1
|
Chen D, Yan Y, Mei T, Yang P, Deng S, Li Y, Zhao T, Xin N, Duan B, Liang W, Yang Y, Zhao W, Seto D, Ou J, Zhang Q. Construction and validation of a mouse model for studying severe human adenovirus infections. Virol Sin 2024; 39:963-973. [PMID: 39515524 PMCID: PMC11738788 DOI: 10.1016/j.virs.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Human adenoviruses (HAdVs) are highly contagious pathogens with various genotypes implicated in acute respiratory disease (ARD) and linked to fatality, especially in immunosuppressed patients, young children, and military recruits. Currently, no vaccines or specific drugs are approved for clinical use. The hosts of adenoviruses are strictly species-specific, which strongly limits the development of vaccines and drugs against HAdVs. In this study, immunocompetent BALB/c mice were challenged with different doses of human adenovirus type 5 (HAdV-5) via tail intravenous injection (i.v.). All mice challenged with a high dose of HAdV-5 (3.2 × 1010 TCID50/kg) died within 3-5 days, while those receiving a low dose of HAdV-5 (8 × 109 or 4 × 109 TCID50/kg) survived. Interestingly, among the mice receiving a medium dose of HAdV-5 (1.6 × 1010 TCID50/kg), 60% (n = 3/5) of male mice died, while all female mice survived. This suggests that male mice may be more susceptible to HAdV-5 infection than female mice, consistent with clinical findings in children. HAdV-5 DNA was mainly distributed in the liver, followed by the spleen and lung. Pathological changes were observed in the lung, liver, and spleen, with severity increasing in correlation with the virus challenge dosage. Transcriptome and qPCR analyses of the liver indicated that the down-regulated expression of the H2-Aa, H2-Ea-ps, CD74, and H2-Eb1 genes in male mice, as well as the AHR gene in female mice, may contribute to the observed higher mortality rates in male mice. Therefore, this effective, feasible, and cost-efficient mouse model could serve as a candidate for evaluating HAdV vaccines and anti-adenovirus therapeutics.
Collapse
Affiliation(s)
- Dingbin Chen
- Institute of Medical Microbiology, Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yuqian Yan
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China; Department of Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Ting Mei
- Institute of Medical Microbiology, Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Peipei Yang
- Institute of Medical Microbiology, Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Siqi Deng
- Institute of Medical Microbiology, Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yiqiang Li
- Institute of Medical Microbiology, Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Tie Zhao
- Institute of Medical Microbiology, Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ning Xin
- Institute of Medical Microbiology, Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Biyan Duan
- Institute of Medical Microbiology, Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Weifeng Liang
- Institute of Medical Microbiology, Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yuemei Yang
- South Yunnan Central Hospital (Honghe First People's Hospital), Mengzi, Yunnan, 661100, China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Junxian Ou
- Institute of Medical Microbiology, Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510310, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| | - Qiwei Zhang
- Institute of Medical Microbiology, Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Zhu F, Lu Z, Tang W, Zhao G, Shao Y, Lu B, Ding J, Zheng Y, Fang L, Li H, Wang G, Chen R, Zheng J, Chai D. Adenovirus vaccine targeting kinases induces potent antitumor immunity in solid tumors. J Immunother Cancer 2024; 12:e009869. [PMID: 39209449 PMCID: PMC11367354 DOI: 10.1136/jitc-2024-009869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Targeting kinases presents a potential strategy for treating solid tumors; however, the therapeutic potential of vaccines targeting kinases remains uncertain. METHODS Adenovirus (Ad) vaccines encoding Aurora kinase A (AURKA) or cyclin-dependent kinase 7 (CDK7) were developed, and their therapeutic potentials were investigated by various methods including western blot, flow cytometry, cytotoxic T lymphocyte assay, and enzyme-linked immunospot (ELISpot), in mouse and humanized solid tumor models. RESULTS Co-immunization with Ad-AURKA/CDK7 effectively prevented subcutaneous tumor growth in the Renca, RM-1, MC38, and Hepa1-6 tumor models. In therapeutic tumor models, Ad-AURKA/CDK7 treatment impeded tumor growth and increased immune cell infiltration. Administration of Ad-AURKA/CDK7 promoted the induction and maturation of dendritic cell subsets and augmented multifunctional CD8+ T-cell antitumor immunity. Furthermore, the vaccine induced a long-lasting antitumor effect by promoting the generation of memory CD8+ T cells. Tumor recovery on CD8+ T-cell depletion underscored the indispensable role of these cells in the observed therapeutic effects. The potent efficacy of the Ad-AURKA/CDK7 vaccine was consistently demonstrated in lung metastasis, orthotopic, and humanized tumor models by inducing multifunctional CD8+ T-cell antitumor immune responses. CONCLUSIONS Our findings illustrate that the Ad-AURKA/CDK7 vaccine targeting dual kinases AURKA and CDK7 emerges as a promising and effective therapeutic approach for the treatment of solid tumors.
Collapse
Affiliation(s)
- Fei Zhu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zheng Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenjing Tang
- Clinical Laboratory, The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second Hospital, Huai'an, Jiangsu, China
| | - Guangya Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yingxiang Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bowen Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiage Ding
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renjin Chen
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Zou P, Wang Q, Zhang P, Luo S, Wang C, Zhang E, Zhang L, Li C, Li T. Characterization of Pre-Existing Neutralizing Antibody to Human Adenovirus Types 5 and 49 and Simian Type 23 in Chinese Population. Viral Immunol 2023; 36:617-625. [PMID: 37903228 DOI: 10.1089/vim.2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Recombinant adenovirus vector has been widely used in vaccine development. Due to the pre-existing immunity of human adenovirus type 5 (HAd5) in humans, a range of rare human and chimpanzee adenovirus vectors have been developed. In the previous study, we constructed novel adenovirus vector Sad23L and Ad49L based on simian adenovirus type 23 (SAd23) and human adenovirus type 49 (HAd49), which were used in the development of ZIKV and COVID-19 vaccines. However, the levels of pre-existing neutralizing antibody (NAb) of HAd49 and SAd23 remain unclear in China. In this study, we measured NAbs titers of HAd5, HAd49, and SAd23 in 600 healthy blood donors from 6 regions across China. NAb titer of HAd49 or SAd23 was significantly lower than that of HAd5 (p < 0.001). There was no significant difference in seroprevalence and NAb titers of three adenoviruses between male and female donors. The seropositive rates of HAd5 and SAd23 increased with age growth in a positive correlation (p < 0.01), while in contrast to HAd5, HAd49, and SAd23 had a low level of pre-existing immunity in Chinese population, which suggested that Ad49L and Sad23L vectors could be used in vaccine development for humans.
Collapse
Affiliation(s)
- Peng Zou
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qi Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Panli Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shengxue Luo
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Department of Pediatrics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Cong Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Enhui Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Lan W, Quan L, Li Y, Ou J, Duan B, Mei T, Tan X, Chen W, Feng L, Wan C, Zhao W, Chodosh J, Seto D, Zhang Q. Isolation of novel simian adenoviruses from macaques for development of a vector for human gene therapy and vaccines. J Virol 2023; 97:e0101423. [PMID: 37712705 PMCID: PMC10617444 DOI: 10.1128/jvi.01014-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 09/16/2023] Open
Abstract
IMPORTANCE Adenoviruses are widely used in gene therapy and vaccine delivery. Due to the high prevalence of human adenoviruses (HAdVs), the pre-existing immunity against HAdVs in humans is common, which limits the wide and repetitive use of HAdV vectors. In contrast, the pre-existing immunity against simian adenoviruses (SAdVs) is low in humans. Therefore, we performed epidemiological investigations of SAdVs in simians and found that the SAdV prevalence was as high as 33.9%. The whole-genome sequencing and sequence analysis showed SAdV diversity and possible cross species transmission. One isolate with low level of pre-existing neutralizing antibodies in humans was used to construct replication-deficient SAdV vectors with E4orf6 substitution and E1/E3 deletion. Interestingly, we found that the E3 region plays a critical role in its replication in human cells, but the absence of this region could be compensated for by the E4orf6 from HAdV-5 and the E1 expression intrinsic to HEK293 cells.
Collapse
Affiliation(s)
- Wendong Lan
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Lulu Quan
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiqiang Li
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
| | - Junxian Ou
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
| | - Biyan Duan
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
| | - Ting Mei
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
| | - Xiao Tan
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
| | - Weiwei Chen
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Chengsong Wan
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - James Chodosh
- Department of Ophthalmology and Visual Sciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Qiwei Zhang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Zou P, Zhang P, Deng Q, Wang C, Luo S, Zhang L, Li C, Li T. Two Novel Adenovirus Vectors Mediated Differential Antibody Responses via Interferon-α and Natural Killer Cells. Microbiol Spectr 2023; 11:e0088023. [PMID: 37347197 PMCID: PMC10434031 DOI: 10.1128/spectrum.00880-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/28/2023] [Indexed: 06/23/2023] Open
Abstract
Recombinant adenovirus vectors have been widely used in vaccine development. To overcome the preexisting immunity of human adenovirus type 5 (Ad5) in populations, a range of chimpanzee or rare human adenovirus vectors have been generated. However, these novel adenovirus vectors mediate the diverse immune responses in the hosts. In this study, we explored the immune mechanism of differential antibody responses to SARS-CoV-2 S protein in mice immunized by our previously developed two novel simian adenovirus type 23 (Sad23L) and human adenovirus type 49 (Ad49L), and Ad5 vectored COVID-19 vaccines. Sad23L-nCoV-S and Ad5-nCoV-S vaccines induced the low level of interferon-α (IFN-α) and the high level of antigen-specific antibody responses in wild-type and IFN-α/β receptor defective (IFNAR-/-) C57 mice, while Ad49L-nCoV-S vaccine induced the high IFN-α and low antibody responses in C57 mice but the high antibody response in IFNAR-/- mice. In addition, the high antibody response was detected in natural killer (NK) cells-blocked but the low in follicular helper T (TFH) cells -blocked C57 mice immunized with Ad49L-nCoV-S vaccine. These results showed that Ad49L vectored vaccine stimulated IFN-α secretion to activate NK cells, and then reduced the number of TFH cells, generation center (GC) B cells and plasma cells, and subsequently reduced antigen-specific antibody production. The different novel adenovirus vectors could be selected for vaccine development according to the need for either humoral or cellular or both immune protections against a particular disease. IMPORTANCE Novel adenovirus vectors are an important antigen delivery platform for vaccine development. Understanding the immune diversity between different adenoviral vectors is critical to design the proper vaccine against an aim disease. In this study, we described the immune mechanism of Sad23L and Ad49L vectored vaccines for raising the equally high specific T cell response but the different level of specific antibody responses in mice. We found that Ad49L-vectored vaccine initiated the high IFN-α and activated NK cells to inhibit antibody response via downregulating the number of CD4+ TFH cells leading to the decline of GC B cells and plasma cells.
Collapse
Affiliation(s)
- Peng Zou
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Panli Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qitao Deng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Cong Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shengxue Luo
- Department of Pediatrics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Zhao S, Wu X, Tan Z, Ren Y, Li L, Ou J, Lin Y, Song H, Feng L, Seto D, Wu J, Zhang Q, Rong Z. Generation of Human Embryonic Stem Cell-Derived Lung Organoids for Modeling Infection and Replication Differences between Human Adenovirus Types 3 and 55 and Evaluating Potential Antiviral Drugs. J Virol 2023; 97:e0020923. [PMID: 37120831 PMCID: PMC10231139 DOI: 10.1128/jvi.00209-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023] Open
Abstract
Human adenoviruses type 3 (HAdV-3) and type 55 (HAdV-55) are frequently encountered, highly contagious respiratory pathogens with high morbidity rate. In contrast to HAdV-3, one of the most predominant types in children, HAdV-55 is a reemergent pathogen associated with more severe community-acquired pneumonia (CAP) in adults, especially in military camps. However, the infectivity and pathogenicity differences between these viruses remain unknown as in vivo models are not available. Here, we report a novel system utilizing human embryonic stem cells-derived 3-dimensional airway organoids (hAWOs) and alveolar organoids (hALOs) to investigate these two viruses. Firstly, HAdV-55 replicated more robustly than HAdV-3. Secondly, cell tropism analysis in hAWOs and hALOs by immunofluorescence staining revealed that HAdV-55 infected more airway and alveolar stem cells (basal and AT2 cells) than HAdV-3, which may lead to impairment of self-renewal functions post-injury and the loss of cell differentiation in lungs. Additionally, the viral life cycles of HAdV-3 and -55 in organoids were also observed using Transmission Electron Microscopy. This study presents a useful pair of lung organoids for modeling infection and replication differences between respiratory pathogens, illustrating that HAdV-55 has relatively higher replication efficiency and more specific cell tropism in human lung organoids than HAdV-3, which may result in relatively higher pathogenicity and virulence of HAdV-55 in human lungs. The model system is also suitable for evaluating potential antiviral drugs, as demonstrated with cidofovir. IMPORTANCE Human adenovirus (HAdV) infections are a major threat worldwide. HAdV-3 is one of the most predominant respiratory pathogen types found in children. Many clinical studies have reported that HAdV-3 causes less severe disease. In contrast, HAdV-55, a reemergent acute respiratory disease pathogen, is associated with severe community-acquired pneumonia in adults. Currently, no ideal in vivo models are available for studying HAdVs. Therefore, the mechanism of infectivity and pathogenicity differences between human adenoviruses remain unknown. In this study, a useful pair of 3-dimensional (3D) airway organoids (hAWOs) and alveolar organoids (hALOs) were developed to serve as a model. The life cycles of HAdV-3 and HAdV-55 in these human lung organoids were documented for the first time. These 3D organoids harbor different cell types, which are similar to the ones found in humans. This allows for the study of the natural target cells for infection. The finding of differences in replication efficiency and cell tropism between HAdV-55 and -3 may provide insights into the mechanism of clinical pathogenicity differences between these two important HAdV types. Additionally, this study provides a viable and effective in vitro tool for evaluating potential anti-adenoviral treatments.
Collapse
Affiliation(s)
- Shanshan Zhao
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Xiaowei Wu
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhihong Tan
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Yi Ren
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Lian Li
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
| | - Junxian Ou
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Ying Lin
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Hongbin Song
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Jianguo Wu
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Qiwei Zhang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Zhili Rong
- Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Chen X, Wang X, Yang Y, Fang C, Liu J, Liang X, Yang Y. Enhanced pathogenicity by up-regulation of A20 after avian leukemia subgroup a virus infection. Front Vet Sci 2022; 9:1031480. [PMID: 36452148 PMCID: PMC9702354 DOI: 10.3389/fvets.2022.1031480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 09/01/2024] Open
Abstract
Avian leukemia virus subgroup A (ALV-A) infection slows chicken growth, immunosuppression, and tumor occurrence, causing economic loss to the poultry industry. According to previous findings, A20 has a dual role in promoting and inhibiting tumor formation but has rarely been studied in avians. In this study, A20 overexpression and shRNA interference recombinant adenoviruses were constructed and inoculated into chicken embryos, and ALV-A (rHB2015012) was inoculated into 1-day-old chicks. Analysis of body weight, organ index, detoxification, antibody production, organ toxin load, and Pathological observation revealed that A20 overexpression could enhance ALV-A pathogenicity. This study lays the foundation for subsequent exploration of the A20-mediated tumorigenic mechanism of ALV-A.
Collapse
Affiliation(s)
- Xueyang Chen
- College of Animal Science, Yangtze University, Jingzhou, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Xingming Wang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Yuxin Yang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Chun Fang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Jing Liu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Xiongyan Liang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Yuying Yang
- College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
8
|
Araújo NM, Rubio IGS, Toneto NPA, Morale MG, Tamura RE. The use of adenoviral vectors in gene therapy and vaccine approaches. Genet Mol Biol 2022; 45:e20220079. [PMID: 36206378 PMCID: PMC9543183 DOI: 10.1590/1678-4685-gmb-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Adenovirus was first identified in the 1950s and since then this pathogenic group
of viruses has been explored and transformed into a genetic transfer vehicle.
Modification or deletion of few genes are necessary to transform it into a
conditionally or non-replicative vector, creating a versatile tool capable of
transducing different tissues and inducing high levels of transgene expression.
In the early years of vector development, the application in monogenic diseases
faced several hurdles, including short-term gene expression and even a fatality.
On the other hand, an adenoviral delivery strategy for treatment of cancer was
the first approved gene therapy product. There is an increasing interest in
expressing transgenes with therapeutic potential targeting the cancer hallmarks,
inhibiting metastasis, inducing cancer cell death or modulating the immune
system to attack the tumor cells. Replicative adenovirus as vaccines may be even
older and date to a few years of its discovery, application of non-replicative
adenovirus for vaccination against different microorganisms has been
investigated, but only recently, it demonstrated its full potential being one of
the leading vaccination tools for COVID-19. This is not a new vector nor a new
technology, but the result of decades of careful and intense work in this
field.
Collapse
Affiliation(s)
- Natália Meneses Araújo
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil.
| | - Ileana Gabriela Sanchez Rubio
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | | | - Mirian Galliote Morale
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | - Rodrigo Esaki Tamura
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil.
| |
Collapse
|
9
|
Wu X, Zhang J, Lan W, Quan L, Ou J, Zhao W, Wu J, Woo PCY, Seto D, Zhang Q. Molecular Typing and Rapid Identification of Human Adenoviruses Associated With Respiratory Diseases Using Universal PCR and Sequencing Primers for the Three Major Capsid Genes: Penton Base, Hexon, and Fiber. Front Microbiol 2022; 13:911694. [PMID: 35633710 PMCID: PMC9133664 DOI: 10.3389/fmicb.2022.911694] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Human adenoviruses (HAdVs) within species B, C, and E are responsible for highly contagious and potentially severe respiratory disease infections. The traditional method to type these pathogens was based on virus neutralization and hemagglutination assays, which are both time-consuming and difficult, particularly due to the nonavailability of reagents. Subsequent molecular typing based on the partial characterization of the hexon gene and/or the restriction enzyme analysis (REA) of the genomes is inadequate, particularly in identifying recombinants. Here, a rapid, simple, and cost-effective method for molecular typing HAdV respiratory pathogens is presented. This incorporates three pairs of universal PCR primers that target the variable regions of the three major capsid genes, i.e., hexon, penton base, and fiber genes, that span the genome. The protocol enables typing and characterization of genotypes within species B, C, and E, as well as of some genotypes within species D and F. To validate this method, we surveyed 100 children with HAdV-associated acute respiratory infections identified by direct immunofluorescence (Hong Kong; July through October, 2014). Throat swab specimens were collected and analyzed by PCR amplification and sequencing; these sequences were characterized by BLAST. HAdVs were detected in 98 out of 100 (98%) samples, distributing as follows: 74 HAdV-B3 (74%); 10 HAdV-E4 (10%); 7 HAdV-C2 (7%); 2 HAdV-C6 (2%); 1 HAdV-B7 (1%); 1 HAdV-C1 (1%); 2 co-infection (2%); and 1 novel recombinant (1%). This study is the first detailed molecular epidemiological survey of HAdVs in Hong Kong. The developed method allows for the rapid identification of HAdV respiratory pathogens, including recombinants, and bypasses the need for whole genome sequencing for real-time surveillance of circulating adenovirus strains in outbreaks and populations by clinical virologists, public health officials, and epidemiologists.
Collapse
Affiliation(s)
- Xiaowei Wu
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing Zhang
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wendong Lan
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lulu Quan
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Junxian Ou
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei Zhao
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Patrick C. Y. Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, United States
- Donald Seto,
| | - Qiwei Zhang
- BSL-3 Laboratory, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
- *Correspondence: Qiwei Zhang,
| |
Collapse
|
10
|
Luo Z, Ye C, Xiao H, Yin J, Liang Y, Ruan Z, Luo D, Gao D, Tan Q, Li Y, Zhang Q, Liu W, Wu J. Optimization of loop-mediated isothermal amplification (LAMP) assay for robust visualization in SARS-CoV-2 and emerging variants diagnosis. Chem Eng Sci 2022; 251:117430. [PMID: 35043022 PMCID: PMC8757654 DOI: 10.1016/j.ces.2022.117430] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 11/24/2022]
Abstract
Loop-mediated isothermal amplification (LAMP) is widely used in detection of pathogenic microorganisms including SARS-CoV-2. However, the performance of LAMP assay needs further exploration in the emerging SARS-CoV-2 variants test. Here, we design serials of primers and select an optimal set for LAMP-based on SARS-CoV-2 N gene for a robust and visual assay in SARS-CoV-2 diagnosis. The limit of detectable template reaches 10 copies of N gene per 25 μL reaction at isothermal 58℃ within 40 min. Importantly, the primers for LAMP assay locate at 12 to 213 nt of N gene, a highly conservative region, which serves as a compatible test in emerging SARS-CoV-2 variants. Comparison to a commercial qPCR assay, this LAMP assay exerts the high viability in diagnosis of 41 clinical samples. Our study optimizes an advantageous LAMP assay for colorimetric detection of SARS-CoV-2 and emerging variants, which is hopeful to be a promising test in COVID-19 surveillance.
Collapse
Key Words
- COVID-19, coronavirus disease 2019
- CRISPR, clustered regularly interspaced short palindromic repeats
- Coronavirus disease 2019 (COVID-19) pandemic
- Ct, threshold cycle
- Emerging SARS-CoV-2 variants
- IVD, in-vitro diagnosis
- LAMP, Loop-mediated isothermal amplification
- Loop-mediated isothermal amplification (LAMP)
- NGS, next-generation sequencing
- POC, point-of-care
- RT-qPCR, real-time reverse transcriptase quantitative polymerase chain reaction
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnosis
- VOC, variants of concern
Collapse
Affiliation(s)
- Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China.,Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Chunhong Ye
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Heng Xiao
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China.,Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Jialing Yin
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Yicong Liang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Zhihui Ruan
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Danju Luo
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Daolong Gao
- Guangdong Longfan Biological Science and Technology Company, Shunde District, Foshan 528315, China
| | - Qiuping Tan
- Guangdong Longfan Biological Science and Technology Company, Shunde District, Foshan 528315, China
| | - Yongkui Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China.,Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China.,Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Weiyong Liu
- Tongji Hospital of Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China.,Foshan Institute of Medical Microbiology, Foshan 528315, China.,Guangdong Longfan Biological Science and Technology Company, Shunde District, Foshan 528315, China
| |
Collapse
|
11
|
Zhang Q, Li Y, Fender P, Yu B, Feng L, Chen L, Yu X. Editorial: Adenoviral Infection and Immunity, and Adenoviral Vectors for Gene Therapy Applications. Front Microbiol 2022; 13:869059. [PMID: 35401467 PMCID: PMC8988256 DOI: 10.3389/fmicb.2022.869059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- *Correspondence: Qiwei Zhang
| | - Yiqiang Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pascal Fender
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Liqiang Feng
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Ling Chen
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratories of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- Xianghui Yu
| |
Collapse
|
12
|
Zhao S, Guan W, Ma K, Yan Y, Ou J, Zhang J, Yu Z, Wu J, Zhang Q. Development and Application of a Fast Method to Acquire the Accurate Whole-Genome Sequences of Human Adenoviruses. Front Microbiol 2021; 12:661382. [PMID: 34054762 PMCID: PMC8160523 DOI: 10.3389/fmicb.2021.661382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/06/2021] [Indexed: 12/03/2022] Open
Abstract
The whole-genome sequencing (WGS) of human adenoviruses (HAdVs) plays an important role in identifying, typing, and mutation analysis of HAdVs. Nowadays, three generations of sequencing have been developed. The accuracy of first-generation sequencing is up to 99.99%, whereas this technology relies on PCR and is time consuming; the next-generation sequencing (NGS) is expensive and not cost effective for determining a few special samples; and the third-generation sequencing technology has a higher error rate. In this study, first, we developed an efficient HAdV genomic DNA extraction method. Using the complete genomic DNA instead of the PCR amplicons as the direct sequencing template and a set of walking primers, we developed the HAdV WGS method based on first-generation sequencing. The HAdV whole genomes were effectively sequenced by a set of one-way sequencing primers designed, which reduced the sequencing time and cost. More importantly, high sequence accuracy is guaranteed. Four HAdV strains (GZ01, GZ02, HK35, and HK91) were isolated from children with acute respiratory diseases (ARDs), and the complete genomes were sequenced using this method. The accurate sequences of the whole inverted terminal repeats (ITRs) at both ends of the HAdV genomes were also acquired. The genome sequence of human adenovirus type 14 (HAdV-B14) strain GZ01 acquired by this method is identical to the sequence released in GenBank, which indicates that this novel sequencing method has high accuracy. The comparative genomic analysis identified that strain GZ02 isolated in September 2010 had the identical genomic sequence with the HAdV-B14 strain GZ01 (October 2010). Therefore, strain GZ02 is the first HAdV-B14 isolate emergent in China (September 2010; GenBank acc no. MW692349). The WGS of HAdV-C2 strain HK91 and HAdV-E4 strain HK35 isolated from children with acute respiratory disease in Hong Kong were also determined by this sequencing method. In conclusion, this WGS method is fast, accurate, and universal for common human adenovirus species B, C, and E. The sequencing strategy may also be applied to the WGS of the other DNA viruses.
Collapse
Affiliation(s)
- Shan Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wenyi Guan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Kui Ma
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yuqian Yan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Junxian Ou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Zhiwu Yu
- Division of Laboratory Science, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|