1
|
Ye J, Chen L. Current Landscape of Hypoxia in Thyroid Cancer Pathogenesis and Treatment. Crit Rev Oncol Hematol 2025:104719. [PMID: 40210181 DOI: 10.1016/j.critrevonc.2025.104719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/22/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025] Open
Abstract
Thyroid cancer, the most prevalent endocrine malignancy, exhibits diverse clinical behaviors ranging from indolent to highly aggressive forms. A critical factor influencing the progression and treatment resistance of thyroid cancer is hypoxia-a condition characterized by inadequate oxygen supply to the tumor microenvironment. Hypoxia induces the stabilization of hypoxia-inducible factors (HIFs), particularly HIF-1α and HIF-2α, drive various oncogenic processes such as epithelial-mesenchymal transition (EMT), angiogenesis, metabolic reprogramming, and immune evasion. These processes contribute to the aggressive phenotypes observed in poorly differentiated and anaplastic thyroid cancers. This review explores the molecular mechanisms by which hypoxia and HIFs influence thyroid cancer pathogenesis, focusing on key signaling pathways, including NF-κB, Wnt/β-catenin, Hedgehog, and others. Furthermore, we discuss potential therapeutic strategies targeting the hypoxic microenvironment, such as HIF inhibitors and natural compounds, which have shown promise in preclinical studies. Understanding the role of hypoxia in thyroid cancer not only offers insights into the disease's progression but also highlights new avenues for therapeutic intervention aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Jianhong Ye
- Head and neck surgery, The First Hospital of Jiaxing, Jiaxing 314500, Zhejiang, China.
| | - Liang Chen
- Head and neck surgery, The First Hospital of Jiaxing, Jiaxing 314500, Zhejiang, China.
| |
Collapse
|
2
|
Wang RH, Lin YK, Xie HK, Li H, Li M, He D. Exploring the synergistic pharmacological mechanism of Huoxiang Drink against irritable bowel syndrome by integrated data mining and network pharmacology. Medicine (Baltimore) 2023; 102:e35220. [PMID: 37773835 PMCID: PMC10545357 DOI: 10.1097/md.0000000000035220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 10/01/2023] Open
Abstract
Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disorder, characterized by abdominal pain, bloating, and changes in bowel habits. Huoxiang Drink (HD), derived from traditional Chinese medicine, has been reported to effectively treat digestive disorders caused by external cold and internal dampness. However, the pharmaceutical targets and mechanisms for HD against IBS remain unclear. Data mining, bioinformatics analysis, and network pharmacology were employed to explore the potential pharmacological mechanisms of HD against IBS. In this study, we screened 50 core targets to investigate the pharmacological mechanisms of HD against IBS. Enrichment analysis revealed that HD may participate in various signaling pathways, especially the inflammation-related tumor necrosis factor, signaling pathway and hypoxia-inducible factor signaling pathway. Molecular docking results confirmed that MOL000098 (Quercetin), MOL000006 (Luteolin), MOL005828 (Nobiletin), MOL005916 (Irisolidone), and MOL004328 (Naringenin), as key active ingredients in HD, bound to core targets (tumor protein P53, tumor necrosis factor, matrix metalloproteinases 9, and vascular endothelial growth factor-A) for topical treatment of IBS. This study suggested that HD offered a potential therapeutic strategy against IBS. Our findings may facilitate the efficient screening of active ingredients in HD and provide a theoretical basis for further validating the clinical therapeutic effects of HD on treating IBS.
Collapse
Affiliation(s)
- Ruo-Hui Wang
- Department of ICU, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yi-Ke Lin
- Department of Pharmacology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Kai Xie
- Department of Pharmacology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Li
- Harbin Traditional Chinese Medicine Hospital, Harbin, China
| | - Mu Li
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Dong He
- Department of Pharmacology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Aprile M, Cataldi S, Perfetto C, Federico A, Ciccodicola A, Costa V. Targeting metabolism by B-raf inhibitors and diclofenac restrains the viability of BRAF-mutated thyroid carcinomas with Hif-1α-mediated glycolytic phenotype. Br J Cancer 2023; 129:249-265. [PMID: 37198319 PMCID: PMC10338540 DOI: 10.1038/s41416-023-02282-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND B-raf inhibitors (BRAFi) are effective for BRAF-mutated papillary (PTC) and anaplastic (ATC) thyroid carcinomas, although acquired resistance impairs tumour cells' sensitivity and/or limits drug efficacy. Targeting metabolic vulnerabilities is emerging as powerful approach in cancer. METHODS In silico analyses identified metabolic gene signatures and Hif-1α as glycolysis regulator in PTC. BRAF-mutated PTC, ATC and control thyroid cell lines were exposed to HIF1A siRNAs or chemical/drug treatments (CoCl2, EGF, HGF, BRAFi, MEKi and diclofenac). Genes/proteins expression, glucose uptake, lactate quantification and viability assays were used to investigate the metabolic vulnerability of BRAF-mutated cells. RESULTS A specific metabolic gene signature was identified as a hallmark of BRAF-mutated tumours, which display a glycolytic phenotype, characterised by enhanced glucose uptake, lactate efflux and increased expression of Hif-1α-modulated glycolytic genes. Indeed, Hif-1α stabilisation counteracts the inhibitory effects of BRAFi on these genes and on cell viability. Interestingly, targeting metabolic routes with BRAFi and diclofenac combination we could restrain the glycolytic phenotype and synergistically reduce tumour cells' viability. CONCLUSION The identification of a metabolic vulnerability of BRAF-mutated carcinomas and the capacity BRAFi and diclofenac combination to target metabolism open new therapeutic perspectives in maximising drug efficacy and reducing the onset of secondary resistance and drug-related toxicity.
Collapse
Affiliation(s)
- Marianna Aprile
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Via P. Castellino 111, 80131, Naples, Italy.
| | - Simona Cataldi
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Via P. Castellino 111, 80131, Naples, Italy
| | - Caterina Perfetto
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Via P. Castellino 111, 80131, Naples, Italy
| | - Antonio Federico
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Via P. Castellino 111, 80131, Naples, Italy
- Tampere Institute for Advanced Study (IAS), Tampere University, Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE)-Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alfredo Ciccodicola
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Via P. Castellino 111, 80131, Naples, Italy
- Department of Science and Technology, University of Naples "Parthenope", Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", CNR, Via P. Castellino 111, 80131, Naples, Italy.
| |
Collapse
|
4
|
Ahangar Davoodi N, Najafi S, Naderi Ghale-Noie Z, Piranviseh A, Mollazadeh S, Ahmadi Asouri S, Asemi Z, Morshedi M, Tamehri Zadeh SS, Hamblin MR, Sheida A, Mirzaei H. Role of non-coding RNAs and exosomal non-coding RNAs in retinoblastoma progression. Front Cell Dev Biol 2022; 10:1065837. [PMID: 36619866 PMCID: PMC9816416 DOI: 10.3389/fcell.2022.1065837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Retinoblastoma (RB) is a rare aggressive intraocular malignancy of childhood that has the potential to affect vision, and can even be fatal in some children. While the tumor can be controlled efficiently at early stages, metastatic tumors lead to high mortality. Non-coding RNAs (ncRNAs) are implicated in a number of physiological cellular process, including differentiation, proliferation, migration, and invasion, The deregulation of ncRNAs is correlated with several diseases, particularly cancer. ncRNAs are categorized into two main groups based on their length, i.e. short and long ncRNAs. Moreover, ncRNA deregulation has been demonstrated to play a role in the pathogenesis and development of RB. Several ncRNAs, such as miR-491-3p, miR-613,and SUSD2 have been found to act as tumor suppressor genes in RB, but other ncRNAs, such as circ-E2F3, NEAT1, and TUG1 act as tumor promoter genes. Understanding the regulatory mechanisms of ncRNAs can provide new opportunities for RB therapy. In the present review, we discuss the functional roles of the most important ncRNAs in RB, their interaction with the genes responsible for RB initiation and progression, and possible future clinical applications as diagnostic and prognostic tools or as therapeutic targets.
Collapse
Affiliation(s)
- Nasrin Ahangar Davoodi
- Eye Research Center, Rassoul Akram Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ashkan Piranviseh
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadamin Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| |
Collapse
|
5
|
Zhang L, Shi B, Hu M, Qian L. HIF-1α and Caspase-3 expression in aggressive papillary thyroid carcinoma. World J Surg Oncol 2022; 20:353. [PMID: 36329448 PMCID: PMC9635136 DOI: 10.1186/s12957-022-02815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
Background Tumor cells adapt to hypoxia by regulating transcription factors that involved in regulation of metabolism, angiogenesis, cell proliferation, and apoptosis. Under hypoxic conditions, hypoxia-inducible factor-1 (HIF-1), consisting of HIF-1α and HIF-1β subunits, acts as a key transcription factor mediating the adaptive cellular responses. Caspase-3 is a key apoptosis-related protease that plays a role in tumor growth and development. Studies have shown that caspase-3 could be regulated by HIF-1α under pathological conditions. Therefore, HIF-1α and caspase-3 expression may be related to the poor prognosis of tumors. In this study, we analyzed the possible relationships between these two signaling factors in correlation with the clinical behavior of PTC. Methods We detected the expression levels of HIF-1α and caspase-3 in 70 samples of PTC and para-cancerous tissues (control group) by immunohistochemistry (IHC). Furthermore, various clinicopathological parameters were assessed to determine their correlations with HIF-1α and caspase-3 expressions. Results First, HIF-1α and caspase-3 expressions (60% and 37.1%, respectively) increased significantly in the PTC samples as compared to normal tissues (2.9% for both HIF-1α and caspase-3) (p < 0.05) as determined by IHC. Second, although there was no significant difference between the expression of HIF-1α and caspase-3 in regard to gender, age distribution, tumor size, lymph node metastasis, and BRAFV600E mutation (all p > 0.05), HIF-1α and caspase-3 expressions were associated with capsule invasion and cell subtypes of PTC (p < 0.05). The percent positivity of caspase-3 expression in tall-cell variant (TCV) was the highest (63.6%). Third, HIF-1α expression was positively correlated with that of caspase-3 (rs = 0.326; p < 0.05). Conclusions Overexpression of HIF-1α and caspase-3 is associated with carcinogenesis. These factors might serve as promising predictors of aggressive PTC. These findings also suggest their potential as therapeutic targets.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Baixue Shi
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mingyang Hu
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Linxue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
de Koster EJ, van Engen-van Grunsven ACH, Bussink J, Frielink C, de Geus-Oei LF, Kusters B, Peters H, Oyen WJG, Vriens D. [ 18F]FDG Uptake and Expression of Immunohistochemical Markers Related to Glycolysis, Hypoxia, and Proliferation in Indeterminate Thyroid Nodules. Mol Imaging Biol 2022; 25:483-494. [PMID: 36253663 PMCID: PMC10172288 DOI: 10.1007/s11307-022-01776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE The current study explored the association between 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) uptake and the quantitative expression of immunohistochemical markers related to glucose metabolism, hypoxia, and cell proliferation in benign and malignant thyroid nodules of indeterminate cytology. PROCEDURES Using a case-control design, 24 patients were selected from participants of a randomized controlled multicenter trial (NCT02208544) in which [18F]FDG-PET/CT and thyroid surgery were performed for Bethesda III and IV nodules. Three equally sized groups of [18F]FDG-positive malignant, [18F]FDG-positive benign, and [18F]FDG-negative benign nodules were included. Immunohistochemical staining was performed for glucose transporters (GLUT) 1, 3, and 4; hexokinases (HK) 1 and 2; hypoxia-inducible factor-1 alpha (HIF1α; monocarboxylate transporter 4 (MCT4); carbonic anhydrase IX (CA-IX); vascular endothelial growth factor (VEGF); sodium-iodide symporter (NIS); and Ki-67. Marker expression was scored using an immunoreactive score. Unsupervised cluster analysis was performed. The immunoreactive score was correlated to the maximum and peak standardized uptake values (SUVmax, SUVpeak) and SUVmax ratio (SUVmax of nodule/background SUVmax of contralateral, normal thyroid) of the [18F]FDG-PET/CT using the Spearman's rank correlation coefficient and compared between the three groups using Kruskal-Wallis tests. RESULTS The expression of GLUT1, GLUT3, HK2, and MCT4 was strongly positively correlated with the SUVmax, SUVpeak, and SUVmax ratio. The expression of GLUT1 (p = 0.009), HK2 (p = 0.02), MCT4 (p = 0.01), and VEGF (p = 0.007) was statistically significantly different between [18F]FDG-positive benign nodules, [18F]FDG-positive thyroid carcinomas, and [18F]FDG-negative benign nodules. In both [18F]FDG-positive benign nodules and [18F]FDG-positive thyroid carcinomas, the expression of GLUT1, HK2, and MCT4 was increased as compared to [18F]FDG-negative benign nodules. VEGF expression was higher in [18F]FDG-positive thyroid carcinomas as compared to [18F]FDG-negative and [18F]FDG-positive benign nodules. CONCLUSIONS Our results suggest that [18F]FDG-positive benign thyroid nodules undergo changes in protein expression similar to those in thyroid carcinomas. To expand the understanding of the metabolic changes in benign and malignant thyroid nodules, further research is required, including correlation with underlying genetic alterations.
Collapse
Affiliation(s)
- Elizabeth J de Koster
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | | | - Johan Bussink
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cathelijne Frielink
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Lioe-Fee de Geus-Oei
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands.,Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, the Netherlands.,Biomedical Photonic Imaging Group, University of Twente, Enschede, the Netherlands
| | - Benno Kusters
- Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Hans Peters
- Department of Radiation Oncology, Radiotherapy & OncoImmunology Laboratory, Radboud University Medical Center, Nijmegen, Netherlands
| | - Wim J G Oyen
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands.,Department of Radiology and Nuclear Medicine, Rijnstate Hospital, Arnhem, the Netherlands.,Department of Biomedical Sciences and Humanitas Clinical and Research Centre, Department of Nuclear Medicine, Humanitas University, Milan, Italy
| | - Dennis Vriens
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
7
|
Bao Y, Zhong J, Shen L, Dai L, Zhou S, Fan J, Yao H, Lu Z. Effect of Glut-1 and HIF-1α double knockout by CRISPR/CAS9 on radiosensitivity in laryngeal carcinoma via the PI3K/Akt/mTOR pathway. J Cell Mol Med 2022; 26:2881-2894. [PMID: 35415942 PMCID: PMC9907005 DOI: 10.1111/jcmm.17303] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Hypoxic resistance is the main obstacle to radiotherapy for laryngeal carcinoma. Our previous study indicated that hypoxia-inducible factor 1α (HIF-1α) and glucose transporter 1 (Glut-1) double knockout reduced tumour biological behaviour in laryngeal carcinoma cells. However, their radioresistance mechanism remains unclear. In this study, cell viability was determined by CCK8 assay. Glucose uptake capability was evaluated by measurement of 18 F-fluorodeoxyglucose radioactivity. A tumour xenograft model was established by subcutaneous injection of Tu212 cells. Tumour histopathology was determined by haematoxylin and eosin staining, immunohistochemical staining, and TUNEL assays. Signalling transduction was evaluated by Western blotting. We found that hypoxia induced radioresistance in Tu212 cells accompanied by increased glucose uptake capability and activation of the PI3K/Akt/mTOR pathway. Inhibition of PI3K/Akt/mTOR activity abolished hypoxia-induced radioresistance and glucose absorption. Mechanistic analysis revealed that hypoxia promoted higher expressions of HIF-1α and Glut-1. Moreover, the PI3K/Akt/mTOR pathway was a positive mediator of HIF-1α and/or Glut-1 in the presence of irradiation. HIF-1α and/or Glut-1 knockout significantly reduced cell viability, glucose uptake and PI3K/Akt/mTOR activity, all of which were induced by hypoxia in the presence of irradiation. In vivo analysis showed that knockout of HIF-1α and/or Glut-1 also inhibited tumour growth by promoting cell apoptosis, more robustly compared with the PI3K inhibitor wortmannin, particularly in tumours with knockout of both HIF-1α and Glut-1. HIF-1α and/or Glut-1 knockout also abrogated PI3K/Akt/mTOR signalling transduction in tumour tissues, in a manner similar to wortmannin. HIF-1α and/or Glut-1 knockout facilitated radiosensitivity in laryngeal carcinoma Tu212 cells by regulation of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Yang‐Yang Bao
- Department of OtolaryngologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Jiang‐Tao Zhong
- Department of OtolaryngologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Li‐Fang Shen
- Department of OtolaryngologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Li‐Bo Dai
- Department of OtolaryngologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Shui‐Hong Zhou
- Department of OtolaryngologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Hong‐Tian Yao
- Department of PathologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Zhong‐Jie Lu
- Department of RadiotherapyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| |
Collapse
|
8
|
Yan J, Deng Y, Cai Y, Cong W. LncRNA MIR17HG
promotes the proliferation, migration, and invasion of retinoblastoma cells by up‐regulating
HIF
‐1α expression via sponging
miR
‐155‐5p. Kaohsiung J Med Sci 2022; 38:554-564. [PMID: 35253975 DOI: 10.1002/kjm2.12523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/06/2022] [Accepted: 02/08/2022] [Indexed: 12/28/2022] Open
Affiliation(s)
- Jian Yan
- Department of Ophthalmology Longgang District Central Hospital Shenzhen China
| | - Yi‐Xuan Deng
- Department of Ophthalmology Longgang District Central Hospital Shenzhen China
| | - Yu‐Lian Cai
- Department of Ophthalmology Longgang District Central Hospital Shenzhen China
| | - Wen‐Dong Cong
- Department of Neurology Longgang District Central Hospital Shenzhen China
| |
Collapse
|
9
|
Bao L, Xu T, Lu X, Huang P, Pan Z, Ge M. Metabolic Reprogramming of Thyroid Cancer Cells and Crosstalk in Their Microenvironment. Front Oncol 2021; 11:773028. [PMID: 34926283 PMCID: PMC8674491 DOI: 10.3389/fonc.2021.773028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolism differs significantly between tumor and normal cells. Metabolic reprogramming in cancer cells and metabolic interplay in the tumor microenvironment (TME) are important for tumor formation and progression. Tumor cells show changes in both catabolism and anabolism. Altered aerobic glycolysis, known as the Warburg effect, is a well-recognized characteristic of tumor cell energy metabolism. Compared with normal cells, tumor cells consume more glucose and glutamine. The enhanced anabolism in tumor cells includes de novo lipid synthesis as well as protein and nucleic acid synthesis. Although these forms of energy supply are uneconomical, they are required for the functioning of cancer cells, including those in thyroid cancer (TC). Increasing attention has recently focused on alterations of the TME. Understanding the metabolic changes governing the intricate relationship between TC cells and the TME may provide novel ideas for the treatment of TC.
Collapse
Affiliation(s)
- Lisha Bao
- Second Clinical College, Zhejiang Chinese Medical School, Hangzhou, China
- ENT-Head & Neck Surgery Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Tong Xu
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xixuan Lu
- ENT-Head & Neck Surgery Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Ping Huang
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zongfu Pan
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Minghua Ge
- ENT-Head & Neck Surgery Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
10
|
Sun Y, Zhou Z, Yang S, Yang H. Modulating hypoxia inducible factor-1 by nanomaterials for effective cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1766. [PMID: 34713633 DOI: 10.1002/wnan.1766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022]
Abstract
Hypoxia, which is induced by abnormal tumor growth when it outstrips its oxygen supply, is a major character of cancer. The reaction of cells against hypoxia is mainly concentrated on the hypoxia-induced transcription factors (HIFs), especially HIF-1, which remain stabilized during hypoxia. Additionally, the oxygen-independent mechanism of regulating HIF-1 acts a vital part in different stages of tumor progression as well as chemo-/radio-/PDT resistance, resulting in poor curative effects and prognosis. In this review, we will outline the up-to-date information about how HIF-1 interferes with tumor metastasis and therapy resistance, followed by a detailed introduction of motivating techniques based on various nanomaterials to interfere with HIF signaling for effective cancer therapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Yun Sun
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Zhiguo Zhou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Shiping Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| | - Hong Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, China
| |
Collapse
|
11
|
Abstract
Thyroid cancer (TC) represents the most common endocrine malignancy, with an increasing incidence all over the world. Papillary TC (PTC), a differentiated TC subtype, is the most common and, even though it has an excellent prognosis following radioiodine (RAI) ablation, it shows an aggressive behavior in 20–30% of cases, becoming RAI-resistant and/or metastatic. On the other side, anaplastic thyroid carcinoma (ATC), the most undifferentiated TC, is a rare but devastating disease, indicating that progression of differentiated to undifferentiated forms of TC could be responsible for RAI-resistance and increased mortality. The epithelial-to-mesenchymal transition (EMT) plays a pivotal role in both tumor progression and resistance to therapy. Moreover, during tumor progression, cancer cells modify their metabolism to meet changed requirements for cellular proliferation. Through these metabolic changes, cancer cells may adopt cancer stem cell-like properties and express an EMT phenotype. EMT, in turn, can induce metabolic changes to which cancer cells become addicted. Here we review metabolic reprogramming in TC highlighting the role of EMT with the aim to explore a potential field to find out new therapeutic strategies for advanced-stage PTC. Accordingly, we discuss the identification of the metabolic enzymes and metabolites, critical to TC progression, which can be employed either as predicting biomarkers of tumor response to RAI therapy or possible targets in precision medicine.
Collapse
|
12
|
[ 18F]-FDG-PET/CT and [ 18F]-FAZA-PET/CT Hypoxia Imaging of Metastatic Thyroid Cancer: Association with Short-Term Progression After Radioiodine Therapy. Mol Imaging Biol 2021; 22:1609-1620. [PMID: 32651718 DOI: 10.1007/s11307-020-01516-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE To examine the relationships between 2-deoxy-2-[18F]fluoro-D-glucose ([18F]-FDG) and hypoxia tracer [18F]fluoro-azomycinarabinofuranoside ([18F]-FAZA) and between 131I and [18F]-FAZA uptake in patients with metastatic thyroid cancer and to evaluate imaging features associated with short-term progression after 131I therapy. PROCEDURES The study population was 20 patients (17 women and 3 men; mean age, 67 years) with metastatic thyroid cancer who underwent both [18F]-FDG- and [18F]-FAZA-positron emission tomography (PET)/X-ray computed tomography (CT) examinations before 131I therapy. Short-term response to radioiodine was assessed (mean follow-up, 19 months ± 9). PET parameters including [18F]-FDG-SUVmax, [18F]-FAZA-SUVmax, and [18F]-FAZA-tumor-to-muscle [T/M] were obtained. Mann-Whitney U, Wilcoxon signed-rank, or χ2 tests were used to assess differences between two quantitative variables or compare categorical data. Predictive factors for short-term progression were investigated with logistic regression analysis. RESULTS Eleven lymph node metastatic lesions were identified in 9 patients and 46 distant metastatic lesions (lung, 19; bone, 17; and liver, 10) in 14 patients. A total of 24 131I-positive and 33 131I-negative lesions were detected. SUVmax was significantly lower with [18F]-FAZA-PET/CT (1.3 ± 0.6) than with [18F]-FDG-PET/CT (6.4 ± 5.9, p < 0.001). No significant correlation was observed between [18F]-FAZA-PET/CT and 131I imaging concerning visibility (p = 0.36). After 131I therapy, 31 of 57 metastatic lesions displayed short-term progression. Multivariate logistic regression revealed that [18F]-FDG-SUVmax (p = 0.022) and [18F]-FAZA-T/M (p = 0.002) showed significant associations with short-term progression. CONCLUSIONS Although [18F]-FAZA uptake was low in metastatic thyroid cancers, not only glucose metabolism but also hypoxic conditions may be associated with progression after 131I therapy in patients with metastatic thyroid cancer.
Collapse
|
13
|
Wang S, Cai Y, Feng Q, Gao J, Teng B. Pseudoginsengenin DQ exerts antitumour activity against hypopharyngeal cancer cells by targeting the HIF-1α-GLUT1 pathway. Cancer Cell Int 2021; 21:382. [PMID: 34281558 PMCID: PMC8287670 DOI: 10.1186/s12935-021-02080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Ginsenosides have been reported to possess a variety of biological activities. Synthesized from the ginsenoside protopanaxadiol (PPD), the octanone pseudoginsengenin DQ (PDQ) may have robust pharmacological effects as a secondary ginsenoside. Nevertheless, its antitumour activity and molecular mechanism against hypopharyngeal cancer cells remain unclear. METHODS Cell Counting Kit8 assays, cell cycle assays and cell apoptosis assays were conducted to assess FaDu cell proliferation, cell phase and apoptosis. The interactions between PDQ and HIF-1α were investigated by a molecular docking study. The expression of HIF-1α, GLUT1, and apoptosis-related proteins was detected by Western blotting, direct stochastic optical reconstruction microscopy (dSTORM) and qRT-PCR. A glucose uptake assay was used to assess the glucose uptake capacity of FaDu cells. RESULTS PDQ suppressed proliferation, reduced glucose uptake, and induced cell cycle arrest and apoptosis in FaDu cells. A molecular docking study demonstrated that PDQ could interact with the active site of HIF-1α. PDQ decreased the expression and mRNA levels of HIF-1α and its downstream factor GLUT1. Moreover, the dSTORM results showed that PDQ reduced GLUT1 expression on the cell membrane and inhibited GLUT1 clustering. CONCLUSION Our work showed that the antitumour effect of PDQ was related to the downregulation of the HIF-1α-GLUT1 pathway, suggesting that PDQ could be a potential therapeutic agent for hypopharyngeal cancer treatment.
Collapse
Affiliation(s)
- Sanchun Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yu Cai
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Qingjie Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Bo Teng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
14
|
Rashid M, Zadeh LR, Baradaran B, Molavi O, Ghesmati Z, Sabzichi M, Ramezani F. Up-down regulation of HIF-1α in cancer progression. Gene 2021; 798:145796. [PMID: 34175393 DOI: 10.1016/j.gene.2021.145796] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/25/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022]
Abstract
Hypoxia induicible factor-1 alpha (HIF-1α) is a key transcription factor in cancer progression and target therapy in cancer. HIF-1α acts differently depending on presence or absence of Oxygen. In an oxygen-immersed environment, HIF-1α completely deactivated and destroyed by the ubiquitin proteasome pathway (UPP). In contrast, in the oxygen-free environment, it escapes destruction and enters to the nucleus of cells then upregulates many genes involved in cancer progression. Overexpressed HIF-1α and downstream genes support cancer progression through various mechanisms including angiogenesis, proliferation and survival of cells, metabolism reprogramming, invasion and metastasis, cancer stem cell maintenance, induction of genetic instability, and treatment resistance. HIF-1α can be provoked by signaling pathways unrelated to hypoxia during cancer progression. Therefore, cancer development and progression can be modulated by targeting HIF-1α and its downstream signaling molecules. In this regard, HIF-1α inhibitors which are categorized into the agents that regulate HIF-1α in gene, mRNA and protein levels used as an efficient way in cancer treatment. Also, HIF-1α expression can be negatively affected by the agents suppressing the activation of mTOR, PI3k/Akt and MAPK pathways.
Collapse
Affiliation(s)
- Mohsen Rashid
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rostami Zadeh
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Ghesmati
- Department of Medical Biotechnology, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sabzichi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fatemeh Ramezani
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Sznurkowska MK, Aceto N. The gate to metastasis: key players in cancer cell intravasation. FEBS J 2021; 289:4336-4354. [PMID: 34077633 PMCID: PMC9546053 DOI: 10.1111/febs.16046] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/19/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023]
Abstract
Metastasis is a leading cause of cancer‐related death and consists of a sequence of events including tumor expansion, intravasation of cancer cells into the circulation, survival in the bloodstream, extravasation at distant sites, and subsequent organ colonization. Particularly, intravasation is a process whereby cancer cells transverse the endothelium and leave the primary tumor site, pioneering the metastatic cascade. The identification of those mechanisms that trigger the entry of cancer cells into the bloodstream may reveal fundamentally novel ways to block metastasis at its start. Multiple factors have been implicated in cancer progression, yet, signals that unequivocally provoke the detachment of cancer cells from the primary tumor are still under investigation. Here, we discuss the role of intrinsic properties of cancer cells, tumor microenvironment, and mechanical cues in the intravasation process, outlining studies that suggest the involvement of various factors and highlighting current understanding and open questions in the field.
Collapse
Affiliation(s)
- Magdalena K Sznurkowska
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, Switzerland
| | - Nicola Aceto
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, Switzerland.,Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
| |
Collapse
|
16
|
Ji L, Shen W, Zhang F, Qian J, Jiang J, Weng L, Tan J, Li L, Chen Y, Cheng H, Sun D. Worenine reverses the Warburg effect and inhibits colon cancer cell growth by negatively regulating HIF-1α. Cell Mol Biol Lett 2021; 26:19. [PMID: 34006215 PMCID: PMC8130299 DOI: 10.1186/s11658-021-00263-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Background Some natural compounds inhibit cancer cell growth in various cancer cell lines with fewer side effects than traditional chemotherapy. Here, we explore the pharmacological effects and mechanisms of worenine (isolated from Coptis chinensis) against colorectal cancer. Methods The effects of worenine on colorectal cancer cell proliferation, colony formation and cell cycle distribution were measured. Glycolysis was investigated by examining glucose uptake and consumption, lactate production, and the activities and expressions of glycolysis enzymes (PFK-L, HK2 and PKM2). HIF-1α was knocked down and stimulated in vitro to investigate the underlying mechanisms. Results Worenine somewhat altered the glucose metabolism and glycolysis (Warburg effect) of cancer cells. Its anti-cancer effects and capability to reverse the Warburg effect were similar to those of HIF-1α siRNA and weakened by deferoxamine (an HIF-1α agonist). Conclusion It is suggested that worenine targets HIF-1α to inhibit colorectal cancer cell growth, proliferation, cell cycle progression and the Warburg effect. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-021-00263-y.
Collapse
Affiliation(s)
- Lijiang Ji
- Changshu TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China.,Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing, 210023, China
| | - Weixing Shen
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing, 210023, China.,The First School of Clinical Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Feng Zhang
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing, 210023, China
| | - Jie Qian
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing, 210023, China
| | - Jie Jiang
- Changshu TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China.,Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing, 210023, China
| | - Liping Weng
- Changshu TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Jiani Tan
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing, 210023, China.,The First School of Clinical Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Liu Li
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing, 210023, China.,The First School of Clinical Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yugen Chen
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing, 210023, China.,The First School of Clinical Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Haibo Cheng
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing, 210023, China. .,The First School of Clinical Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Dongdong Sun
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, Nanjing, 210023, China. .,School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
17
|
Hypoxia-Driven Effects in Cancer: Characterization, Mechanisms, and Therapeutic Implications. Cells 2021; 10:cells10030678. [PMID: 33808542 PMCID: PMC8003323 DOI: 10.3390/cells10030678] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia, a common feature of solid tumors, greatly hinders the efficacy of conventional cancer treatments such as chemo-, radio-, and immunotherapy. The depletion of oxygen in proliferating and advanced tumors causes an array of genetic, transcriptional, and metabolic adaptations that promote survival, metastasis, and a clinically malignant phenotype. At the nexus of these interconnected pathways are hypoxia-inducible factors (HIFs) which orchestrate transcriptional responses under hypoxia. The following review summarizes current literature regarding effects of hypoxia on DNA repair, metastasis, epithelial-to-mesenchymal transition, the cancer stem cell phenotype, and therapy resistance. We also discuss mechanisms and pathways, such as HIF signaling, mitochondrial dynamics, exosomes, and the unfolded protein response, that contribute to hypoxia-induced phenotypic changes. Finally, novel therapeutics that target the hypoxic tumor microenvironment or interfere with hypoxia-induced pathways are reviewed.
Collapse
|
18
|
Mondal P, Meeran SM. Long non-coding RNAs in breast cancer metastasis. Noncoding RNA Res 2020; 5:208-218. [PMID: 33294746 PMCID: PMC7689374 DOI: 10.1016/j.ncrna.2020.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related death among women. Recurrence of primary tumor and metastasis to distant body parts are major causes of breast cancer-associated mortality. The 5-year survival rate for women with metastatic breast cancer is only 25-30%. Breast cancer metastasis is a series of processes involved with EMT, invasion, loss of cell to cell adhesion, alteration in cell phenotype, extravasation, microenvironment of the tumor, and colonization to the secondary sites. Epigenetic modification is involved in the transformation of the distant stromal cell into a secondary tumor. LncRNAs, are one the key epigenetic modifiers, are the largest endogenous non-coding RNAs with approximate base-pair lengths from 200 nt to 100 kb. LncRNA plays a crucial role in breast cancer metastasis by sponging miRNA, by degrading or silencing specific mRNA, or else by targeting the enzymes and microprocessor subunits involved in the biogenesis of miRNA. LncRNA also alters the expression of several genes involved in breast cancer metastasis and modulating different cell signaling pathways. The goal of this review is to provide a better understanding of the role of lncRNA in the regulation of breast cancer metastasis. We also summarized some of the key lncRNAs that regulate the genes and signaling pathways involved in breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Priya Mondal
- Laboratory of Cancer Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Syed Musthapa Meeran
- Laboratory of Cancer Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
19
|
A Novel Nanoproteomic Approach for the Identification of Molecular Targets Associated with Thyroid Tumors. NANOMATERIALS 2020; 10:nano10122370. [PMID: 33260544 PMCID: PMC7761166 DOI: 10.3390/nano10122370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
A thyroid nodule is the most common presentation of thyroid cancer; thus, it is extremely important to differentiate benign from malignant nodules. Within malignant lesions, classification of a thyroid tumor is the primary step in the assessment of the prognosis and selection of treatment. Currently, fine-needle aspiration biopsy (FNAB) is the preoperative test most commonly used for the initial thyroid nodule diagnosis. However, due to some limitations of FNAB, different high-throughput “omics” approaches have emerged that could further support diagnosis based on histopathological patterns. In the present work, formalin-fixed paraffin-embedded (FFPE) tissue specimens from normal (non-neoplastic) thyroid (normal controls (NCs)), benign tumors (follicular thyroid adenomas (FTAs)), and some common types of well-differentiated thyroid carcinoma (follicular thyroid carcinomas (FTCs), conventional or classical papillary thyroid carcinomas (CV-PTCs), and the follicular variant of papillary thyroid carcinomas (FV-PTCs)) were analyzed. For the first time, FFPE thyroid samples were deparaffinized using an easy, fast, and non-toxic method. Protein extracts from thyroid tissue samples were analyzed using a nanoparticle-assisted proteomics approach combined with shotgun LC-MS/MS. The differentially regulated proteins found to be specific for the FTA, FTC, CV-PTC, and FV-PTC subtypes were analyzed with the bioinformatic tools STRING and PANTHER showing a profile of proteins implicated in the thyroid cancer metabolic reprogramming, cancer progression, and metastasis. These proteins represent a new source of potential molecular targets related to thyroid tumors.
Collapse
|
20
|
Iranparast S, Tayebi S, Ahmadpour F, Yousefi B. Tumor-Induced Metabolism and T Cells Located in Tumor Environment. Curr Cancer Drug Targets 2020; 20:741-756. [PMID: 32691710 DOI: 10.2174/1568009620666200720010647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
Several subtypes of T cells are located in a tumor environment, each of which supplies their energy using different metabolic mechanisms. Since the cancer cells require high levels of glucose, the conditions of food poverty in the tumor environment can cause inactivation of immune cells, especially the T-effector cells, due to the need for glucose in the early stages of these cells activity. Different signaling pathways, such as PI3K-AKt-mTOR, MAPK, HIF-1α, etc., are activated or inactivated by the amount and type of energy source or oxygen levels that determine the fate of T cells in a cancerous environment. This review describes the metabolites in the tumor environment and their effects on the function of T cells. It also explains the signaling pathway of T cells in the tumor and normal conditions, due to the level of access to available metabolites and subtypes of T cells in the tumor environment.
Collapse
Affiliation(s)
- Sara Iranparast
- Department of Immunology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sanaz Tayebi
- Department of Immunology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Ahmadpour
- Department of Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Cao HL, Gu MQ, Sun Z, Chen ZJ. miR-144-3p Contributes to the Development of Thyroid Tumors Through the PTEN/PI3K/AKT Pathway. Cancer Manag Res 2020; 12:9845-9855. [PMID: 33116843 PMCID: PMC7553603 DOI: 10.2147/cmar.s265196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose To explore the expression and related mechanism of miR-144-3p and PTEN in thyroid cancer (TC). Patients and Methods From February 2018 to November 2019, 62 patients with TC who received treatment in Chengwu Hospital Affiliated to Shandong First Medical University were collected. TC cells and human normal thyroid HTori-3 cells were purchased. The miR-144-3p-inhibitor, miR-144-3p-mimics, empty vector plasmid (miRNA-NC), si-PTEN and sh-PTEN were transfected into B-CPAP and HTh-7 cells. The expressions of miR-144-3p and PTEN in the specimens were tested by qRT-PCR (qP). WB was used to detect the expression of Bcl-2, APR3, N-cadherin, Slug and Bax proteins in the cells. The cell proliferation was detected by MTT, and the cell invasion was tested by Transwell. The apoptosis was detected by flow cytometry (FC). Results miR-144-3p was highly expressed and PTEN was weakly expressed in the patients’ tissues. The AUC of miR-144-3p and PTEN was >0.8. miR-144-3p and PTEN were related to TNM stage, lymph node metastasis and differentiation degree of TC patients. The B-CPAP and HTh-7 with the greatest expression differences were selected for transfection. The expression of miR-144-3p in miR-144-3p-inhibitor group was significantly lower than that in NC group (P<0.01), and that in miR-144-3p-mimics group was significantly higher than that in NC group (p < 0.01). The expression of PTEN in si-PTEN group was significantly lower than that in NC group (P<0.01), while that in sh-PTEN group was significantly higher than that in NC group (P<0.01). Silencing miR-144-3p and overexpressing PTEN could inhibit cell proliferation, invasion and promote apoptosis. WB detection uncovered that silencing the miR-144-3p expression and overexpressing PTEN could inhibit the PI3K, Akt, p-AKT, Bcl-2, APR3 and cyclinD1 proteins and promote the up-regulation of Bax expression. Rescue experiments revealed that the cell proliferation, invasion and apoptosis were not different from NC after co-transfection of miR-144-3p-mimics+sh-PTEN and miR-144-3p-inhibitor+si-PTEN into B-CPAP and HTh-7. Conclusion Inhibition of miR-144-3p expression can up-regulate PTEN and affect cell proliferation, invasion and apoptosis, which may be a potential therapeutic target for TC.
Collapse
Affiliation(s)
- Hui-Ling Cao
- Department of Head and Neck Surgery, Chengwu Hospital Affiliated to Shandong First Medical University, Heze, Shandong, 274200, People's Republic of China
| | - Ming-Qiang Gu
- Department of General Surgery, Chengwu Hospital Affiliated to Shandong First Medical University, Heze, Shandong, 274200, People's Republic of China
| | - Zhuo Sun
- Department of Oncology, Chengwu Hospital Affiliated to Shandong First Medical University, Heze, Shandong, 274200, People's Republic of China
| | - Zhong-Jian Chen
- Department of General Surgery, Chengwu Hospital Affiliated to Shandong First Medical University, Heze, Shandong, 274200, People's Republic of China
| |
Collapse
|
22
|
Kumari S, Adewale R, Klubo-Gwiezdzinska J. The Molecular Landscape of Hürthle Cell Thyroid Cancer Is Associated with Altered Mitochondrial Function-A Comprehensive Review. Cells 2020; 9:E1570. [PMID: 32605113 PMCID: PMC7408323 DOI: 10.3390/cells9071570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
Hürthle cell thyroid carcinoma (HTC) accounts for 3-5% of all thyroid malignancies. Widely invasive HTC is characterized by poor prognosis and limited responsiveness to standard therapy with radioiodine. The molecular landscape of HTC is significantly different from the genetic signature seen in other forms of thyroid cancer. We performed a comprehensive literature review on the association between the molecular features of HTC and cancer metabolism. We searched the Pubmed, Embase, and Medline databases for clinical and translational studies published between 1980 and 2020 in English, coupling "HTC" with the following keywords: "genomic analysis", "mutations", "exome sequencing", "molecular", "mitochondria", "metabolism", "oxidative phosphorylation", "glycolysis", "oxidative stress", "reactive oxygen species", and "oncogenes". HTC is characterized by frequent complex I mitochondrial DNA mutations as early clonal events. This genetic signature is associated with the abundance of malfunctioning mitochondria in cancer cells. HTC relies predominantly on aerobic glycolysis as a source of energy production, as oxidative phosphorylation-related genes are downregulated. The enhanced glucose utilization by HTC is used for diagnostic purposes in the clinical setting for the detection of metastases by fluorodeoxyglucose positron emission tomography (FGD-PET/CT) imaging. A comprehensive metabolomic profiling of HTC in association with its molecular landscape might be necessary for the implementation of tumor-specific therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Joanna Klubo-Gwiezdzinska
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (S.K.); (R.A.)
| |
Collapse
|
23
|
Yin H, Tang Y, Guo Y, Wen S. Immune Microenvironment of Thyroid Cancer. J Cancer 2020; 11:4884-4896. [PMID: 32626535 PMCID: PMC7330689 DOI: 10.7150/jca.44506] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Thyroid cancer (TC) is a highly heterogeneous endocrine malignancy with an increased incidence in women than in men. Previous studies regarding the pathogenesis of TC focused on the pathological changes of the tumor cells while ignoring the importance of the mesenchymal cells in tumor microenvironment. However, more recently, the stable environment provided by the interaction of thyroid cancer cells with the peri-tumoral stroma has been widely studied. Studies have shown that components of an individual's immune system are closely related to the occurrence, invasion, and metastasis of TC, which may affect response to treatment and prognosis of the patients. This article presents a comprehensive review of the immune cells, secreted soluble mediators and immune checkpoints in the immune microenvironment, mechanisms that promoting TC cells immune evasion and existing immunotherapy strategies. Besides it provides new strategies for TC prognosis prediction and immunotherapy.
Collapse
Affiliation(s)
- Hongyu Yin
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Yemei Tang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Shuxin Wen
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China.,General Hospital, Shenzhen University, Shenzhen 518061, Guangdong, P.R. China
| |
Collapse
|
24
|
Heydarzadeh S, Moshtaghie AA, Daneshpoor M, Hedayati M. Regulators of glucose uptake in thyroid cancer cell lines. Cell Commun Signal 2020; 18:83. [PMID: 32493394 PMCID: PMC7268348 DOI: 10.1186/s12964-020-00586-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023] Open
Abstract
Abstract Thyroid cancer is the most common sort of endocrine-related cancer with more prevalent in women and elderly individuals which has quickly widespread expansion in worldwide over the recent decades. Common features of malignant thyroid cells are to have accelerated metabolism and increased glucose uptake to optimize their energy supply which provides a fundamental advantage for growth. In tumor cells the retaining of required energy charge for cell survival is imperative, indeed glucose transporters are enable of promoting of this task. According to this relation it has been reported the upregulation of glucose transporters in various types of cancers. Human studies indicated that poor survival can be occurred following the high levels of GLUT1 expression in tumors. GLUT-1 and GLUT3 are the glucose transporters which seems to be mainly engaged with the oncogenesis of thyroid cancer and their expression in malignant tissues is much more than in the normal one. They are promising targets for the advancement of anticancer strategies. The lack of oncosuppressors have dominant effect on the membrane expression of GLUT1 and glucose uptake. Overexpression of hypoxia inducible factors have been additionally connected with distant metastasis in thyroid cancers which mediates transcriptional regulation of glycolytic genes including GLUT1 and GLUT3. Though the physiological role of the thyroid gland is well illustrated, but the metabolic regulations in thyroid cancer remain evasive. In this study we discuss proliferation pathways of the key regulators and signaling molecules such as PI3K-Akt, HIF-1, MicroRNA, PTEN, AMPK, BRAF, c-Myc, TSH, Iodide and p53 which includes in the regulation of GLUTs in thyroid cancer cells. Incidence of deregulations in cellular energetics and metabolism are the most serious signs of cancers. In conclusion, understanding the mechanisms of glucose transportation in normal and pathologic thyroid tissues is critically important and could provide significant insights in science of diagnosis and treatment of thyroid disease. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Shabnam Heydarzadeh
- Department of Biochemistry, School of Biological Sciences, Falavarjan Branch Islamic Azad University, Isfahan, Iran
| | - Ali Asghar Moshtaghie
- Department of Biochemistry, School of Biological Sciences, Falavarjan Branch Islamic Azad University, Isfahan, Iran
| | - Maryam Daneshpoor
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Lu H, Chen S, You Z, Xie C, Huang S, Hu X. PFKFB4 negatively regulated the expression of histone acetyltransferase GCN5 to mediate the tumorigenesis of thyroid cancer. Dev Growth Differ 2020; 62:129-138. [PMID: 31912488 DOI: 10.1111/dgd.12645] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/14/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Thyroid cancer (TC) is the most common malignant endocrine tumor, and its incidence has progressively increased over several decades. Accumulating evidence has suggested that PFKFB4, a critical regulatory enzyme of glycolysis, has been implicated in various solid cancers. However, the exact effect of PFKFB4 on TC remains unclear. Hence, the objective of this work was to investigate the role of PFKFB4 in TC and explore the underlying regulatory mechanisms. Here, we provide evidence that mRNA levels of PFKFB4 were upregulated in TC patients' thyroids and cell lines. Downregulation of PFKFB4 reduced TC cell viability and inhibited colony formation. In addition, the migration and invasion of TC cells were suppressed by PFKFB4 knockdown, suggesting that PFKFB4 is positively correlated with tumorigenesis of TC. Molecularly, knockdown of PFKFB4 significantly inhibited expression of GCN5 and phosphorylation of PI3K/AKT. Moreover, the suppressive role of shPFKFB4 in TC cell growth was reversed by upregulation of GCN5. Finally, the in vivo experiment indicated that downregulation of PFKF4B suppressed tumor growth in xenografts TC model mice. In total, our results suggested that PFKFB4-mediated TC tumorigenesis by positively regulating GCN5 and PI3K/AKT signaling. These findings provide new research directions and therapeutic options considering PFKF4B as a novel diagnosis marker and therapeutic target.
Collapse
Affiliation(s)
- Huanquan Lu
- The First Department of General Surgery, Dongguan People's Hospital, Dongguan City, China
| | - Siyuan Chen
- The First Department of General Surgery, Dongguan People's Hospital, Dongguan City, China
| | - Zhijian You
- The First Department of General Surgery, Dongguan People's Hospital, Dongguan City, China
| | - Chuping Xie
- The First Department of General Surgery, Dongguan People's Hospital, Dongguan City, China
| | - Shichuan Huang
- The First Department of General Surgery, Dongguan People's Hospital, Dongguan City, China
| | - Xiarong Hu
- The First Department of General Surgery, Dongguan People's Hospital, Dongguan City, China
| |
Collapse
|
26
|
Wang LW, Yu Y, Chen J, Feng Y, Cui BM, Li XY, Wang JN, Chen HL, Zhang P. [Protein kinase D1 regulates the growth and metabolism of oral squamous carcinoma cells in tumor microenvironment]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:577-582. [PMID: 31875433 DOI: 10.7518/hxkq.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To observe the effect of protein kinase D1 (PKD1) on the growth and metabolism of oral squamous cell carcinoma HSC-4 cells and related molecular mechanisms in the tumor microenvironment. METHODS HSC-4 cell lines were transfected with shRNA plasmids. Three groups (Wild, control-shRNA, and PKD1-shRNA) were cultured under acidic or hypoxic environment for a certain time. Western blot was used to detect the expression of autophagy-related and glycolytic-related proteins. The proliferation changes were detected by CCK-8 kits. RESULTS The PKD1-knockdown HSC-4 cell line was established. PKD1 silencing increased autophagy activity. Under hypoxic and acidic conditions, the PKD1-knockdown HSC-4 cells showed lower proliferation than the parental cells. PKD1-knockdown also decreased the expression of hypoxia induciblefactor 1α (HIF-1α) and pyruvate kinase M2 (PKM2). CONCLUSIONS Under hypoxic and acidic conditions, PKD1 gene silencing can increase apoptotic autophagy activity. Downregulated PKD1 gene expression can reduce the glycolysis of oral squamous cell carcinoma cells and inhibit tumor cell proliferation. This study revealed the important role of PKD1 in the metabolism and growth of oral squamous cell carcinoma, making it a possible target for the treatment of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Li-Wei Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiao Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yun Feng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bo-Miao Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao-Ying Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jing-Nan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hong-Li Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ping Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
27
|
Shakib H, Rajabi S, Dehghan MH, Mashayekhi FJ, Safari-Alighiarloo N, Hedayati M. Epithelial-to-mesenchymal transition in thyroid cancer: a comprehensive review. Endocrine 2019; 66:435-455. [PMID: 31378850 DOI: 10.1007/s12020-019-02030-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
The Metastatic progression of solid tumors, such as thyroid cancer is a complex process which involves various factors. Current understanding on the role of epithelial-mesenchymal transition (EMT) in thyroid carcinomas suggests that EMT is implicated in the progression from follicular thyroid cancer (FTC) and papillary thyroid cancer (PTC) to poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid cancer (ATC). According to the literature, the initiation of the EMT program in thyroid epithelial cells elevates the number of stem cells, which contribute to recurrent and metastatic diseases. The EMT process is orchestrated by a complex network of transcription factors, growth factors, signaling cascades, epigenetic modulations, and the tumor milieu. These factors have been shown to be dysregulated in thyroid carcinomas. Therefore, molecular interferences restoring the expression of tumor suppressors, or thwarting overexpressed oncogenes is a hopeful therapeutic method to improve the treatment of progressive diseases. In this review, we summarize the recent findings on EMT in thyroid cancer focusing on the main role-players and regulators of this process in thyroid tumors.
Collapse
Affiliation(s)
- Heewa Shakib
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Grey JFE, Townley AR, Everitt NM, Campbell-Ritchie A, Wheatley SP. A cost-effective, analytical method for measuring metabolic load of mitochondria. Metabol Open 2019; 4:100020. [PMID: 32812945 PMCID: PMC7424777 DOI: 10.1016/j.metop.2019.100020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/29/2022] Open
Abstract
Analysis of cellular energetics is central to understanding metabolic diseases including diabetes and cancer. The two most commonly used methods to monitor cellular respiration are the Seahorse-XF system, and Glo™ assays, which are considered "gold standards". These commercial methods measure energetics indirectly and require considerable financial investment. Here we describe an alternative assay that enables accurate quantification of NADH turnover and that is affordable. This method measures resazurin reduction to resorufin at rising concentrations in the presence of purified mitochondrial extracts until NADH becomes a rate-limiting factor. This indicates the maximal level of NADH turnover in each sample and therefore infers metabolic activity. Here we compare MRC5, MCF7 and MDA231 cell lines which have differing metabolic profiles.
Collapse
Affiliation(s)
- James F E Grey
- Faculty of Engineering, University of Nottingham, Nottingham, NG7 2UH, UK.,School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.,Developmental Biology and Cancer Teaching & Research Department, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Amelia R Townley
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Nicola M Everitt
- Faculty of Engineering, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | - Sally P Wheatley
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
29
|
Abooshahab R, Gholami M, Sanoie M, Azizi F, Hedayati M. Advances in metabolomics of thyroid cancer diagnosis and metabolic regulation. Endocrine 2019; 65:1-14. [PMID: 30937722 DOI: 10.1007/s12020-019-01904-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/13/2019] [Indexed: 12/24/2022]
Abstract
Thyroid cancers (TCs) are the most frequent endocrine malignancy with an unpredictable fast-growing incidence, especially in females all over the world. Fine-needle aspiration biopsy (FNAB) analysis is an accurate diagnostic method for detecting thyroid nodules and classification of TC. Though simplicity, safety, and accuracy of FNAB, 15-30% of cases are indeterminate, and it is not possible to determine the exact cytology of the specimen. This demands the need for innovative methods capable to find crucial biomarkers with adequate sensitivity for diagnosis and prediction in TC researches. Cancer-based metabolomics is a vast emerging field focused on the detection of a large set of metabolites extracted from biofluids or tissues. Using analytical chemistry procedures allows for the potential recognition of cancer-based metabolites for the purposes of advancing the era of personalized medicine. Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) coupled with separation techniques e.g., gas chromatography (GC) and liquid chromatography (LC) are the main approaches for metabolic studies in cancers. The immense metabolite profiling has provided a chance to discover novel biomarkers for early detection of thyroid cancer and reduce unnecessary aggressive surgery. In this review, we recapitulate the recent advances and developed methods of diverse metabolomics tools and metabolic phenotypes of thyroid cancer, following a brief discussion of recent challenges in the thyroid cancer diagnosis.
Collapse
Affiliation(s)
- Raziyeh Abooshahab
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Gholami
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran
| | - Maryam Sanoie
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Jahangiri A, Dadmanesh M, Ghorban K. Suppression of STAT3 by S31-201 to reduce the production of immunoinhibitory cytokines in a HIF1-α-dependent manner: a study on the MCF-7 cell line. In Vitro Cell Dev Biol Anim 2018; 54:743-748. [PMID: 30315441 DOI: 10.1007/s11626-018-0299-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) interacts with many gene promoters and transcription factors such as hypoxia-induced factor 1α (HIF-1α). Recent evidences proposed that STAT3 and HIF-1α together are responsible for angiogenesis and immune response suppression. The main aim of this study was to inhibit STAT3 and HIF-1α and assess their effects on the expression of immunosuppressive cytokines. S31-201 and PX-478 were used to inhibit STAT3 and HIF-1α, respectively. In both hypoxic and normoxic conditions, intracellular levels of HIF-1α were evaluated by western blotting and flow cytometry. Supernatant levels were also measured for VEGF, IL-10, and TGF-β concentration. S31-201 suppressed proliferation of MCF-7 cells and led to reduced HIF-1α expression in both hypoxic and normoxic conditions. It also decreased production of the immunosuppressive cytokines. STAT3 inhibition suppressed tumor cell growth and cytokine production in a HIF-1α-dependent manner, and can be used as a promising target in cancer therapies.
Collapse
Affiliation(s)
- Amirhossein Jahangiri
- Department of Immunology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Maryam Dadmanesh
- Department of Infectious Diseases, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Khodayar Ghorban
- Department of Immunology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Bahrami A, Atkin SL, Majeed M, Sahebkar A. Effects of curcumin on hypoxia-inducible factor as a new therapeutic target. Pharmacol Res 2018; 137:159-169. [PMID: 30315965 DOI: 10.1016/j.phrs.2018.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that consists of two subunits, the HIF-1α and HIF-1β (ARNT). Under hypoxic conditions, HIF-1 is an adaptive system that regulates the transcription of multiple genes associated with growth, angiogenesis, proliferation, glucose transport, metabolism, pH regulation and cell death. However, aberrant HIF-1 activation contributes to the pathophysiology of several human diseases such as cancer, ischemic cardiovascular disorders, and pulmonary and kidney diseases. A growing body of evidence indicates that curcumin, a natural bioactive compound of turmeric root, significantly targets both HIF-1 subunits, but is more potent against HIF-1α. In this review, we have summarized the knowledge about the pharmacological effects of curcumin on HIF-1 and the related molecular mechanisms that may be effective candidates for the development of multi-targeted therapy for several human diseases.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Araos J, Sleeman JP, Garvalov BK. The role of hypoxic signalling in metastasis: towards translating knowledge of basic biology into novel anti-tumour strategies. Clin Exp Metastasis 2018; 35:563-599. [DOI: 10.1007/s10585-018-9930-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
|
33
|
Coelho RG, Fortunato RS, Carvalho DP. Metabolic Reprogramming in Thyroid Carcinoma. Front Oncol 2018; 8:82. [PMID: 29629339 PMCID: PMC5876306 DOI: 10.3389/fonc.2018.00082] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/09/2018] [Indexed: 12/20/2022] Open
Abstract
Among all the adaptations of cancer cells, their ability to change metabolism from the oxidative to the glycolytic phenotype is a hallmark called the Warburg effect. Studies on tumor metabolism show that improved glycolysis and glutaminolysis are necessary to maintain rapid cell proliferation, tumor progression, and resistance to cell death. Thyroid neoplasms are common endocrine tumors that are more prevalent in women and elderly individuals. The incidence of thyroid cancer has increased in the Past decades, and recent findings describing the metabolic profiles of thyroid tumors have emerged. Currently, several drugs are in development or clinical trials that target the altered metabolic pathways of tumors are undergoing. We present a review of the metabolic reprogramming in cancerous thyroid tissues with a focus on the factors that promote enhanced glycolysis and the possible identification of promising metabolic targets in thyroid cancer.
Collapse
Affiliation(s)
- Raquel Guimaraes Coelho
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S. Fortunato
- Laboratório de Radiobiologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise P. Carvalho
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Ciavardelli D, Bellomo M, Consalvo A, Crescimanno C, Vella V. Metabolic Alterations of Thyroid Cancer as Potential Therapeutic Targets. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2545031. [PMID: 29234677 PMCID: PMC5694990 DOI: 10.1155/2017/2545031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/15/2017] [Indexed: 12/16/2022]
Abstract
Thyroid cancer (TC) is the most frequent endocrine tumor with a growing incidence worldwide. Besides the improvement of diagnosis, TC increasing incidence is probably due to environmental factors and lifestyle modifications. The actual diagnostic criteria for TC classification are based on fine needle biopsy (FNAB) and histological examination following thyroidectomy. Since in some cases it is not possible to make a proper diagnosis, classical approach needs to be supported by additional biomarkers. Recently, new emphasis has been given to the altered cellular metabolism of proliferating cancer cells which require high amount of glucose for energy production and macromolecules biosynthesis. Also TC displays alteration of energy metabolism orchestrated by oncogenes activation and tumor suppressors inactivation leading to abnormal proliferation. Furthermore, TC shows significant metabolic heterogeneity within the tumor microenvironment and metabolic coupling between cancer and stromal cells. In this review we focus on the current knowledge of metabolic alterations of TC and speculate that targeting TC metabolism may improve current therapeutic protocols for poorly differentiated TC. Future studies will further deepen the actual understandings of the metabolic phenotype of TC cells and will give the chance to provide novel prognostic biomarkers and therapeutic targets in tumors with a more aggressive behavior.
Collapse
Affiliation(s)
- Domenico Ciavardelli
- School of Human and Social Science, University “Kore” of Enna, Enna, Italy
- Centro Scienze dell'Invecchiamento e Medicina Traslazionale (CeSI-Met), Chieti, Italy
| | - Maria Bellomo
- School of Human and Social Science, University “Kore” of Enna, Enna, Italy
| | - Ada Consalvo
- Centro Scienze dell'Invecchiamento e Medicina Traslazionale (CeSI-Met), Chieti, Italy
| | | | - Veronica Vella
- School of Human and Social Science, University “Kore” of Enna, Enna, Italy
- Endocrinology Section, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Hospital, University of Catania, Catania, Italy
| |
Collapse
|
35
|
Tesselaar MH, Smit JW, Nagarajah J, Netea-Maier RT, Plantinga TS. Pathological processes and therapeutic advances in radioiodide refractory thyroid cancer. J Mol Endocrinol 2017; 59:R141-R154. [PMID: 28931558 DOI: 10.1530/jme-17-0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022]
Abstract
While in most patients with non-medullary thyroid cancer (TC), disease remission is achieved by thyroidectomy and ablation of tumor remnants by radioactive iodide (RAI), a substantial subgroup of patients with metastatic disease present tumor lesions that have acquired RAI resistance as a result of dedifferentiation. Although oncogenic mutations in BRAF, TERT promoter and TP53 are associated with an increased propensity for induction of dedifferentiation, the role of genetic and epigenetic aberrations and their effects on important intracellular signaling pathways is not yet fully elucidated. Also immune, metabolic, stemness and microRNA pathways have emerged as important determinants of TC dedifferentiation and RAI resistance. These signaling pathways have major clinical implications since their targeting could inhibit TC progression and could enable redifferentiation to restore RAI sensitivity. In this review, we discuss the current insights into the pathological processes conferring dedifferentiation and RAI resistance in TC and elaborate on novel advances in diagnostics and therapy to improve the clinical outcome of RAI-refractory TC patients.
Collapse
Affiliation(s)
- Marika H Tesselaar
- Department of PathologyRadboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes W Smit
- Internal MedicineDivision of Endocrinology Radboud University Medical Center, Nijmegen, The Netherlands
| | - James Nagarajah
- Radiology & Nuclear MedicineRadboud University Medical Center, Nijmegen, The Netherlands
| | - Romana T Netea-Maier
- Internal MedicineDivision of Endocrinology Radboud University Medical Center, Nijmegen, The Netherlands
| | - Theo S Plantinga
- Department of PathologyRadboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|