1
|
Ning XY, Ma JH, He W, Ma JT. Role of exosomes in metastasis and therapeutic resistance in esophageal cancer. World J Gastroenterol 2023; 29:5699-5715. [PMID: 38075847 PMCID: PMC10701334 DOI: 10.3748/wjg.v29.i42.5699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/13/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023] Open
Abstract
Esophageal cancer (EC) has a high incidence and mortality rate and is emerging as one of the most common health problems globally. Owing to the lack of sensitive detection methods, uncontrollable rapid metastasis, and pervasive treatment resistance, EC is often diagnosed in advanced stages and is susceptible to local recurrence. Exosomes are important components of intercellular communication and the exosome-mediated crosstalk between the cancer and surrounding cells within the tumor microenvironment plays a crucial role in the metastasis, progression, and therapeutic resistance of EC. Considering the critical role of exosomes in tumor pathogenesis, this review focused on elucidating the impact of exosomes on EC metastasis and therapeutic resistance. Here, we summarized the relevant signaling pathways involved in these processes. In addition, we discussed the potential clinical applications of exosomes for the early diagnosis, prognosis, and treatment of EC.
Collapse
Affiliation(s)
- Xing-Yu Ning
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Jin-Hu Ma
- The Second School of Clinical Medicine, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Wei He
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Jun-Ting Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| |
Collapse
|
2
|
Lv N, Huang C, Huang H, Dong Z, Chen X, Lu C, Zhang Y. Overexpression of Glutathione S-Transferases in Human Diseases: Drug Targets and Therapeutic Implications. Antioxidants (Basel) 2023; 12:1970. [PMID: 38001822 PMCID: PMC10668987 DOI: 10.3390/antiox12111970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Glutathione S-transferases (GSTs) are a major class of phase II metabolic enzymes. Besides their essential role in detoxification, GSTs also exert diverse biological activities in the occurrence and development of various diseases. In the past few decades, much research interest has been paid to exploring the mechanisms of GST overexpression in tumor drug resistance. Correspondingly, many GST inhibitors have been developed and applied, solely or in combination with chemotherapeutic drugs, for the treatment of multi-drug resistant tumors. Moreover, novel roles of GSTs in other diseases, such as pulmonary fibrosis and neurodegenerative diseases, have been recognized in recent years, although the exact regulatory mechanisms remain to be elucidated. This review, firstly summarizes the roles of GSTs and their overexpression in the above-mentioned diseases with emphasis on the modulation of cell signaling pathways and protein functions. Secondly, specific GST inhibitors currently in pre-clinical development and in clinical stages are inventoried. Lastly, applications of GST inhibitors in targeting cell signaling pathways and intracellular biological processes are discussed, and the potential for disease treatment is prospected. Taken together, this review is expected to provide new insights into the interconnection between GST overexpression and human diseases, which may assist future drug discovery targeting GSTs.
Collapse
Affiliation(s)
- Ning Lv
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Chunyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Haoyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Zhiqiang Dong
- Department of Pharmacy, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China;
| | - Xijing Chen
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Chengcan Lu
- Department of Pharmacy, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China;
- Jiangning Clinical Medical College, Jiangsu University, Nanjing 211100, China
| | - Yongjie Zhang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| |
Collapse
|
3
|
Wang Z, Wu S, Zhu C, Shen J. The role of ferroptosis in esophageal cancer. Cancer Cell Int 2022; 22:266. [PMID: 35999642 PMCID: PMC9396912 DOI: 10.1186/s12935-022-02685-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Esophageal cancer is one of the most common cancers with high mortality rate around the world. Although the treatment strategy of this disease has made great progress, the prognosis of advanced patients is not ideal. Ferroptosis, a novel regulatory cell death model, that is different from traditional apoptosis and characterized by increased Fenton reaction mediated by intracellular free iron and lipid peroxidation of cell membrane. Ferroptosis has been proved to be closely linked to a variety of diseases, especially cancer. This review aims to summarize the core mechanism of ferroptosis in esophageal cancer, the regulation of ferroptosis signaling pathway and its current application. At the same time, we emphasize the potential and prospect of ferroptosis in the treatment of esophageal cancer. Collectively, targeting ferroptosis pathway may provide new insights into the diagnosis, treatment and prognosis of esophageal cancer.
Collapse
Affiliation(s)
- Zimin Wang
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Sikai Wu
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Chengchu Zhu
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China. .,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China.
| | - Jianfei Shen
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China. .,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China.
| |
Collapse
|
4
|
Cutliffe AL, McKenna SL, Chandrashekar DS, Ng A, Devonshire G, Fitzgerald RC, O’Donovan TR, Mackrill JJ. Alterations in the Ca2+ toolkit in oesophageal adenocarcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:543-575. [PMID: 36046118 PMCID: PMC9400700 DOI: 10.37349/etat.2021.00063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
Aim: To investigate alterations in transcription of genes, encoding Ca2+ toolkit proteins, in oesophageal adenocarcinoma (OAC) and to assess associations between gene expression, tumor grade, nodal-metastatic stage, and patient survival. Methods: The expression of 275 transcripts, encoding components of the Ca2+ toolkit, was analyzed in two OAC datasets: the Cancer Genome Atlas [via the University of Alabama Cancer (UALCAN) portal] and the oesophageal-cancer, clinical, and molecular stratification [Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS)] dataset. Effects of differential expression of these genes on patient survival were determined using Kaplan-Meier log-rank tests. OAC grade- and metastatic-stage status was investigated for a subset of genes. Adjustment for the multiplicity of testing was made throughout. Results: Of the 275 Ca2+-toolkit genes analyzed, 75 displayed consistent changes in expression between OAC and normal tissue in both datasets. The channel-encoding genes, N-methyl-D-aspartate receptor 2D (GRIN2D), transient receptor potential (TRP) ion channel classical or canonical 4 (TRPC4), and TRP ion channel melastatin 2 (TRPM2) demonstrated the greatest increase in expression in OAC in both datasets. Nine genes were consistently upregulated in both datasets and were also associated with improved survival outcomes. The 6 top-ranking genes for the weighted significance of altered expression and survival outcomes were selected for further analysis: voltage-gated Ca2+ channel subunit α 1D (CACNA1D), voltage-gated Ca2+ channel auxiliary subunit α2 δ4 (CACNA2D4), junctophilin 1 (JPH1), acid-sensing ion channel 4 (ACCN4), TRPM5, and secretory pathway Ca2+ ATPase 2 (ATP2C2). CACNA1D, JPH1, and ATP2C2 were also upregulated in advanced OAC tumor grades and nodal-metastatic stages in both datasets. Conclusions: This study has unveiled alterations of the Ca2+ toolkit in OAC, compared to normal tissue. Such Ca2+ signalling findings are consistent with those from studies on other cancers. Genes that were consistently upregulated in both datasets might represent useful markers for patient diagnosis. Genes that were consistently upregulated, and which were associated with improved survival, might be useful markers for patient outcome. These survival-associated genes may also represent targets for the development of novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Alana L. Cutliffe
- Department of Physiology, University College Cork, BioSciences Institute, T12 YT20 Cork, Ireland
| | - Sharon L. McKenna
- Cancer Research, UCC, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - Darshan S. Chandrashekar
- Department of Pathology, Molecular & Cellular, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alvin Ng
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Ginny Devonshire
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Rebecca C. Fitzgerald
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Tracey R. O’Donovan
- Cancer Research, UCC, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - John J. Mackrill
- Department of Physiology, University College Cork, BioSciences Institute, T12 YT20 Cork, Ireland
| |
Collapse
|
5
|
Potential Role of GST- π in Lung Cancer Stem Cell Cisplatin Resistance. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9142364. [PMID: 34840986 PMCID: PMC8626171 DOI: 10.1155/2021/9142364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 11/18/2022]
Abstract
Background Cancer stem cells (CSCs) are responsible for tumorigenesis, chemoresistance, and metastasis. Chemoresistance is a major challenge in the management of lung cancer. Glutathione-sulphur-transferase-π (GST-π) plays an important role in the origin and development of various types of cancer by regulating the cellular redox balance. Recent investigations have demonstrated that GST-π is associated with the chemoresistance of lung CSCs (LCSCs). However, the mechanism of GST-π in lung cancer, particularly in LCSCs, remains unclear. The present study is aimed at exploring the potential role of GST-π in stemness and cisplatin (DDP) resistance of LCSCs. Materials and methods. In the present study, lung cancer cell spheres were established using the A549 cell line, which according to our previous research, was confirmed to exhibit characteristics of stem cells. Next, GST-π protein expression, apoptosis percentage, and intracellular reactive oxygen species (ROS) concentration in A549 adherent cells and A549 cell spheres were analyzed by western blotting and flow cytometry, respectively. Finally, DDP resistance, ROS concentration, and GST-π expression in LCSCs were analyzed following the interference with GST-π using DL-buthionine-(S,R)-sulphoximine and N-acetylcysteine. Results The results revealed that GST-π was highly expressed in A549 cell spheres compared with A549 adherent cells and was associated with a decreased intracellular ROS concentration (both P < 0.05). Regulating GST-π protein expression could alter DDP resistance of LCSCs by influencing ROS. Conclusion These results suggested that GST-π may be important for LCSC drug resistance by downregulating ROS levels. These findings may contribute to the development of new adjuvant therapeutic strategies for lung cancer.
Collapse
|
6
|
Hu X, Akutsu Y, Suganami A, Qin W, Hanari N, Murakam K, Kano M, Usui A, Suito H, Takahashi M, Matsumoto Y, Otsuta R, Tamura Y, Matsubara H. Low-dose hyperthermia enhances the antitumor effects of chemotherapy in squamous cell carcinoma. Dis Esophagus 2017; 30:1-7. [PMID: 30052898 DOI: 10.1093/dote/dow026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Indexed: 12/11/2022]
Abstract
Esophageal squamous cell carcinoma is a highly aggressive neoplasm and the sixth leading cause of global cancer-related death; the 5-year survival rate for esophageal cancer is only about 20%-25% for all stages. Therefore, improving the therapeutic effect is important. This study assessed whether low-dose hyperthermia (LDH) enhances the antitumor effects of chemotherapy. The antitumor effect of chemotherapy with/without LDH in the squamous cell carcinoma cell line SCCVII was evaluated. A comprehensive analysis was performed with real-time polymerase chain reaction (PCR) to study the hyperthermia-induced changes in the gene expression of SCCVII cell lines. In addition, the cytotoxic and apoptotic changes in the cells treated with LDH combined with/without 5-fluorouracil (5-FU) were measured. LDH combined with 5-FU (10 nM) strongly inhibited the cell growth of SCCVII, with flow cytometry showing an increased population of apoptotic cells. PCR showed that LDH promoted a 25.22-fold increase of p53 mRNA and 18.08-fold increase of Bax mRNA in vitro. MDR1 expression was decreased to 28.7% after LDH. This treatment can result in much higher efficacy of antitumor drugs. After LDH, the expressions of TS decreased to 12.06%, OPRT increased by 4.17-fold, and DPD did not change (1.03-fold). This transformations will induce susceptibility to 5-FU. LDH may be a useful enhancer of chemotherapy drugs for squamous cell carcinoma.
Collapse
Affiliation(s)
- X Hu
- Departments of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Y Akutsu
- Departments of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - A Suganami
- Departments of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - W Qin
- Departments of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - N Hanari
- Departments of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - K Murakam
- Departments of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - M Kano
- Departments of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - A Usui
- Departments of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - H Suito
- Departments of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - M Takahashi
- Departments of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Y Matsumoto
- Departments of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - R Otsuta
- Departments of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Y Tamura
- Departments of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - H Matsubara
- Departments of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
7
|
Li ZH, Zheng R, Chen JT, Jia J, Qiu M. The role of copper transporter ATP7A in platinum-resistance of esophageal squamous cell cancer (ESCC). J Cancer 2016; 7:2085-2092. [PMID: 27877224 PMCID: PMC5118672 DOI: 10.7150/jca.16117] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/14/2016] [Indexed: 01/12/2023] Open
Abstract
Purpose: Platinum derivatives, such as cisplatin (DDP), carboplatin and oxaliplatin, are widely used components of modern cancer chemotherapy including esophageal squamous cell cancer (ESCC). However, their roles are limited by the impact of intrinsic/acquired resistance mechanisms on tumor responses. Recent studies have shown that the mammalian copper transporters CTR1, ATP7A and ATP7B are involved in cisplatin-resistance to some cancers. Methods: The cytotoxicities of DDP in different cell lines were determined using the MTT assay. To determine whether knockdown the expression of ATP7A could reverse the platinum-resistance of EC109/DDP cells or not, we used RNA interference system to explore the role of ATP7A in platinum resistance. Results: We found that DDP-resistant cell sublines EC109/DDP (8.490 folds) showed cross-resistance to carboplatin (5.27 folds) and oxaliplatin (4.12 folds). ATP7A expressions in DDP-resistant cell sublines (EC109/DDP) were much higher than DDP-sensitive cell lines (EC109) at both mRNA and protein levels. ATP7A targeted small interfering RNA duplex at 100nM final concentration added into DDP-resistant cancer cells (EC109/DDP) markedly inhibited the expression of ATP7A as determined by Western blot (83.0%) and partially reversed DDP-resistance (37.09%), moreover, it also increased cell apoptosis at different DDP concentrations. Conclusions: These findings indicate that ATP7A high expression plays an important role in platinum-resistance of ESCC. This study sheds light on platinum resistance in ESCC patients and may have implications for therapeutic reversal of drug resistance.
Collapse
Affiliation(s)
- Zhuang-Hua Li
- Department of Medical Oncology, Dongguan People's Hospital, Dongguan, Guangdong, 523059, China
| | - Rongjie Zheng
- Department of Pharmacy, Guangdong No 2. People's hospital, Guangzhou, Guangdong, 510317, China
| | - Jing-Tang Chen
- Department of Medical Oncology, Dongguan People's Hospital, Dongguan, Guangdong, 523059, China
| | - Jun Jia
- Department of Medical Oncology, Dongguan People's Hospital, Dongguan, Guangdong, 523059, China
| | - Miaozhen Qiu
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China;; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
8
|
Sui H, Cai GX, Pan SF, Deng WL, Wang YW, Chen ZS, Cai SJ, Zhu HR, Li Q. miR200c attenuates P-gp-mediated MDR and metastasis by targeting JNK2/c-Jun signaling pathway in colorectal cancer. Mol Cancer Ther 2014; 13:3137-51. [PMID: 25205654 DOI: 10.1158/1535-7163.mct-14-0167] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MicroRNA-200c (miR200c) recently emerged as an important regulator of tumorigenicity and cancer metastasis; however, its role in regulating multidrug resistance (MDR) remains unknown. In the current study, we found that the expression levels of miR200c in recurrent and metastatic colorectal cancers were significantly lower, whereas the JNK2 expression was higher compared with primary tumors. We showed that in MDR colorectal cancer cells, miR200c targeted the 3' untranslated region of the JNK2 gene. Overexpression of miR200c attenuated the levels of p-JNK, p-c-Jun, P-gp, and MMP-2/-9, the downstream factors of the JNK signaling pathway, resulting in increased sensitivity to chemotherapeutic drugs, which was accompanied by heightened apoptosis and decreased cell invasion and migration. Moreover, in an orthotopic MDR colorectal cancer mouse model, we demonstrated that overexpression of miR200c effectively inhibited the tumor growth and metastasis. At last, in the tumor samples from patients with locally advanced colorectal cancer with routine postsurgical chemotherapy, we observed an inverse correlation between the levels of mRNA expression of miR200c and JNK2, ABCB1, and MMP-9, thus predicting patient therapeutic outcomes. In summary, we found that miR200c negatively regulated the expression of JNK2 gene and increased the sensitivity of MDR colorectal cancer cells to chemotherapeutic drugs, via inhibiting the JNK2/p-JNK/p-c-Jun/ABCB1 signaling. Restoration of miR200c expression in MDR colorectal cancer may serve as a promising therapeutic approach in MDR-induced metastasis.
Collapse
Affiliation(s)
- Hua Sui
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guo-Xiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shu-Fang Pan
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wan-Li Deng
- Oncology Department I, Traditional Chinese Medical Hospital, Xinjiang Medical University, Xinjiang, China
| | - Yu-Wei Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - San-Jun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hui-Rong Zhu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
9
|
Ma HL, Yu C, Liu Y, Tan YR, Qiao JK, Yang X, Wang LZ, Li J, Chen Q, Chen FX, Zhang ZY, Zhong LP. Decreased expression of glutathione S-transferase pi correlates with poorly differentiated grade in patients with oral squamous cell carcinoma. J Oral Pathol Med 2014; 44:193-200. [PMID: 25047743 DOI: 10.1111/jop.12229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Hai-long Ma
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Cong Yu
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Ying Liu
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Yi-ran Tan
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Jin-ke Qiao
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Xi Yang
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Li-zhen Wang
- Department of Oral Pathology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Jiang Li
- Department of Oral Pathology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Qiong Chen
- Department of Clinical Laboratories; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Fu-xiang Chen
- Department of Clinical Laboratories; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Zhi-yuan Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Lai-ping Zhong
- Department of Oral & Maxillofacial-Head & Neck Oncology; Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| |
Collapse
|