated mice. The anti-tumor effects of VTX-2337+ cetuximab were accompanied by increased splenic lymphoid DCs and IFNγ+ CD4+ and tumor-specific CD8+ T cells. Depletion of CD4+ T cells, CD8+ T cells and NK cells were all able to abolish the anti-tumor effect of VTX-2337+ cetuximab. Altogether, VTX-2337 remains promising as an adjuvant for cetuximab-based therapy however patients with high TLR8 expression may be more likely to derive benefit from this drug combination compared to patients with low TLR8 expression.
Collapse
Affiliation(s)
- Yinwen Cheng
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA.,Department of Pathology, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Nicholas Borcherding
- Department of Pathology, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Iowa Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ayomide Ogunsakin
- Department of Biochemistry, Lincoln University, Lincoln University, PA, USA
| | - Caitlin D Lemke-Miltner
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Katherine N Gibson-Corley
- Department of Pathology, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Anand Rajan
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Allen B Choi
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Wattawan Wongpattaraworakul
- Department of Pathology, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Carlos H F Chan
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Department of Surgery, University of Iowa, Iowa City, IA, USA
| | - Aliasger K Salem
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - George J Weiner
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Andrean L Simons
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA. .,Department of Pathology, University of Iowa, Iowa City, IA, USA. .,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA. .,Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
8
|
Autophagy is induced in human keratinocytes during human papillomavirus 11 pseudovirion entry. Aging (Albany NY) 2020; 12:23017-23028. [PMID: 33197887 PMCID: PMC7746385 DOI: 10.18632/aging.104046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/25/2020] [Indexed: 01/07/2023]
Abstract
Human papillomavirus type 11 (HPV11) is one of the main causes of condyloma acuminatum, a widespread sexually transmitted disease. During infection of its primary target cell, keratinocytes, it is likely to encounter the autophagy pathway, which is an intracellular maintenance process that is also able to target invading pathogens. It is currently unknown whether HPV11 is targeted by autophagy or whether it is able to escape autophagy-mediated killing. Here, we investigated the autophagy response during HPV11 pseudovirion (PsV) entry in human keratinocytes. Transmission electron microscopy showed that intracellular PsVs were sequestered in lumen of double-membrane autophagosomes that subsequently appeared to fuse with lysosomes, while confocal microscopy showed induction LC3 puncta, the hallmark of induced autophagy activity. Furthermore, quantitative infection assays showed that high autophagy activity resulted in reduced HPV11 PsV infectivity. Therefore, the autophagy pathway seemed to actively target invading HPV11 PsVs for destruction in the autolysosome. Western analysis on the phosphorylation state of autophagy regulators and upstream pathways indicated that autophagy was activated through interplay between Erk and Akt signaling. In conclusion, autophagy functions as a cellular protection mechanism against intracellular HPV11 and therefore therapies that stimulate autophagy may prevent recurrent condyloma acuminatum by helping eliminate latent HPV11 infections.
Collapse
|
9
|
Boon SS, Xia C, Lim JY, Chen Z, Law PTY, Yeung ACM, Thomas M, Banks L, Chan PKS. Human Papillomavirus 58 E7 T20I/G63S Variant Isolated from an East Asian Population Possesses High Oncogenicity. J Virol 2020; 94:e00090-20. [PMID: 31996427 PMCID: PMC7108839 DOI: 10.1128/jvi.00090-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 01/08/2023] Open
Abstract
Human papillomavirus (HPV) type 58 is the third most commonly detected HPV type in cervical cancer among Eastern Asians. Our previous international epidemiological studies revealed that HPV58 carrying an E7 natural variant, T20I/G63S (designated V1), was associated with a higher risk of cervical cancer. We recently showed that V1 possesses a greater ability to immortalize and transform primary cells, as well as degrading pRB more effectively, than the prototype and other common variants. In this study, we performed a series of phenotypic and molecular assays using physiologically relevant in vitro and in vivo models to compare the oncogenicity of V1 with that of the prototype and other common natural variants. Through activation of the AKT and K-Ras/extracellular signal-regulated kinase (ERK) signaling pathways, V1 consistently showed greater oncogenicity than the prototype and other variants, as demonstrated by increased cell proliferation, migration, and invasion, as well as induction of larger tumors in athymic nude mice. This study complements our previous epidemiological and molecular observations pinpointing the higher oncogenicity of V1 than that of the prototype and all other common variants. Since V1 is more commonly found in eastern Asia, our report provides insight into the design of HPV screening assays and selection of components for HPV vaccines in this region.IMPORTANCE Epidemiological studies have revealed that a wild-type variant of HPV58 carrying an E7 variation, T20I/G63S (V1), is associated with a higher risk of cervical cancer. We previously reported that this increased oncogenicity could be the result of the virus's greater ability to degrade pRB, thereby leading to an increased ability to grow in an anchorage-independent manner. In addition to this, this report further showed that this HPV variant induced activation of the AKT and K-Ras/ERK signaling pathways, thereby explaining its genuine oncogenicity in promoting cell proliferation, migration, invasion, and formation of tumors, all to a greater extent than the prototype HPV58 and other common variants.
Collapse
Affiliation(s)
- Siaw Shi Boon
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR
| | - Chichao Xia
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR
| | - Jin Yan Lim
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR
| | - Zigui Chen
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR
| | - Priscilla T Y Law
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR
| | - Apple C M Yeung
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR
| | - Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Paul K S Chan
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR
| |
Collapse
|
10
|
Xu X, Yuan S, Zhang X, Lou H. Immune Response of Plasmacytoid Dendritic Cells Stimulated by Human Papillomavirus (HPV) E6 in an In Vitro System. Med Sci Monit 2020; 26:e919770. [PMID: 32089541 PMCID: PMC7057736 DOI: 10.12659/msm.919770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background This study aimed to analyze the changes in plasmacytoid dendritic cell (pDC) immunophenotypes when co-cultured with Caski cells and stimulated by human papillomavirus (HPV) E6 in vitro, and thus to discuss the immunoregulatory roles of pDCs in the tumorigenesis of cervical cancer. Material/Methods The immunophenotypic expression of pDCs was analyzed under stimulation of HPV E6 and co-culturing with Caski cells in vitro. Results HPV E6 infection caused significantly increased expression of CD40 in HPV16 M and HPV16 H groups MyD88 in HPV16 M,HPV16 H, and HPV18L groups; and TRAF6 in HPV16 M, HPV16 H, and HPV18L groups. pDCs co-cultured with Caski cells showed significantly lower expression of MyD88 and TRAF6 compared with the control. Conclusions The expression of MyD88 and TRAF6 might vary in different stages of HPV infection. pDCs might regulate CD40 to participate in the tumorigenesis and progression of cervical cancer, but related mechanisms still need further investigation.
Collapse
Affiliation(s)
- Xiaoxian Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Shuhui Yuan
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Xiaojing Zhang
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Hanmei Lou
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|