1
|
Wu Y, Wang H, Liu Y, Zhao L, Pei J. An efficient preparation and biocatalytic synthesis of novel C-glycosylflavonols kaempferol 8-C-glucoside and quercetin 8-C-glucoside through using resting cells and macroporous resins. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:129. [PMID: 36434691 PMCID: PMC9700910 DOI: 10.1186/s13068-022-02228-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND C-glycosylated flavonoids are a main type of structural modification and can endow flavonoids with greater stability, bioactivity, and bioavailability. Although some C-glycosylated flavonoids have been biosynthesized in vivo or vitro, only a few C-glycosylflavonols have been prepared by these methods. RESULTS In this study, several uridine 5'-diphosphate (UDP)-glucose biosynthesis pathways and Escherichia coli hosts were screened to reconstruct recombinant strains for producing the novel C-glycosylflavonols kaempferol 8-C-glucoside and quercetin 8-C-glucoside. To increase C-glycosylflavonol production, the timing of flavonol addition was adjusted, and glycerol was added to avoid degradation of C-glycosylflavonols. By using resting cell bioconversion, the highest kaempferol 8-C-glucoside and quercetin 8-C-glucoside production reached 16.6 g/L and 12.5 g/L, respectively. Then, ultrasound-assisted adsorption/desorption was used to prepare C-glycosylflavonols by using macroporous resins. Through screening macroporous resins and optimizing the adsorption/desorption conditions, the highest adsorption capacity and desorption capacity for kaempferol 8-C-glucoside on HPD100 reached 28.57 mg/g and 24.15 mg/g, respectively. Finally, kaempferol 8-C-glucoside (15.4 g) with a yield of 93% and quercetin 8-C-glucoside (11.3 g) with a yield of 91% were obtained from 1 L of fermentation broth. CONCLUSIONS Kaempferol 8-C-glucoside and quercetin 8-C-glucoside are novel C-glycosylflavonols, which have not been extracted from plants. This study provides an efficient method for the preparation and biocatalytic synthesis of kaempferol 8-C-glucoside and quercetin 8-C-glucoside by metabolic engineering of Escherichia coli.
Collapse
Affiliation(s)
- Yangbao Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, 210037, China
| | - Huan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, 210037, China
| | - Yang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, 210037, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, 210037, China.
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, 210037, China.
| |
Collapse
|
2
|
Hernández-Caballero ME, Sierra-Ramírez JA, Villalobos-Valencia R, Seseña-Méndez E. Potential of Kalanchoe pinnata as a Cancer Treatment Adjuvant and an Epigenetic Regulator. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196425. [PMID: 36234962 PMCID: PMC9573125 DOI: 10.3390/molecules27196425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 02/05/2023]
Abstract
Cancer is a global public health problem that is related to different environmental and lifestyle factors. Although the combination of screening, prevention, and treatment of cancer has resulted in increased patient survival, conventional treatments sometimes have therapeutic limitations such as resistance to drugs or severe side effects. Oriental culture includes herbal medicine as a complementary therapy in combination with chemotherapy or radiotherapy. This study aimed to identify the bioactive ingredients in Kalanchoe pinnata, a succulent herb with ethnomedical applications for several diseases, including cancer, and reveal its anticancer mechanisms through a molecular approach. The herb contains gallic acid, caffeic acid, coumaric acid, quercetin, quercitrin, isorhamnetin, kaempferol, bersaldegenin, bryophyllin a, bryophyllin c, bryophynol, bryophyllol and bryophollone, stigmasterol, campesterol, and other elements. Its phytochemicals participate in the regulation of proliferation, apoptosis, cell migration, angiogenesis, metastasis, oxidative stress, and autophagy. They have the potential to act as epigenetic drugs by reverting the acquired epigenetic changes associated with tumor resistance to therapy-such as the promoter methylation of suppressor genes, inhibition of DNMT1 and DNMT3b activity, and HDAC regulation-through methylation, thereby regulating the expression of genes involved in the PI3K/Akt/mTOR, Nrf2/Keap1, MEK/ERK, and Wnt/β-catenin pathways. All of the data support the use of K. pinnata as an adjuvant in cancer treatment.
Collapse
Affiliation(s)
- Marta Elena Hernández-Caballero
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Biomedicina, 13 sur 2702 Col. Volcanes, Puebla C.P. 72410, Mexico
- Correspondence: or
| | - José Alfredo Sierra-Ramírez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico
| | - Ricardo Villalobos-Valencia
- UMAE Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Cd México C.P. 06725, Mexico
| | - Emmanuel Seseña-Méndez
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Biomedicina, 13 sur 2702 Col. Volcanes, Puebla C.P. 72410, Mexico
| |
Collapse
|
3
|
The therapeutic potential of Houttuynia cordata: A current review. Heliyon 2022; 8:e10386. [PMID: 36061012 PMCID: PMC9433674 DOI: 10.1016/j.heliyon.2022.e10386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/15/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
|
4
|
Alves TDP, Pereira MTM, Charret TS, Thurler-Júnior JC, Wermelinger GF, Baptista AR, Robbs BK, Sawaya ACHF, Pascoal VDB, Pascoal ACRR. Evaluation of the antiproliferative potential of Eugenia pyriformis leaves in cervical cancer cells. Chem Biodivers 2022; 19:e202200114. [PMID: 35798670 DOI: 10.1002/cbdv.202200114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/02/2022] [Indexed: 11/07/2022]
Abstract
Eugenia pyriformis , typically known as uvaia, ubaia, uvaieira, uvalha or uvalha-do-campo, is a plant representative of the Myrtaceae family. E. pyriformis decreased HeLa cells proliferation, can induce cell death and reduce cell migration that may be related to metastasis and induction of cell death by apoptosis in vitro assays. Its leaves are used in folk medicine for hypertension control, decreased cholesterol and uric acid, slimming, astringent, and digestive. In this work, the evaluation of the in vitro anticancer potential Cervical Cancer (HeLa cells) and phytochemical analysis in E. pyriformes was performed. It was possible to quantify phenolic compounds and total flavonoids and identify Chlorogenic acid, Quercetrin, and Myricitrin in this species. The crude extract and ethyl acetate fraction inhibited cell viability by 50% in the dose of 44.42 μg/mL and 40.39 μg/mL, respectively. The induced effector caspase 3/7 activation, which results in apoptosis and the ethyl acetate fraction , decreases cell migration of cancer cell line; it is responsible for the cleavage of several cellular proteins that will result in the classic phenotype of the apoptotic cell.
Collapse
Affiliation(s)
- Thiago De Paula Alves
- UFF: Universidade Federal Fluminense, Graduate Program in Science and Biotechnology, Rua Prof. Marcos Waldemar de Freitas Reis, Niteroi, BRAZIL
| | - Mariana Toledo Martins Pereira
- UFF: Universidade Federal Fluminense, Graduate Program in Science and Biotechnology, Fluminense Federal University, Rua Prof. Marcos Waldemar de Freitas Reis, Niteroi, BRAZIL
| | - Thiago Sardou Charret
- UFF: Universidade Federal Fluminense, Graduate Program in Science and Biotechnology, Rua Prof. Marcos Waldemar de Freitas Reis, Niteroi, BRAZIL
| | - Júlio César Thurler-Júnior
- UFF: Universidade Federal Fluminense, Department of Basic Sciences, Rua Doutor Sílvio Henrique Braune, 28625650, Nova Friburgo, BRAZIL
| | - Guilherme Freimann Wermelinger
- UFF: Universidade Federal Fluminense, Department of Basic Sciences, Rua Doutor Sílvio Henrique Braune, 28625650, Nova Friburgo, BRAZIL
| | - Andrea Regina Baptista
- UFF: Universidade Federal Fluminense, Graduate Program in Science and Biotechnology, Rua Prof. Marcos Waldemar de Freitas Reis, Niteroi, BRAZIL
| | - Bruno Kaufmann Robbs
- UFF: Universidade Federal Fluminense, Department of Basic Sciences, Rua Doutor Sílvio Henrique Braune, 28625650, Nova Friburgo, BRAZIL
| | - Alexandra C H F Sawaya
- UNICAMP: Universidade Estadual de Campinas, Faculty of Pharmaceutical Sciences, Rua Monteiro Lobato, 255, Campinas, BRAZIL
| | | | | |
Collapse
|
5
|
Phenolic Acid Profiling of Lactarius hatsudake Extracts, Anti-Cancer Function and Its Molecular Mechanisms. Foods 2022; 11:foods11131839. [PMID: 35804655 PMCID: PMC9266154 DOI: 10.3390/foods11131839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer is still the leading cause of death across the world, and there is a lack of efficient therapies. Lactarius hatsudake is a mushroom with a food and medicine homology that contains numerous biologically active substances. This study aimed to investigate the composition of extracts from Lactarius hatsudake (L. hatsudake) and their anti-cancer function and molecular mechanisms. Our results showed that the total phenolic content of L. hatsudake extracts was 139.46 ± 5.42 mg/g. The following six phenolic compounds were identified from L. hatsudake extracts by HPLC and UPLC-QTOF/MS: gallic acid, pyrogallol, chlorogenic acid, ferulic acid, myricetin, and cinnamic acid. Colorectal cancer cell HCT116 and hepatic cancer cell HepG2 were used to evaluate the anti-cancer function of the L. hatsudake extracts. Compared with HepG2 cells, the L. hatsudake extracts showed stronger anti-cancer activity against HCT116 cells and these were used to study molecular mechanisms. The results indicated that the L. hatsudake extracts could arrest the cancer cell cycle and inhibit cancer cell proliferation, which may be mediated by the MAPK/NFκB/AP-1 signalling pathway; the L. hatsudake extracts also promoted cancer cell apoptosis through a mitochondrial-dependent pathway. Taken together, these findings demonstrate that L. hatsudake ethanol extracts contain six main phenolics and illustrate the remarkable potentiality of L. hatsudake as a source of natural phenolics for cancer prevention and as an adjuvant in the treatment of functional foods.
Collapse
|
6
|
Metabolic Engineering of Escherichia coli for Hyperoside Biosynthesis. Microorganisms 2022; 10:microorganisms10030628. [PMID: 35336203 PMCID: PMC8949062 DOI: 10.3390/microorganisms10030628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperoside (quercetin 3-O-galactoside) exhibits many biological functions, along with higher bioactivities than quercetin. In this study, three UDP-dependent glycosyltransferases (UGTs) were screened for efficient hyperoside synthesis from quercetin. The highest hyperoside production of 58.5 mg·L−1 was obtained in a recombinant Escherichia coli co-expressing UGT from Petunia hybrida (PhUGT) and UDP-glucose epimerase (GalE, a key enzyme catalyzing the conversion of UDP-glucose to UDP-galactose) from E. coli. When additional enzymes (phosphoglucomutase (Pgm) and UDP-glucose pyrophosphorylase (GalU)) were introduced into the recombinant E. coli, the increased flux toward UDP-glucose synthesis led to enhanced UDP-galactose-derived hyperoside synthesis. The efficiency of the recombinant strain was further improved by increasing the copy number of the PhUGT, which is a limiting step in the bioconversion. Through the optimization of the fermentation conditions, the production of hyperoside increased from 245.6 to 411.2 mg·L−1. The production was also conducted using a substrate-fed batch fermentation, and the maximal hyperoside production was 831.6 mg·L−1, with a molar conversion ratio of 90.2% and a specific productivity of 27.7 mg·L−1·h−1 after 30 h of fermentation. The efficient hyperoside synthesis pathway described here can be used widely for the glycosylation of other flavonoids and bioactive substances.
Collapse
|
7
|
A Comprehensive View on the Quercetin Impact on Colorectal Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061873. [PMID: 35335239 PMCID: PMC8953922 DOI: 10.3390/molecules27061873] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) represents the third type of cancer in incidence and second in mortality worldwide, with the newly diagnosed case number on the rise. Among the diagnosed patients, approximately 70% have no hereditary germ-line mutations or family history of pathology, thus being termed sporadic CRC. Diet and environmental factors are to date considered solely responsible for the development of sporadic CRC; therefore; attention should be directed towards the discovery of preventative actions to combat the CRC initiation, promotion, and progression. Quercetin is a polyphenolic flavonoid plant secondary metabolite with a well-characterized antioxidant activity. It has been extensively reported as an anti-carcinogenic agent in the scientific literature, and the modulated targets of quercetin have been also characterized in the context of CRC, mainly in original research publications. In this fairly comprehensive review, we summarize the molecular targets of quercetin reported to date in in vivo and in vitro CRC models, while also giving background information about the signal transduction pathways that it up- and downregulates. Among the most relevant modulated pathways, the Wnt/β-catenin, PI3K/AKT, MAPK/Erk, JNK, or p38, p53, and NF-κB have been described. With this work, we hope to encourage further quests in the elucidation of quercetin anti-carcinogenic activity as single agent, as dietary component, or as pharmaconutrient delivered in the form of plant extracts.
Collapse
|
8
|
Chen J, Li G, Sun C, Peng F, Yu L, Chen Y, Tan Y, Cao X, Tang Y, Xie X, Peng C. Chemistry, pharmacokinetics, pharmacological activities, and toxicity of Quercitrin. Phytother Res 2022; 36:1545-1575. [PMID: 35253930 DOI: 10.1002/ptr.7397] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/20/2022]
Abstract
Quercitrin is a naturally available type of flavonoid that commonly functions as the dietary ingredient and supplement. So far, a wide spectrum of bioactivities of quercitrin have been revealed, including antioxidative stress, antiinflammation, anti-microorganisms, immunomodulation, analgesia, wound healing, and vasodilation. Based on these various pharmacological activities, increasing studies have focused on the potency of quercitrin in diverse diseases in recent years, such as bone metabolic diseases, gastrointestinal diseases, cardiovascular and cerebrovascular diseases, and others. In this paper, by collecting and summarizing publications from the recent years, the natural sources, pharmacological activities and roles in various diseases, pharmacokinetics, structure-activity relationship, as well as the toxicity of quercitrin were systematically reviewed. In addition, the underlying molecular mechanisms of quercitrin in treating related diseases, the dose-effect relationships, and the novel preparations were discussed on the purpose of broadening the application prospect of quercitrin as functional food and providing reference for its clinical application. Notably, clinical studies of quercitrin are insufficient at present, further high-quality studies are needed to firmly establish the clinical efficacy of quercitrin.
Collapse
Affiliation(s)
- Junren Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gangmin Li
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Sun
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Lei Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunli Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, Guangxi University of Traditional Chinese Medicine, Guangxi, China
| | - Xiaofang Xie
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Lemon Myrtle ( Backhousia citriodora) Extract and Its Active Compound, Casuarinin, Activate Skeletal Muscle Satellite Cells In Vitro and In Vivo. Nutrients 2022; 14:nu14051078. [PMID: 35268053 PMCID: PMC8912364 DOI: 10.3390/nu14051078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/11/2023] Open
Abstract
Sarcopenia is an age-related skeletal muscle atrophy. Exercise is effective in improving sarcopenia via two mechanisms: activation of skeletal muscle satellite cells (SCs) and stimulation of muscle protein synthesis. In contrast, most nutritional approaches for improving sarcopenia focus mainly on muscle protein synthesis, and little is known about SC activation. Here, we investigated the effect of lemon myrtle extract (LM) on SC activation both in vitro and in vivo. Primary SCs or myoblast cell lines were treated with LM or its derived compounds, and incorporation of 5-bromo-2′-deoxyuridine, an indicator of cell cycle progression, was detected by immunocytochemistry. We found that LM significantly activated SCs (p < 0.05), but not myoblasts. We also identified casuarinin, an ellagitannin, as the active compound in LM involved in SC activation. The structure−activity relationship analysis showed that rather than the structure of each functional group of casuarinin, its overall structure is crucial for SC activation. Furthermore, SC activation by LM and casuarinin was associated with upregulation of interleukin-6 mRNA expression, which is essential for SC activation and proliferation. Finally, oral administration of LM or casuarinin to rats showed significant activation of SCs in skeletal muscle (p < 0.05), suggesting that LM and casuarinin may serve as novel nutritional interventions for improving sarcopenia through activating SCs.
Collapse
|
10
|
Li DY, Yue LX, Wang SG, Wang TX. Quercitrin restrains the growth and invasion of lung adenocarcinoma cells by regulating gap junction protein beta 2. Bioengineered 2022; 13:6126-6135. [PMID: 35196203 PMCID: PMC8973705 DOI: 10.1080/21655979.2022.2037372] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most prevalent subtype of non-small cell lung cancer (NSCLC) with high lethality, and quercitrin exhibits anticancer characteristics. Here, we attempted to uncover the anticancer activity of quercitrin in LUAD. In this work, quercitrin prohibited the cell viability and clone-formation of LUAD cells in vitro. Meanwhile, quercitrin treatment reduced the aggressive phenotypes in LUAD cells. Further, Gap Junction Protein Beta 2 (GJB2) expression was aberrantly higher in LUAD when compared within control tissue. The higher expression of GJB2 is associated with an inferior overall survival for patients with LUAD. Finally, the reintroduction of GJB2 offset the inhibiting influence of quercitrin in LUAD cells. Altogether, these findings disclosed that quercitrin suppressed the growth and metastatic-related traits of LUAD cells partly via regulating GJB2 expression.
Collapse
Affiliation(s)
- Deng Yun Li
- School of Medicine, Zhengzhou University of Industrial Technology, Zhengzhou, Henan, China
| | - Li Xiao Yue
- School of Medicine, Zhengzhou University of Industrial Technology, Zhengzhou, Henan, China
| | - Shi Guang Wang
- School of Medicine, Zhengzhou University of Industrial Technology, Zhengzhou, Henan, China
| | - Tian Xiao Wang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| |
Collapse
|
11
|
Özgöçmen M, Bayram D, Armağan İ, Türel GY, Sevimli M, Şenol N. Is Quercetin Beneficial for Colon Cancer? A Cell Culture Study, Using the Apoptosis Pathways. Anticancer Agents Med Chem 2021; 22:193-200. [PMID: 34170811 DOI: 10.2174/1871520621666210624110547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Quercetin (QCT) is a dietary flavonoid with many beneficial effects (e.g., antioxidant, antiaging, antidiabetic, antifungal effects, regulation of gastrointestinal motor activity in humans); furthermore, it induces apoptosis, cell cycle arrest, and differentiation. OBJECTIVE The apoptotic effects of OCT were investigated on SW480 human colon cancer cell lines in monolayer and spheroid cultures. METHODS Quercetin (40-200 μM) was applied, and inhibitory concentration (IC50) doses were determined for three-time intervals (24, 48, and 72 h). The effective dose was determined and applied for analyses, including staining with BrdU to investigate cell proliferation, terminal deoxynucleotidyl transferase dUTP nick, and labeling (TUNEL) to investigate apoptosis, and apoptosis-inducing factor (AIF) and Caspase-3 to investigate caspase-dependent or independent apoptotic pathways. RESULTS The effective dose of QCT was determined to be 200 μM and was found to induce apoptosis and inhibit cell proliferation at 24, 48, and 72 h, both in 2D and 3D cultures. Significant increases were observed in both caspase-3 and AIF staining, but cells showed greater caspase-3 staining compared with AIF staining at all time intervals (p<0.05). CONCLUSION The QCT treatment groups showed more cell death and less cell growth than the untreated control groups in both 2D and 3D cultures of SW480 cell lines. The results suggest that quercetin induces apoptosis, inhibits cell proliferation, and has a protective role against colon cancer. However, further studies are needed to clarify its mechanism of action.
Collapse
Affiliation(s)
- Meltem Özgöçmen
- Department of Histology and Embryology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Dilek Bayram
- Department of Histology and Embryology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - İlkay Armağan
- Department of Histology and Embryology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Gülçin Yavuz Türel
- Department of Medical Biology, Faculty of Medicine, Süleyman Demirel Universtiy, Isparta, Turkey
| | - Murat Sevimli
- Department of Histology and Embryology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Nurgül Şenol
- Department of Nutrition Sciences, Faculty of Healty Sciences, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
12
|
Ma ST, Zhang XY, Zhang N, Bi XL, Feng CT. Quantitative Determination of Quercitrin Levels in Rat Plasma Using UHPLC-MS/MS and its Application in a Pharmacokinetic Study after the Oral Administration of Polygoni Cuspidati Folium Capsules. Curr Pharm Biotechnol 2021; 23:457-465. [PMID: 34011255 DOI: 10.2174/1389201022666210519114647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/15/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Quercitrin is widely found in herbal medicines, and it is particularly important in the design of new therapeutic agents. Because of its wide range of biological activities, methods for detecting quercitrin and its pharmacokinetics in biological samples must be investigated. OBJECTIVE To develop and validate a sensitive and reliable ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for the quantitative determination of quercitrin levels in rat plasma and test its application in a pharmacokinetic investigation after the oral administration of Polygoni cuspidati folium capsules (HC). METHODS First, a rapid analytical method implementing UHPLC-MS/MS for the quantification of quercitrin levels in rat plasma was developed and validated. The analyte and internal standard (IS) tinidazole were extracted from rat plasma via protein precipitation with 800 μL of methanol and 50 μL of 1% formic acid solution. Chromatographic separation was performed using an Agilent ZORBAX C18 column within 4 min. Mass spectrometry was performed for quantification using a triple-quadrupole mass spectrometer employing electrospray ionization in the negative ion mode. The MRM transitions for quercitrin and IS were m/z 447.2→229.9 and m/z 246.0→125.8, respectively. The UHPLC-MS/MS method for the quantitative determination of quercitrin levels in rat plasma was then applied to investigate its pharmacokinetics after the oral administration of HC in rats. RESULTS The developed UHPLC-MS/MS method for detecting quercitrin in rat plasma was linear over the range of 0.1-160 ng/mL. The linear regression equation was Y = (0.7373 ± 0.0023)X - (0.0087 ± 0.0021) (r2 = 0.9978). The intra- and interday precision values were within 7.8%, and the recoveries of quercitrin and IS exceeding 67.3%. The UHPLC-MS/MS method was successfully applied to characterize the pharmacokinetic profile of quercitrin in eight rats after the oral administration of HC. The experimentally obtained values were fit to a one-compartment, first-order pharmacokinetic model, and they appeared to fit the concentration-time curve. CONCLUSION Quercitrin was proven to be stable during sample storage, preparation, and analytical procedures. The pharmacokinetic parameters suggested that quercitrin may be present in the peripheral tissues of rats.
Collapse
Affiliation(s)
- Shi-Tang Ma
- Life and Health College, Anhui Science and Technology University, Fengyang 233100, China
| | | | - Ning Zhang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Xiao-Lin Bi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng-Tao Feng
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| |
Collapse
|
13
|
Li W, Cheng M, Zhang W, He R, Yang H. New Insights into the Mechanisms of Polyphenol from Plum Fruit Inducing Apoptosis in Human Lung Cancer A549 Cells Via PI3K/AKT/FOXO1 Pathway. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:125-132. [PMID: 33641052 DOI: 10.1007/s11130-021-00882-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Recent studies have been found that polyphenols from plums fruits can inhibit the proliferation of multiple cancer cells, while the molecular mechanism was unclear. This study aimed to investigate the molecular mechanism underlying the pro-apoptotic effect of purified plum polyphenols (PPP) on human lung cancer A549 cells. Quercitrin (quercetin-3-O-glucoside, 814.19 ± 40.71 mg/g) was identified as the primary polyphenol in PPP via ultra high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS). PPP showed a strong capacity for inhibiting the proliferation of the A549 cells by inducing apoptosis, which was reflected by an increase in the Bax/Bcl-2 ratio. Additionally, the inhibitory rate of PPP on the A549 cells were higher than that of vitamin C when the treatment dose exceeded 160 μg/mL. Transcriptome analysis suggested that PPP-induced apoptosis was closely associated with regulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/forkhead box protein O 1 (FOXO1) pathway in the A549 cells. Subsequently, as an activator of AKT, SC79 was applied to confirm that the inhibition of AKT phosphorylation play an important role in the PPP-induced apoptosis of the A549 cells. These results illustrated the potential of PPP as a dietary compound for the prevention of cancer or for use during chemotherapy.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology, Yangtze Normal University, 16 Juxian Road, Fuling district, Chongqing, 408100, China.
| | - Mengting Cheng
- School of Life Science and Biotechnology, Yangtze Normal University, 16 Juxian Road, Fuling district, Chongqing, 408100, China
| | - Wentao Zhang
- School of Life Science and Biotechnology, Yangtze Normal University, 16 Juxian Road, Fuling district, Chongqing, 408100, China
| | - Ruiyan He
- School of Life Science and Biotechnology, Yangtze Normal University, 16 Juxian Road, Fuling district, Chongqing, 408100, China
| | - Hongyan Yang
- School of Aerospace Medicine, Fourth Military Medical University, No. 169, Changle-West road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
14
|
Activation of caspase-3 in gastric adenocarcinoma AGS cells by Xylopia aethiopica (Dunal) A. Rich. fruit and characterization of its phenolic fingerprint by HPLC-DAD-ESI(Ion Trap)-MSn and UPLC-ESI-QTOF-MS2. Food Res Int 2021; 141:110121. [DOI: 10.1016/j.foodres.2021.110121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 01/10/2023]
|
15
|
Zvikas V, Urbanaviciute I, Bernotiene R, Kulakauskiene D, Morkunaite U, Balion Z, Majiene D, Liaudanskas M, Viskelis P, Jekabsone A, Jakstas V. Investigation of Phenolic Composition and Anticancer Properties of Ethanolic Extracts of Japanese Quince Leaves. Foods 2020; 10:foods10010018. [PMID: 33374689 PMCID: PMC7822480 DOI: 10.3390/foods10010018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 01/19/2023] Open
Abstract
Glioblastoma multiforme is an aggressive and invasive disease with no efficient therapy available, and there is a great need for finding alternative treatment strategies. This study aimed to investigate anticancer activity of the extracts of the Japanese quince (JQ) cultivars ‘Darius’, ‘Rondo’, and ‘Rasa’ leaf extracts on glioblastoma C6 and HROG36 cells. As identified by ultra high performance liquid chromatography electrospray ionization tandem mass spectrometry, the extracts contained three prevailing groups of phenols: hydroxycinnamic acid derivatives; flavan-3-ols; and flavonols. Sixteen phenols were detected; the predominant compound was chlorogenic acid. The sum of detected phenols varied significantly between the cultivars ranging from 9322 µg/g (‘Rondo’) to 17,048 µg/g DW (‘Darius’). Incubation with the extracts decreased the viability of glioblastoma HROG36 cells with an efficiency similar to temozolomide, a drug used for glioblastoma treatment. In the case of C6 glioblastoma cells, the extracts were even more efficient than temozolomide. Interestingly, primary cerebellar neuronal-glial cells were significantly less sensitive to the extracts compared to the cancer cell lines. The results showed that JQ leaf ethanol extracts are rich in phenolic compounds, can efficiently reduce glioblastoma cell viability while preserving non-cancerous cells, and are worth further investigations as potential anticancer drugs.
Collapse
Affiliation(s)
- Vaidotas Zvikas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania; (V.Z.); (D.K.); (U.M.); (Z.B.); (M.L.); (P.V.); (A.J.)
| | - Ieva Urbanaviciute
- Laboratory of Biochemistry and Technology, Institute for Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno str. 30, LT-54333 Babtai, Lithuania;
| | - Rasa Bernotiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eivenių str. 4, LT-50161 Kaunas, Lithuania; (R.B.); (D.M.)
| | - Deimante Kulakauskiene
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania; (V.Z.); (D.K.); (U.M.); (Z.B.); (M.L.); (P.V.); (A.J.)
| | - Urte Morkunaite
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania; (V.Z.); (D.K.); (U.M.); (Z.B.); (M.L.); (P.V.); (A.J.)
| | - Zbigniev Balion
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania; (V.Z.); (D.K.); (U.M.); (Z.B.); (M.L.); (P.V.); (A.J.)
- Neuroscience Institute, Lithuanian University of Health Sciences, Eivenių str. 4, LT-50161 Kaunas, Lithuania; (R.B.); (D.M.)
| | - Daiva Majiene
- Neuroscience Institute, Lithuanian University of Health Sciences, Eivenių str. 4, LT-50161 Kaunas, Lithuania; (R.B.); (D.M.)
| | - Mindaugas Liaudanskas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania; (V.Z.); (D.K.); (U.M.); (Z.B.); (M.L.); (P.V.); (A.J.)
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania
| | - Pranas Viskelis
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania; (V.Z.); (D.K.); (U.M.); (Z.B.); (M.L.); (P.V.); (A.J.)
- Laboratory of Biochemistry and Technology, Institute for Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kauno str. 30, LT-54333 Babtai, Lithuania;
| | - Aiste Jekabsone
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania; (V.Z.); (D.K.); (U.M.); (Z.B.); (M.L.); (P.V.); (A.J.)
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių av. 17, LT-50009 Kaunas, Lithuania
| | - Valdas Jakstas
- Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania; (V.Z.); (D.K.); (U.M.); (Z.B.); (M.L.); (P.V.); (A.J.)
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukilėlių av. 13, LT-50162 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-672-00844
| |
Collapse
|
16
|
Efficient Production Hyperoside from Quercetin in Escherichia coli Through Increasing UDP-Galactose Supply and Recycling of Resting Cell. Catal Letters 2020. [DOI: 10.1007/s10562-020-03373-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Ethyl Acetate Extract of Nepenthes ventricosa x maxima Exerts Preferential Killing to Oral Cancer Cells. DNA Cell Biol 2019; 38:763-772. [DOI: 10.1089/dna.2018.4436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
18
|
Afrin S, Giampieri F, Gasparrini M, Forbes-Hernández TY, Cianciosi D, Reboredo-Rodriguez P, Zhang J, Manna PP, Daglia M, Atanasov AG, Battino M. Dietary phytochemicals in colorectal cancer prevention and treatment: A focus on the molecular mechanisms involved. Biotechnol Adv 2018; 38:107322. [PMID: 30476540 DOI: 10.1016/j.biotechadv.2018.11.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Worldwide, colorectal cancer (CRC) remains a major cancer type and leading cause of death. Unfortunately, current medical treatments are not sufficient due to lack of effective therapy, adverse side effects, chemoresistance and disease recurrence. In recent decades, epidemiologic observations have highlighted the association between the ingestion of several phytochemical-enriched foods and nutrients and the lower risk of CRC. According to preclinical studies, dietary phytochemicals exert chemopreventive effects on CRC by regulating different markers and signaling pathways; additionally, the gut microbiota plays a role as vital effector in CRC onset and progression, therefore, any dietary alterations in it may affect CRC occurrence. A high number of studies have displayed a key role of growth factors and their signaling pathways in the pathogenesis of CRC. Indeed, the efficiency of dietary phytochemicals to modulate carcinogenic processes through the alteration of different molecular targets, such as Wnt/β-catenin, PI3K/Akt/mTOR, MAPK (p38, JNK and Erk1/2), EGFR/Kras/Braf, TGF-β/Smad2/3, STAT1-STAT3, NF-кB, Nrf2 and cyclin-CDK complexes, has been proven, whereby many of these targets also represent the backbone of modern drug discovery programs. Furthermore, epigenetic analysis showed modified or reversed aberrant epigenetic changes exerted by dietary phytochemicals that led to possible CRC prevention or treatment. Therefore, our aim is to discuss the effects of some common dietary phytochemicals that might be useful in CRC as preventive or therapeutic agents. This review will provide new guidance for research, in order to identify the most studied phytochemicals, their occurrence in foods and to evaluate the therapeutic potential of dietary phytochemicals for the prevention or treatment of CRC by targeting several genes and signaling pathways, as well as epigenetic modifications. In addition, the results obtained by recent investigations aimed at improving the production of these phytochemicals in genetically modified plants have been reported. Overall, clinical data on phytochemicals against CRC are still not sufficient and therefore the preventive impacts of dietary phytochemicals on CRC development deserve further research so as to provide additional insights for human prospective studies.
Collapse
Affiliation(s)
- Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Francesca Giampieri
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Tamara Y Forbes-Hernández
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Patricia Reboredo-Rodriguez
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Jiaojiao Zhang
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Piera Pia Manna
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia 27100, Italy
| | - Atanas Georgiev Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A Street, Jastrzebiec 05-552, Poland.
| | - Maurizio Battino
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| |
Collapse
|
19
|
Cell-Based Methods for Determination of Efficacy for Candidate Therapeutics in the Clinical Management of Cancer. Diseases 2018; 6:diseases6040085. [PMID: 30249005 PMCID: PMC6313784 DOI: 10.3390/diseases6040085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 12/11/2022] Open
Abstract
Determination of therapeutic efficacy is a major challenge in developing treatment options for cancer. Prior to in vivo studies, candidate therapeutics are evaluated using cell-based in vitro methods to assess their anti-cancer potential. This review describes the utility and limitations of evaluating therapeutic efficacy using human tumor-derived cell lines. Indicators for therapeutic efficacy using tumor-derived cell lines include cell viability, cell proliferation, colony formation, cytotoxicity, cytostasis, induction of apoptosis, and cell cycle arrest. Cell panel screens, 3D tumor spheroid models, drug-drug/drug-radiation combinatorial analysis, and invasion/migration assays reveal analogous in vitro information. In animal models, cellular assays can assess tumor micro-environment and therapeutic delivery. The utility of tumor-derived cell lines for efficacy determination is manifest in numerous commercially approved drugs that have been applied in clinical management of cancer. Studies reveal most tumor-derived cell lines preserve the genomic signature of the primary tumor source and cell line-based data is highly predictive of subsequent clinical studies. However, cell-based data often disregards natural system components, resulting in cell autonomous outcomes. While 3D cell culture platforms can counter such limitations, they require additional time and cost. Despite the limitations, cell-based methods remain essential in early stages of anti-cancer drug development.
Collapse
|
20
|
Balasubramanian M, Anbumegala M, Surendran R, Arun M, Shanmugam G. Elite hairy roots of Raphanus sativus (L.) as a source of antioxidants and flavonoids. 3 Biotech 2018; 8:128. [PMID: 29450118 PMCID: PMC5811410 DOI: 10.1007/s13205-018-1153-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 02/03/2018] [Indexed: 01/07/2023] Open
Abstract
An efficient protocol for hairy root induction in radish was established by optimizing several parameters that affect the efficiency of Agrobacterium rhizogenes-mediated transformations. Explants wounded using sterile hypodermic needle, infected with Agrobacterium suspension (0.6 OD600) for 10 min and co-cultivated in 1/2 MS medium containing acetosyringone (100 µM) for 2 days displayed maximum percentage of hairy root induction using MTCC 2364 (77.6%) and MTCC 532 (67.6%). On further experiments with MTCC 2364 initiated hairy roots, maximum biomass accumulation (fresh weight = 9.50 g; dry weight = 1.48 g) was achieved in liquid 1/2 MS medium supplemented with 87.6 mM sucrose after 40 days of culture. Transgenic state of hairy roots of MTCC 2364 was confirmed by polymerase chain reaction using rolB- and rolC-specific primers. The MTCC 2364-induced hairy roots produced higher amount of phenolic (33.0 mg g-1), flavonoid (48.0 mg g-1), and quercetin (114.8 mg g-1) content compared to auxin-induced roots of non-transformed radish. Furthermore, the results of ferric reducing antioxidant power and 1,1-diphenyl-2-picrylhydrazyl assay confirmed that the antioxidant activity of MTCC 2364 root extracts was improved when compared to auxin-induced roots of non-transformed radish. The present study offers a new insight in radish for production of phenolics and flavonoids (quercetin) using A. rhizogenes-mediated hairy root induction.
Collapse
Affiliation(s)
| | - Murugesan Anbumegala
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641 046 India
| | - Ramasamy Surendran
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641 046 India
| | - Muthukrishnan Arun
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641 046 India
| | - Girija Shanmugam
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641 046 India
| |
Collapse
|
21
|
|
22
|
Chen S, Li H, Liu Y, Zhu Z, Wei Q. Quercitrin extracted from Tartary buckwheat alleviates imiquimod-induced psoriasis-like dermatitis in mice by inhibiting the Th17 cell response. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
23
|
Pei J, Chen A, Zhao L, Cao F, Ding G, Xiao W. One-Pot Synthesis of Hyperoside by a Three-Enzyme Cascade Using a UDP-Galactose Regeneration System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6042-6048. [PMID: 28660766 DOI: 10.1021/acs.jafc.7b02320] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hyperoside exhibits many biological properties and is more soluble in water than quercetin. A uridine 5'-diphosphate (UDP) galactose regeneration system and one-pot synthesis of hyperoside was described herein. Glycine max sucrose synthase (GmSUS) was coupled with Escherichia coli UDP-galactose 4-epimerase (GalE) to regenerate UDP-galactose from sucrose and UDP. Petunia hybrida glycosyltransferase (PhUGT) with high activity toward quercetin was used to synthesize hyperoside via the UDP-galactose regeneration system. The important factors for optimal synergistic catalysis were determined. Through the use of a fed-batch operation, the final titer of hyperoside increased to 2134 mg/L, with a corresponding molar conversion of 92% and maximum number of UDP-galactose regeneration cycles (RCmax) of 18.4 under optimal conditions. Therefore, the method described herein for the regeneration of UDP-galactose from UDP and sucrose can be widely used for the glycosylation of flavonoids and other bioactive substances.
Collapse
Affiliation(s)
- Jianjun Pei
- Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass , Nanjing 210037, China
| | | | - Linguo Zhao
- Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass , Nanjing 210037, China
| | | | - Gang Ding
- Jiangsu Kanion Pharmaceutical Co., Ltd. , Lianyungang, Jiangsu Province 222001, China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd. , Lianyungang, Jiangsu Province 222001, China
| |
Collapse
|
24
|
Sobreira F, Hernandes LS, Vetore-Neto A, Díaz IEC, Santana FCD, Mancini-Filho J, Bacchi EM. Gastroprotective activity of the hydroethanolic extract and ethyl acetate fraction from Kalanchoe pinnata (Lam.) Pers. BRAZ J PHARM SCI 2017. [DOI: 10.1590/s2175-97902017000116027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
25
|
Caprioli G, Alunno A, Beghelli D, Bianco A, Bramucci M, Frezza C, Iannarelli R, Papa F, Quassinti L, Sagratini G, Tirillini B, Venditti A, Vittori S, Maggi F. Polar Constituents and Biological Activity of the Berry-Like Fruits from Hypericum androsaemum L. FRONTIERS IN PLANT SCIENCE 2016; 7:232. [PMID: 26973675 PMCID: PMC4771922 DOI: 10.3389/fpls.2016.00232] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
Hypericum androsaemum, also known as Tutsan, is a small evergreen shrub common in the Mediterranean basin where it is traditionally used as diuretic and hepatoprotective herbal drug. This plant possesses the peculiarity to produce fleshy and berry-like fruits that ripen from red to shiny black. In the present work, the chemical constituents of methanolic extracts and infusions of red and black fruits were analyzed by HPLC, and correlated with their antioxidant properties which were evaluated by the DPPH, β-Carotene/linoleic acid, and hypochlorous acid tests. In addition, the red pigment of the fruit was isolated by column chromatography and structurally elucidated by NMR. Results showed that H. androsaemum fruits contain high amounts of shikimic and chlorogenic acids, while their color was given by a tetraoxygenated-type xanthone, reported for the first time in Hypericum species. The red berries infusion gave the highest content of total phenolic compounds, DPPH, and hypochlorous acid scavenging activity, and β-carotene bleaching. Cytotoxicity of the berries extracts on three human tumor cell lines (malignant melanoma, breast adenocarcinoma, and colon carcinoma) was evaluated by MTT assay, and relevant inhibition on colon carcinoma cells (IC50 value of 8.4 μg/mL) was found. Finally, the effects of red berries extract on the immune system were evaluated by peripheral blood mononuclear cell (PBMC) proliferation assay that revealed a strong stimulation on lymphocytes at low doses (0.4-6 μg/mL).
Collapse
Affiliation(s)
| | - Alessia Alunno
- Rheumatology Unit, Department of Medicine, University of PerugiaPerugia, Italy
| | - Daniela Beghelli
- School of Bioscience and Veterinary Medicine, University of CamerinoCamerino, Italy
| | | | | | - Claudio Frezza
- Department of Environmental Biology, Sapienza University of RomeRome, Italy
| | | | - Fabrizio Papa
- School of Science and Technology, University of CamerinoCamerino, Italy
| | | | | | - Bruno Tirillini
- Department of Biomolecular Sciences, University of UrbinoUrbino, Italy
| | - Alessandro Venditti
- Department of Chemistry, Sapienza University of RomeRome, Italy
- Department of Environmental Biology, Sapienza University of RomeRome, Italy
| | - Sauro Vittori
- School of Pharmacy, University of CamerinoCamerino, Italy
| | - Filippo Maggi
- School of Pharmacy, University of CamerinoCamerino, Italy
| |
Collapse
|
26
|
Bai Y, Xia B, Xie W, Zhou Y, Xie J, Li H, Liao D, Lin L, Li C. Phytochemistry and pharmacological activities of the genus Prunella. Food Chem 2016; 204:483-496. [PMID: 26988527 DOI: 10.1016/j.foodchem.2016.02.047] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/01/2016] [Accepted: 02/08/2016] [Indexed: 12/20/2022]
Abstract
Prunella is a genus of perennial herbaceous plants in the Labiatae family. There are approximately 15 species worldwide, distributed widely in the temperate regions and tropical mountains of Europe and Asia. In the genus Prunella, P. vulgaris is the most studied, following a several thousand-year history as a traditional antipyretic and antidotal Chinese herb. Furthermore, since ancient times, P. vulgaris has been widely used as a cool tea ingredient and consumed as a vegetable. The genus Prunella contains triterpenoids and their saponins, phenolic acids, sterols and associated glycosides, flavonoids, organic acids, volatile oil and saccharides. Modern pharmacological studies have revealed that Prunella possess antiviral, antibacterial, anti-inflammatory, immunoregulatory, anti-oxidative, anti-tumor, antihypertensive and hypoglycemic functions. The active components related to these functions are mainly triterpenoids, phenolic acids, flavonoids and polysaccharides. This review mainly summarizes recent advances in traditional usage, chemical components and pharmacological functions.
Collapse
Affiliation(s)
- Yubing Bai
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bohou Xia
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenjian Xie
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yamin Zhou
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jiachi Xie
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hongquan Li
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Duanfang Liao
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Limei Lin
- School of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
27
|
De Bruyn F, Van Brempt M, Maertens J, Van Bellegem W, Duchi D, De Mey M. Metabolic engineering of Escherichia coli into a versatile glycosylation platform: production of bio-active quercetin glycosides. Microb Cell Fact 2015; 14:138. [PMID: 26377568 PMCID: PMC4573293 DOI: 10.1186/s12934-015-0326-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/27/2015] [Indexed: 02/01/2023] Open
Abstract
Background Flavonoids are bio-active specialized plant metabolites which mainly occur as different glycosides. Due to the increasing market demand, various biotechnological approaches have been developed which use Escherichia coli as a microbial catalyst for the stereospecific glycosylation of flavonoids. Despite these efforts, most processes still display low production rates and titers, which render them unsuitable for large-scale applications. Results In this contribution, we expanded a previously developed in vivo glucosylation platform in E. coli W, into an efficient system for selective galactosylation and rhamnosylation. The rational of the novel metabolic engineering strategy constitutes of the introduction of an alternative sucrose metabolism in the form of a sucrose phosphorylase, which cleaves sucrose into fructose and glucose 1-phosphate as precursor for UDP-glucose. To preserve these intermediates for glycosylation purposes, metabolization reactions were knocked-out. Due to the pivotal role of UDP-glucose, overexpression of the interconverting enzymes galE and MUM4 ensured the formation of both UDP-galactose and UDP-rhamnose, respectively. By additionally supplying exogenously fed quercetin and overexpressing a flavonol galactosyltransferase (F3GT) or a rhamnosyltransferase (RhaGT), 0.94 g/L hyperoside (quercetin 3-O-galactoside) and 1.12 g/L quercitrin (quercetin 3-O-rhamnoside) could be produced, respectively. In addition, both strains showed activity towards other promising dietary flavonols like kaempferol, fisetin, morin and myricetin. Conclusions Two E. coli W mutants were engineered that could effectively produce the bio-active flavonol glycosides hyperoside and quercitrin starting from the cheap substrates sucrose and quercetin. This novel fermentation-based glycosylation strategy will allow the economically viable production of various glycosides. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0326-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frederik De Bruyn
- Department of Biochemical and Microbial Technology, Centre of Expertise-Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Maarten Van Brempt
- Department of Biochemical and Microbial Technology, Centre of Expertise-Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Jo Maertens
- Department of Biochemical and Microbial Technology, Centre of Expertise-Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Wouter Van Bellegem
- Department of Biochemical and Microbial Technology, Centre of Expertise-Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Dries Duchi
- Department of Biochemical and Microbial Technology, Centre of Expertise-Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Marjan De Mey
- Department of Biochemical and Microbial Technology, Centre of Expertise-Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
28
|
Zorzetto C, Sánchez-Mateo CC, Rabanal RM, Lupidi G, Petrelli D, Vitali LA, Bramucci M, Quassinti L, Caprioli G, Papa F, Ricciutelli M, Sagratini G, Vittori S, Maggi F. Phytochemical analysis and in vitro biological activity of three Hypericum species from the Canary Islands (Hypericum reflexum, Hypericum canariense and Hypericum grandifolium). Fitoterapia 2014; 100:95-109. [PMID: 25464055 DOI: 10.1016/j.fitote.2014.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/12/2014] [Accepted: 11/16/2014] [Indexed: 02/06/2023]
Abstract
In the present work we carried out a phytochemical and biological investigation on three Hypericum species, i.e. Hypericum reflexum, Hypericum canariense and Hypericum grandifolium, from the Canary Islands where they are traditionally used as diuretic, wound healing, vermifuge, sedative and antidepressive agents. The polar extracts of the top flowering aerial parts, prepared by Soxhlet apparatus using a methanol-acetone (1:1) extracting mixture, were analyzed by HPLC-DAD and HPLC-MS for the content of eight biomarkers such as hypericin, hyperforin, chlorogenic acid, rutin, hyperoside, isoquercitrin, quercitrin and quercetin, whereas the hydrodistilled essential oils were analyzed by GC-FID and GC-MS. The three Hypericum species had different results in both polar and volatile constituents, H. reflexum being the only one endowed with a small amount of naphtodianthrones (hypericin and pseudohypericin), and containing high levels of chlorogenic acid, rutin and volatile mono- and sesquiterpenes. After chemical characterization, all products were in vitro biologically assayed for antiproliferative activity on human tumor cell lines by MTT assay, for antioxidant potential by DPPH, ABTS and FRAP assays, and for antimicrobial activity by the agar disc diffusion and microdilution methods. Results revealed interesting bioactivities and differences between polar extracts and essential oils, with the former being endowed with significant antioxidant activity and the latter with comparable inhibition effects on the tumor cells (A375, MDA-MB 231 and HCT 116) to that of cisplatin.
Collapse
Affiliation(s)
- Christian Zorzetto
- Departamento de Medicina Física y Farmacología, Facultad de Farmacia, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Candelaria C Sánchez-Mateo
- Departamento de Medicina Física y Farmacología, Facultad de Farmacia, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Rosa M Rabanal
- Departamento de Medicina Física y Farmacología, Facultad de Farmacia, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Dezemona Petrelli
- School of Bioscience and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Luca A Vitali
- School of Pharmacy, University of Camerino, Camerino, Italy
| | | | | | | | - Fabrizio Papa
- School of Science and Technology, University of Camerino, Camerino, Italy
| | | | | | - Sauro Vittori
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, Camerino, Italy.
| |
Collapse
|
29
|
Liu BXZ, Zhou JY, Li Y, Zou X, Wu J, Gu JF, Yuan JR, Zhao BJ, Feng L, Jia XB, Wang RP. Hederagenin from the leaves of ivy (Hedera helix L.) induces apoptosis in human LoVo colon cells through the mitochondrial pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:412. [PMID: 25342273 PMCID: PMC4216349 DOI: 10.1186/1472-6882-14-412] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 10/15/2014] [Indexed: 11/23/2022]
Abstract
Background Colorectal cancer has become one of the leading cause of cancer morbidity and mortality throughout world. Hederagenin, a derivative of oleanolic acid isolated from the leaves of ivy (Hedera helix L.), has been shown to have potential anti-tumor activity. The study was conducted to evaluate whether hederagenin could induce apoptosis of human colon cancer LoVo cells and explore the possible mechanism. Methods MTT assay was used for evaluating cell viability while Annexin V-FITC/PI assay and Hoechst 33342 nuclear stainining were used for the determination of apoptosis and mitochondrial membrane potential. DCFH-DA fluorescence staining and flow cytometry were used to measure ROS generation. Real-time PCR and western blot analysis were performed for apoptosis-related protein expressions. Results MTT assay showed that hederagenin could significantly inhibit the viability of LoVo cells in a concentration-dependent and time-dependent manner by IC50 of 1.39 μM at 24 h and 1.17 μM at 48 h. The apoptosis ratio was significantly increased to 32.46% and 81.78% by the induction of hederagenin (1 and 2 μM) in Annexin V-FITC/PI assay. Hederagenin could also induce the nuclear changes characteristic of apoptosis by Hoechst 33342 nuclear stainining under fluorescence microscopy. DCFH-DA fluorescence staining and flow cytometry showed that hederagenin could increase significantly ROS generation in LoVo cells. Real-time PCR showed that hederagenin induced the up-regulation of Bax and down-regulation of Bcl-2, Bcl-xL and Survivin. Western blotting analysis showed that hederagenin decreased the expressions of apoptosis-associated proteins Bcl-2, procaspase-9, procaspase-3, and polyADP- ribosepolymerase (PARP) were increased, while the expressions of Bax, caspase-3, caspase-9 were increased. However, there was no significant change on caspase-8. Conclusions These results indicated that the disruption of mitochondrial membrane potential might contribute to the apoptosis of hederagenin in LoVo cells. Our findings suggested that hederagenin might be a promising therapeutic candidate for human colon cancer.
Collapse
|