1
|
Sindi IA, Babalghith AO, Tayeb MT, Mufti AH, Naffadi H, Ekram SN, Elhawary EN, Alenezi M, Elhawary NA. Risk of Colorectal Carcinoma May Predispose to the Genetic Variants of the GST, CYP450, and TP53 Genes Among Nonsmokers in the Saudi Community. Int J Gen Med 2021; 14:1311-1323. [PMID: 33883929 PMCID: PMC8055278 DOI: 10.2147/ijgm.s294802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/25/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Colorectal carcinoma (CRC) represents a considerable public health burden in Saudi Arabia. Several candidate genes and genetic variants have been associated with morbidity and mortality among patients with CRC. We explored whether allelic variants of the GSTM1, GSTT1, CYP450 (rs4646903 and rs1048943), and TP53 (rs1042522) genes predisposed nonsmoking Saudi individuals to increased risk for CRC. PATIENTS AND METHODS DNA from buccal cells of 158 participants (80 with CRC and 78 healthy controls) were analyzed for five SNPs using conventional PCR and TaqMan genotyping assays. The SNPStats software was utilized to choose the best interactive inheritance mode for selected SNPs (https://www.snpstats.net). RESULTS The mean age of diagnosis was 62.4±13.5 years (range, 40-83 years), with those aged 71-80 years and those aged 40-50 years accounting for the most diagnoses (35.7% and 28.6% of diagnosis, respectively). The GSTM1 and TP53 rs1042522 SNPs were associated with CRC (OR= 3.7; P< 0.0001, and OR= 1.6; P= 0.033, respectively). A plausible contribution to CRC was observed for the GSTM1 and TP53 rs1042522 SNPs (x 2 Yates= 14.7; P= 0.00013, and x 2 Yates= 11.2; P= 0.0008, respectively), while the GSTT1 null variant did not affect risk. Heterozygosity in the CYP450 (rs4646903 and rs1048943 SNPs) was associated with a significant risk for CRC. The GSTM1/GSTT1 and CYP450 rs4646903/rs1048943 SNP pairs were in linkage disequilibrium, and the associations were statistically significant (P= 0.01 and P= 4.6x10‒7, respectively). CONCLUSION The GSTM1 and TP53 rs1042522 variants can increase the development of CRC in Saudi nonsmokers. Even the presence of one copy of a variant allele in the CYP1A1 gene can predispose CRC risk. Additional studies should also examine other SNP combinations with lifestyle factors that may help prevent, rather than facilitate, colorectal tumorigenesis.
Collapse
Affiliation(s)
- Ikhlas A Sindi
- Department of Biotechnology, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Ikhlas A Sindi Department of Biotechnology, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia Email
| | - Ahmed O Babalghith
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Mecca, 21955, Saudi Arabia
| | - Mohammed T Tayeb
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Mecca, 21955, Saudi Arabia
| | - Ahmad H Mufti
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Mecca, 21955, Saudi Arabia
| | - Hind Naffadi
- Common Science, First Year Deanship, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Samar N Ekram
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Mecca, 21955, Saudi Arabia
- Department of Medical Oncology, King Abdullah City Hospital, Mecca, Saudi Arabia
| | - Ezzeldin N Elhawary
- MS Genomic Medicine Program, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
- Faculty of Biotechnology, October Modern Sciences and Arts University, Giza, Egypt
| | - Munaifah Alenezi
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Mecca, 21955, Saudi Arabia
| | - Nasser A Elhawary
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Mecca, 21955, Saudi Arabia
- Department of Genetics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Correspondence: Nasser A Elhawary Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 57543, Mecca, 21955, Saudi ArabiaTel +966 55 369 2180 Email
| |
Collapse
|
2
|
Elshazli RM, Toraih EA, Elgaml A, Kandil E, Fawzy MS. Genetic polymorphisms of TP53 (rs1042522) and MDM2 (rs2279744) and colorectal cancer risk: An updated meta-analysis based on 59 case-control studies. Gene 2020; 734:144391. [PMID: 32001373 DOI: 10.1016/j.gene.2020.144391] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Several earlier reports implicated TP53 (rs1042522) and MDM2 (rs2279744) variants in outcome of colorectal cancer (CRC), but with inconclusive findings. This current meta-analysis designed to uncover the role of these variants in CRC risk. METHODOLOGY Two independent investigators extracted 59 eligible case-control studies from different electronic databases involving Scopus, Web of Science and PubMed prior to June 2019. Pooled odds ratios (ORs) and "95% confidence intervals (CIs)" were computed for different hereditary models. Stratification and heterogeneity analyses, and "Begg's funnel plots" were conducted. In silico data analyses of the functional and structural properties of the study variants were applied. RESULTS In general, 47 and 16 case-control reports for TP53 (11,589 patients and 13,622 controls) and MDM2 (6841 CRC patients and 8792 healthy controls), respectively were enrolled in this meta-analysis. A significant association of TP53 (rs1042522) variant with increased CRC risk in overall pooled subjects under recessive model [(CC vs. GC + GG, OR = 1.134, 95% CI = 1.006-1.278, P = 0.039)] was observed. Moreover, an evidence of MDM2 (rs2279744) association with increased CRC risk in overall pooled subjects under dominant and heterozygote models [(TG + GG vs. TT, OR = 1.120, 95% CI = 1.003-1.250, P = 0.044) and (TG vs. TT, OR = 1.189, 95% CI = 1.076-1.313, P = 0.001), respectively] was reported. Additionally, TP53 (rs1042522) and MDM2 (rs2279744) showed an association with CRC risk among Asians and Africans under a recessive model, and among Asians under different genetic models, respectively, by stratification analysis. CONCLUSION TP53 (rs1042522) and MDM2 (rs2279744) variants might represent candidate risk factors for CRC susceptibility.
Collapse
Affiliation(s)
- Rami M Elshazli
- Department of Biochemistry and Molecular Genetics, Faculty of Physical Therapy, Horus University - Egypt, New Damietta, Egypt.
| | - Eman A Toraih
- Department of Surgery, Tulane University, School of Medicine, New Orleans, LA, USA; Genetics unit, Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Egypt
| | - Abdelaziz Elgaml
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Microbiology and Immunology, Faculty of Pharmacy, Horus University - Egypt, New Damietta, Egypt
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA
| | - Manal S Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
3
|
Gunaratna RT, Santos A, Luo L, Nagi C, Lambertz I, Spier M, Conti CJ, Fuchs-Young RS. Dynamic role of the codon 72 p53 single-nucleotide polymorphism in mammary tumorigenesis in a humanized mouse model. Oncogene 2019; 38:3535-3550. [PMID: 30651598 PMCID: PMC6756019 DOI: 10.1038/s41388-018-0630-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 09/14/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022]
Abstract
Female breast cancer (BrCa) is the most common noncutaneous cancer among women in the United States. Human epidemiological studies reveal that a p53 single-nucleotide polymorphism (SNP) at codon 72, encoding proline (P72) or arginine (R72), is associated with differential risk of several cancers, including BrCa. However, the molecular mechanisms by which these variants affect mammary tumorigenesis remain unresolved. To investigate the effects of this polymorphism on susceptibility to mammary cancer, we used a humanized p53 mouse model, homozygous for either P72 or R72. Our studies revealed that R72 mice had a significantly higher mammary tumor incidence and reduced latency in both DMBA-induced and MMTV-Erbb2/Neu mouse mammary tumor models compared to P72 mice. Analyses showed that susceptible mammary glands from E-R72 (R72 x MMTV-Erbb2/Neu) mice developed a senescence-associated secretory phenotype (SASP) with influx of proinflammatory macrophages, ultimately resulting in chronic, protumorigenic inflammation. Mammary tumors arising in E-R72 mice also had an increased influx of tumor-associated macrophages, contributing to angiogenesis and elevated tumor growth rates. These results demonstrate that the p53 R72 variant increased susceptibility to mammary tumorigenesis through chronic inflammation.
Collapse
Affiliation(s)
- Ramesh T Gunaratna
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Andres Santos
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.,Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Linjie Luo
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Chandandeep Nagi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Isabel Lambertz
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Madison Spier
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Claudio J Conti
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.,Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain.,Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Robin S Fuchs-Young
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA. .,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
4
|
Volodko N, Salla M, Eksteen B, Fedorak RN, Huynh HQ, Baksh S. TP53 codon 72 Arg/Arg polymorphism is associated with a higher risk for inflammatory bowel disease development. World J Gastroenterol 2015; 21:10358-10366. [PMID: 26420962 PMCID: PMC4579882 DOI: 10.3748/wjg.v21.i36.10358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/28/2015] [Accepted: 07/15/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the association between tumor protein 53 (TP53) codon 72 polymorphisms and the risk for inflammatory bowel disease (IBD) development.
METHODS: Numerous genetic and epigenetic drivers have been identified for IBD including the TP53 gene. Pathogenic mutations in TP53 gene have only been reported in 50% of colorectal cancer (CRC) patients. A single nucleotide polymorphism (SNP) in the TP53 gene resulting in the presence of either arginine (Arg) or proline (Pro) or both at codon 72 was shown to alter TP53 tumor-suppressor properties. This SNP has been investigated as a risk factor for numerous cancers, including CRC. In this study we analyzed TP53 codon 72 polymorphism distribution in 461 IBD, 181 primary sclerosing cholangitis patients and 62 healthy controls. Genotyping of TP53 was performed by sequencing and restriction fragment length polymorphism analysis of genomic DNA extracted from peripheral blood.
RESULTS: The most frequent TP53 genotype in IBD patients was Arg/Arg occurring in 54%-64% of cases (and in only 32% of controls). Arg/Pro was the most prevalent genotype in controls (53%) and less common in patients (31%-40%). Pro/Pro frequency was not significantly different between controls and IBD patients.
CONCLUSION: The data suggests that the TP53 codon 72 Arg/Arg genotype is associated with increased risk for IBD development.
Collapse
|
5
|
Association of EGF and p53 gene polymorphisms and colorectal cancer risk in the Slovak population. Open Med (Wars) 2014. [DOI: 10.2478/s11536-013-0300-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AbstractDuring the transformation process single nucleotide polymorphisms (SNPs) of key genes, such as p53 Arg72Pro or EGF A61G, may mediate various cellular processes. These variants may be associated with colorectal cancer risk (CRC), but conflicting findings have been reported. The purpose of this study was to determine the association of the SNPs in 5′ UTR of EGF A61G and p53 Arg72Pro and CRC in the Slovak population. The present case-control study was carried out in 173 confirmed CRC patients and 303 healthy subjects. Genotyping was performed by PCR-RFLP methods. Significant association was observed between age and CRC risk (p=0.001). Lower CRC risk was seen in younger patients carrying genotype p53 Arg72Pro (0.14; 95% CI 0.02–0.99, p=0.049). Gender-stratified analysis showed a significant inverse association of the polymorphism EGF G61G with CRC risk (0.48; 95% CI 0.2–0.9, p=0.04) only in male patients. Tumour site genotype distribution revealed that female patients with localized colon cancer were significantly associated with p53 Pro72Pro genotype (4.0; 95% CI 1.27–12.7, p=0.04) whereas the cancer of rectosigmoid junction was associated with the EGF G61G genotype (4.5; 95% CI 1.2–16.97, p=0.02). Combination of p53 Arg72Pro or EGF A61G polymorphisms were not associated with CRC risk by using logistic regression.
Collapse
|
6
|
Azzam G, Wang X, Bell D, Murphy ME. CSF1 is a novel p53 target gene whose protein product functions in a feed-forward manner to suppress apoptosis and enhance p53-mediated growth arrest. PLoS One 2013; 8:e74297. [PMID: 24019961 PMCID: PMC3760869 DOI: 10.1371/journal.pone.0074297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/25/2013] [Indexed: 12/29/2022] Open
Abstract
The p53 tumor suppressor gene has a common polymorphism at codon 72 that alters its function. We previously reported that the proline 72 polymorphic variant of p53 (P72) demonstrates increased ability to transactivate a subset of genes, relative to arginine 72 (R72); one of these genes is macrophage colony stimulating factor (CSF1). At present, the mechanism(s) underlying the increased transcriptional activity of P72 toward genes like CSF1 have not been completely elucidated. Additionally, the consequences of increased transcription of genes like CSF1 by the P72 variant to the downstream p53 pathway are unknown. In this report, we address these issues. We show that the CSF1 gene contains a conserved binding site for p53, and interestingly that the P72 variant shows increased ability to bind to this site. Moreover, we show that increased CSF1/CSF1R signaling in P72 cells feeds back on the p53 pathway to enhance p53 phosphorylation, levels, and transactivation of target genes, particularly the cyclin-dependent kinase inhibitor p21 (CDKN1A). This leads to an increase in p53-mediated growth arrest, along with a concomitant decrease in apoptosis. Notably, the CSF1/CSF1R signaling axis is overexpressed in several epithelial cancers, and there is clinical evidence that this pathway plays a role in radio-resistance of some cancers. We show that cells expressing CSF1 and CSF1R are indeed radio-resistant, and further, that this effect requires p53. These combined data are the first to implicate the CSF1/CSF1R pathway in the decision between p53-mediated growth arrest and apoptosis. They are also the first to highlight a cytokine as influential in cell fate determined by p53 in epithelial cells. Finally, these data may explain the association of the P72 variant and the CSF1/CSF1R pathway with increased senescence and radio-resistance in some epithelial tumor types.
Collapse
Affiliation(s)
- Gregory Azzam
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Xuting Wang
- Laboratory of Molecular Genetics, Intramural Research Program, National Institute of Environmental Health Sciences-National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Douglas Bell
- Laboratory of Molecular Genetics, Intramural Research Program, National Institute of Environmental Health Sciences-National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Maureen E. Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
7
|
Leu JIJ, Murphy ME, George DL. The p53 Codon 72 Polymorphism Modifies the Cellular Response to Inflammatory Challenge in the Liver. ACTA ACUST UNITED AC 2013; 2. [PMID: 23991369 DOI: 10.4172/2167-0889.1000117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The p53 protein is a critical stress-response mediator and signal coordinator in cellular metabolism and environmental exposure to deleterious agents. In human populations, the p53 gene contains a common single nucleotide polymorphism (SNP) affecting codon 72 that determines whether a proline (P72) or an arginine (R72) is present at this amino acid position of the polypeptide. Previous studies carried out using human populations, mouse models, and cell culture analyses have provided evidence that this amino acid difference can alter p53 functional activities, and potentially also can affect clinical presentation of disease. The clinical presentation associated with many forms of liver disease is variable, but few of the responsible underlying genetic factors or molecular pathways have been identified. The aim of the present study was to investigate whether the p53 codon 72 polymorphism influences the cellular response to hepatic stresses. A humanized p53 knock-in (Hupki) mouse model was used to address this issue. Mice expressing either the P72 or R72 normal variation of p53 were given an acute-, intermittent- or a chronic challenge, associated with exposure to lipopolysaccharide, D-galactosamine, or a high-fat diet. The results reveal that the livers of the P72 and R72 mice exhibit notable differences in inflammatory and apoptotic response to these distinct forms of stress. Interestingly the influence of this polymorphism on the response to stress is context dependent, with P72 showing increased response to liver toxins (lipopolysaccharide and D-galactosamine), but R72 showing increased response to metabolic stress (high fat diet). When taken together, these data point to the p53 codon 72 polymorphism as an important molecular mediator of events contributing to hepatic inflammation and metabolic homeostasis.
Collapse
Affiliation(s)
- Julia I-Ju Leu
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
8
|
The codon 72 polymorphism of p53 regulates interaction with NF-{kappa}B and transactivation of genes involved in immunity and inflammation. Mol Cell Biol 2011; 31:1201-13. [PMID: 21245379 DOI: 10.1128/mcb.01136-10] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A common polymorphism at codon 72 in the p53 tumor suppressor gene encodes either proline (P72) or arginine (R72). Several groups have reported that in cultured cells, this polymorphism influences p53's transcriptional, senescence, and apoptotic functions. However, the impact of this polymorphism within the context of a living organism is poorly understood. We generated knock-in mice with the P72 and R72 variants and analyzed the tissues of these mice for apoptosis and transcription. In the thymus, we find that the P72 variant induces increased apoptosis following ionizing radiation, along with increased transactivation of a subset of p53 target genes, which includes murine Caspase 4 (also called Caspase 11), which we show is a direct p53 target gene. Interestingly, the majority of genes in this subset have roles in inflammation, and their promoters contain NF-κB binding sites. We show that caspase 4/11 requires both p53 and NF-κB for full induction after DNA damage and that the P72 variant shows increased interaction with p65 RelA, a subunit of NF-κB. Consistent with this, we show that P72 mice have a markedly enhanced response to inflammatory challenge compared to that of R72 mice. Our data indicate that the codon 72 polymorphism impacts p53's role in inflammation.
Collapse
|