1
|
Nakka P, Jassi C, Chen MC, Liu YS, Liu JY, Yeh CM, Li CC, Chang YC, Kuo WW, Huang CY. Sensitization of hepatocellular carcinoma cells to HDACi is regulated through hsa-miR-342-5p/CFL1. Cancer Cell Int 2024; 24:291. [PMID: 39152428 PMCID: PMC11328471 DOI: 10.1186/s12935-024-03450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/13/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Increased prevalence of hepatocellular carcinoma (HCC) remains a global health challenge. HCC chemoresistance is a clinical obstacle for its management. Aberrant miRNA expression is a hallmark for both cancer progression and drug resistance. However, it is unclear which miRNAs are involved in HCC chemoresistance. METHODS MicroRNA microarray analysis revealed a differential expression profile of microRNAs between the hepatocellular carcinoma HA22T cell line and the HDACi-R cell line, which was validated by quantitative real-time PCR (qRT-PCR). To determine the biological function of miR-342-5p and the mechanism of the microRNA-342-5p/CFL1 axis in hepatocellular carcinoma HDACi resistance, loss- and gain-of-function studies were conducted in vitro. RESULTS Here we demonstrated the molecular mechanism of histone deacetylase inhibitor (HDACi) resistance in HCC. Differential miRNA expression analysis showed significant down regulation of miR-342-5p in HDACi-R cells than in parental HA22T cells. Mimics of miR-342-5p enhanced apoptosis through upregulation of Bax, cyto-C, cleaved-caspase-3 expressions with concomitant decline in anti-apoptotic protein (Bcl-2) in HDACi-R cells. Although HDACi did not increase cell viability of HDACi-R, overexpression of miR-342-5p decreased cofilin-1 expression, upregulated reactive oxygen species (ROS) mediated apoptosis, and sensitized HDACi-R to HDACi in a dose-dependent manner. CONCLUSION Our findings demonstrated the critical role of miR-342-5p in HDACi resistance of HCC and that this mechanism might be attributed to miR-342-5p/cofilin-1 regulation.
Collapse
Affiliation(s)
- Parvathi Nakka
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
| | - Chikondi Jassi
- Department of Biological Science and Technology, China Medical University, Taichung, 406, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Sheng Liu
- Division of Hematology and Oncology, Department of Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jer-Yuh Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chung-Min Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Chi-Cheng Li
- School of Medicine, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, 97004, Taiwan
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yu-Chun Chang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, 406, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, 406, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
2
|
Su L, Luo H, Yan Y, Yang Z, Lu J, Xu D, Du L, Liu J, Yang G, Chi H. Exploiting gender-based biomarkers and drug targets: advancing personalized therapeutic strategies in hepatocellular carcinoma. Front Pharmacol 2024; 15:1433540. [PMID: 38966543 PMCID: PMC11222576 DOI: 10.3389/fphar.2024.1433540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
This review systematically examines gender differences in hepatocellular carcinoma (HCC), identifying the influence of sex hormones, genetic variance, and environmental factors on the disease's epidemiology and treatment outcomes. Recognizing the liver as a sexually dimorphic organ, we highlight how gender-specific risk factors, such as alcohol consumption and obesity, contribute differently to hepatocarcinogenesis in men and women. We explore molecular mechanisms, including the differential expression of androgen and estrogen receptors, which mediate diverse pathways in tumor biology such as cell proliferation, apoptosis, and DNA repair. Our analysis underscores the critical need for gender-specific research in liver cancer, from molecular studies to clinical trials, to improve diagnostic accuracy and therapeutic effectiveness. By incorporating a gender perspective into all facets of liver cancer research, we advocate for a more precise and personalized approach to cancer treatment that acknowledges gender as a significant factor in both the progression of HCC and its response to treatment. This review aims to foster a deeper understanding of the biological and molecular bases of gender differences in HCC and to promote the development of tailored interventions that enhance outcomes for all patients.
Collapse
Affiliation(s)
- Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Huanyu Luo
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yalan Yan
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Zhongqiu Yang
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Jiaan Lu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Danqi Xu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Linjuan Du
- Department of Oncology, Dazhou Central Hospital, Dazhou, China
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Meng X, Liu X. Therapeutic Value of Estrogen Receptor α in Hepatocellular Carcinoma Based on Molecular Mechanisms. J Clin Transl Hepatol 2022; 10:140-146. [PMID: 35233383 PMCID: PMC8845150 DOI: 10.14218/jcth.2021.00224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/04/2022] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) is significantly lower in women than men, implying that estrogen receptors (ERs) may play an important role in this sex dimorphism. Recently, considerable progress has been made in expanding our understanding of the mechanisms of ERs in HCC. As one of the most important ERs, ERα functions as a tumor suppressor in the progression of HCC through various pathways, such as STAT3 signaling pathways, lipid metabolism-related signaling pathways, and non-coding RNAs. However, the function of ERα was reduced with the changes of some molecules in the liver, which may develop further into HCC and make it difficult to achieve an effective hormone treatment effect. Intriguingly, there are signs that individualized hormone therapy according to the activity of ERα will overcome this challenge. Based on these observations, it is particularly imperative to reassess and extend the function of ERα. In this review, we mainly elucidated molecular mechanisms associated with ERα in HCC and investigated the individualized hormone therapy based on these mechanisms, with the aim of providing new insights for HCC treatment.
Collapse
Affiliation(s)
- Xiangzhe Meng
- Second Clinical College, Jining Medical University, Jining, Shandong, China
| | - Xue Liu
- Department of Pathology, College of Basic Medicine, Jining Medical University, Jining, Shandong, China
- Correspondence to: Xue Liu, Department of Pathology, College of Basic Medicine, Jining Medical University, 133 Hehua Road, Jining, Shandong 272067, China. ORCID: https://orcid.org/0000-0001-7817-8392. Tel: +86-15053798589, E-mail:
| |
Collapse
|
4
|
Bhat M, Pasini E, Pastrello C, Angeli M, Baciu C, Abovsky M, Coffee A, Adeyi O, Kotlyar M, Jurisica I. Estrogen Receptor 1 Inhibition of Wnt/β-Catenin Signaling Contributes to Sex Differences in Hepatocarcinogenesis. Front Oncol 2021; 11:777834. [PMID: 34881186 PMCID: PMC8645636 DOI: 10.3389/fonc.2021.777834] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023] Open
Abstract
Background Hepatocellular Carcinoma (HCC) is a sexually dimorphic cancer, with female sex being independently protective against HCC incidence and progression. The aim of our study was to understand the mechanism of estrogen receptor signaling in driving sex differences in hepatocarcinogenesis. Methods We integrated 1,268 HCC patient sample profiles from publicly available gene expression data to identify the most differentially expressed genes (DEGs). We mapped DEGs into a physical protein interaction network and performed network topology analysis to identify the most important proteins. Experimental validation was performed in vitro on HCC cell lines, in and in vivo, using HCC mouse model. Results We showed that the most central protein, ESR1, is HCC prognostic, as increased ESR1 expression was protective for overall survival, with HR=0.45 (95%CI 0.32-0.64, p=4.4E-06), and was more pronounced in women. Transfection of HCC cell lines with ESR1 and exposure to estradiol affected expression of genes involved in the Wnt/β-catenin signaling pathway. ER-α (protein product of ESR1) agonist treatment in a mouse model of HCC resulted in significantly longer survival and decreased tumor burden (p<0.0001), with inhibition of Wnt/β-Catenin signaling. In vitro experiments confirmed colocalization of β-catenin with ER-α, leading to inhibition of β-catenin-mediated transcription of target genes c-Myc and Cyclin D1. Conclusion Combined, the centrality of ESR1 and its inhibition of the Wnt/β-catenin signaling axis provide a biological rationale for protection against HCC incidence and progression in women.
Collapse
Affiliation(s)
- Mamatha Bhat
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada.,Division of Gastroenterology & Hepatology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Elisa Pasini
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Marc Angeli
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Cristina Baciu
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Mark Abovsky
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Angella Coffee
- Department of Pathology and University of Minnesota Medical Center, University of Minnesota, Minneapolis, MN, United States
| | - Oyedele Adeyi
- Department of Pathology and University of Minnesota Medical Center, University of Minnesota, Minneapolis, MN, United States
| | - Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department Computer Science, University of Toronto, Toronto, ON, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
5
|
Molecular Initiating Events Associated with Drug-Induced Liver Malignant Tumors: An Integrated Study of the FDA Adverse Event Reporting System and Toxicity Predictions. Biomolecules 2021; 11:biom11070944. [PMID: 34202146 PMCID: PMC8301945 DOI: 10.3390/biom11070944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Liver malignant tumors (LMTs) represent a serious adverse drug event associated with drug-induced liver injury. Increases in endocrine-disrupting chemicals (EDCs) have attracted attention in recent years, due to their liver function-inhibiting abilities. Exposure to EDCs can induce nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, which are major etiologies of LMTs, through interaction with nuclear receptors (NR) and stress response pathways (SRs). Therefore, exposure to potential EDC drugs could be associated with drug-induced LMTs. However, the drug classes associated with LMTs and the molecular initiating events (MIEs) that are specific to these drugs are not well understood. In this study, using the Food and Drug Administration Adverse Event Reporting System, we detected LMT-inducing drug signals based on adjusted odds ratios. Furthermore, based on the hypothesis that drug-induced LMTs are triggered by NR and SR modulation of potential EDCs, we used the quantitative structure-activity relationship platform for toxicity prediction to identify potential MIEs that are specific to LMT-inducing drug classes. Events related to cell proliferation and apoptosis, DNA damage, and lipid accumulation were identified as potential MIEs, and their relevance to LMTs was supported by the literature. The findings of this study may contribute to drug development and research, as well as regulatory decision making.
Collapse
|
6
|
Zhang Y, Yi B, Zhou X, Wu Y, Wang L. Overexpression Of ERβ Participates In The Progression Of Liver Cancer Via Inhibiting The Notch Signaling Pathway. Onco Targets Ther 2019; 12:8715-8724. [PMID: 31695429 PMCID: PMC6815216 DOI: 10.2147/ott.s218158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/11/2019] [Indexed: 12/27/2022] Open
Abstract
PURPOSE This study aimed to explore the role of Estrogen Receptor-β (ERβ)-mediated Notch signaling pathway in the regulation of proliferation and apoptosis in liver cancer cells. METHODS HepG2 cells (Pbi-EGFP-ER) were transfected with ERβ that mediated by liposome, and normal HepG2 cells (Blank) and empty plasmid-transfected HepG2 cells (Pbi-EGFP-C) were used as controls. Then, Huh7 cells were transfected with shERβ lentivirus to knock down ERβ expression. The Huh7 cells were divided into three groups including Blank, experimental group (shERβ) and negative group (shLuc). Then, qRT-PCR, Western blot, CCK-8 assay, cell scratch assay, Transwell assay, Annexin V-FITC and PI double staining were performed based on these groups. Finally, a mouse xenograft model was constructed to verify the regulation of ERβ on Notch signaling pathway in liver cancer. RESULTS In HepG2 cells, the ERβ expression in Pbi-EGFP-E group was higher than that in Blank and Bi-EGFP-C group. Overexpression of ERβ inhibited HepG2 cell proliferation, migration, invasion and Ki67 protein expression, as well as promoted apoptosis, Bcl-2 and Bax expression. Overexpression of ERβ decreased Notch1, Notch2 and Hes1 expression. In Huh7 cells, the effect of low ERβ expression was contrary to that of high ERβ expression. The shERβ + DAPT group reversed the effect of shERβ on the volume and weight of transplanted tumors. CONCLUSION ERβ may inhibit the development of liver cancer and promote apoptosis via inhibiting the Notch pathway.
Collapse
Affiliation(s)
- Yiping Zhang
- Department of Biochemistry and Molecular Biology, Basic Medical College of Jiujiang University, Jiujiang City, Jiangxi Province332000, People’s Republic of China
| | - Benyi Yi
- Department of Biochemistry and Molecular Biology, Basic Medical College of Jiujiang University, Jiujiang City, Jiangxi Province332000, People’s Republic of China
| | - Xufeng Zhou
- Department of Biochemistry and Molecular Biology, Basic Medical College of Jiujiang University, Jiujiang City, Jiangxi Province332000, People’s Republic of China
| | - Yahua Wu
- Department of Biochemistry and Molecular Biology, Basic Medical College of Jiujiang University, Jiujiang City, Jiangxi Province332000, People’s Republic of China
| | - Lili Wang
- Department of Biochemistry and Molecular Biology, Basic Medical College of Jiujiang University, Jiujiang City, Jiangxi Province332000, People’s Republic of China
| |
Collapse
|
7
|
Li H, Lu JW, Huo X, Li Y, Li Z, Gong Z. Effects of sex hormones on liver tumor progression and regression in Myc/xmrk double oncogene transgenic zebrafish. Gen Comp Endocrinol 2019; 277:112-121. [PMID: 30926469 DOI: 10.1016/j.ygcen.2019.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) shows clear sex disparity with men being more prone to developing HCC and having higher mortality than women. Previous studies have indicated that sex hormones play important roles in HCC initiation and development, but the effects of sex hormones on HCC in clinical trials remain inconsistent. Using zebrafish liver tumor model co-induced by oncogenes Myc and xmrk, we observed similar sex disparity between male and female zebrafish in liver tumor progression and regression; i.e. male Myc/xmrk transgenic zebrafish developed HCC significantly faster and regressed HCC significantly slower than female Myc/xmrk transgenic zebrtafish. To investigate the effects of sex hormones on liver tumor progression and regression, Myc/xmrk fish were treated with either androgen or estrogen, we observed that androgen promoted HCC progression and retarded HCC regression in females, while estrogen attenuated HCC progression and accelerated HCC regression in males. Furthermore, androgen promoted cell proliferation while estrogen inhibited it. Overall, the present study suggested that sex hormones affected liver tumor progression and regression in the Myc/xmrk transgenic zebrafish.
Collapse
Affiliation(s)
- Hankun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Xiaojing Huo
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yan Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zhen Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
8
|
Madureira TV, Pinheiro I, Malhão F, Castro LFC, Rocha E, Urbatzka R. Silencing of PPARαBb mRNA in brown trout primary hepatocytes: effects on molecular and morphological targets under the influence of an estrogen and a PPARα agonist. Comp Biochem Physiol B Biochem Mol Biol 2018; 229:1-9. [PMID: 30528668 DOI: 10.1016/j.cbpb.2018.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 12/23/2022]
Abstract
The crosstalk between peroxisome proliferator-activated receptor α (PPARα) and estrogenic pathways are shared from fish to humans. Salmonid fish had an additional genome duplication, and two PPARα isoforms (PPARαBa and PPARαBb) were previously identified. Since a negative regulation between estrogen signaling and PPARα was described, a post-transcriptional gene silencing for PPARαBb was designed in primary brown trout hepatocytes. The aims of the study were to: (i) decipher the effects of PPARαBb knock-down on peroxisome morphology and on mRNA expression of potential target genes, and (ii) to assess the cross-interferences caused by an estrogenic compound (17α-ethinylestradiol - EE2) and a PPARα agonist (Wy-14,643 - Wy) using the established knock-down model. A knock-down efficiency of 70% was achieved for PPARαBb and its silencing significantly reduced the volume density of peroxisomes, but did not alter mRNA levels of the studied genes. Exposure to Wy did not change peroxisome morphology or mRNA expression, but under silencing conditions Wy rescued the volume density of peroxisomes to control levels, and increased acyl-coenzyme A oxidase 1-3l (Acox1-3l) mRNA. Exposure to EE2 caused a reduction of peroxisome volume density, but under silencing conditions this effect was abolished and ApoA1 mRNA level was diminished. The morphological alterations of peroxisomes by WY and EE2 demonstrated that obtained results are PPARαBb dependent, and suggest the regulation of unknown downstream targets of PPARαBb. In summary, PPARαBb is involved in the control of peroxisome size and/or number, which opens future opportunities to explore its regulation and molecular targets.
Collapse
Affiliation(s)
- Tânia Vieira Madureira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Laboratory of Histology and Embryology, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Ivone Pinheiro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Laboratory of Histology and Embryology, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Fernanda Malhão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Laboratory of Histology and Embryology, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - L Filipe C Castro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Biology, University of Porto (U.Porto), Rua do Campo Alegre, P 4169-007 Porto, Portugal
| | - Eduardo Rocha
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U.Porto), Laboratory of Histology and Embryology, Rua Jorge Viterbo Ferreira 228, P 4050-313 Porto, Portugal
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|