1
|
Peng J, Lin Y, Sheng X, Yuan C, Wang Y, Yin W, Zhou L, Lu J. Serum miRNA-1 may serve as a promising noninvasive biomarker for predicting treatment response in breast cancer patients receiving neoadjuvant chemotherapy. BMC Cancer 2024; 24:789. [PMID: 38956544 PMCID: PMC11221026 DOI: 10.1186/s12885-024-12500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND MicroRNA-1 (miR-1) is a tumour suppressor that can inhibit cell proliferation and invasion in several cancer types. In addition, miR-1 was found to be associated with drug sensitivity. Circulating miRNAs have been proven to be potential biomarkers with predictive and prognostic value. However, studies of miR-1 expression in the serum of breast cancer (BC) patients are relatively scarce, especially in patients receiving neoadjuvant chemotherapy (NAC). METHODS Serum samples from 80 patients were collected before chemotherapy, and RT-PCR was performed to detect the serum expression of miR-1. The correlation between miR-1 expression in serum and clinicopathological factors, including pathological complete response (pCR), was analyzed by the chi-squared test and logistic regression. KEGG and GSEA analysis were also performed to determine the biological processes and signalling pathways involved. RESULTS The miR-1 high group included more patients who achieved a pCR than did the miR-1 low group (p < 0.001). Higher serum miR-1 levels showed a strong correlation with decreased ER (R = 0.368, p < 0.001) and PR (R = 0.238, p = 0.033) levels. The univariate model of miR-1 for predicting pCR achieved an AUC of 0.705 according to the ROC curve. According to the interaction analysis, miR-1 interacted with Ki67 to predict the NAC response. According to the Kaplan-Meier plot, a high serum miR-1 level was related to better disease-free survival (DFS) in the NAC cohort. KEGG analysis and GSEA results indicated that miR-1 may be related to the PPAR signalling pathway and glycolysis. CONCLUSIONS In summary, our data suggested that miR-1 could be a potential biomarker for pCR and survival outcomes in patients with BC treated with NAC.
Collapse
Affiliation(s)
- Jing Peng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Yanping Lin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Xiaonan Sheng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Chenwei Yuan
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Yan Wang
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China.
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
2
|
Yu H, Zhang B, Qi L, Han J, Guan M, Li J, Meng Q. AP003352.1/miR-141-3p axis enhances the proliferation of osteosarcoma by LPAR3. PeerJ 2023; 11:e15937. [PMID: 37727685 PMCID: PMC10506581 DOI: 10.7717/peerj.15937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Osteosarcoma (OS) is a highly malignant tumor with a poor prognosis and a growing incidence. LncRNAs and microRNAs control the occurrence and development process of osteosarcoma through ceRNA patterns. The LPAR3 gene is important in cancer cell proliferation, apoptosis and disease development. However, the regulatory mechanism of the ceRNA network through which LPAR3 participates in osteosarcoma has not been clarified. Herein, our study demonstrated that the AP003352.1/miR-141-3p axis drives LPAR3 expression to induce the malignant progression of osteosarcoma. First, the expression of LPAR3 is regulated by the changes in AP003352.1 and miR-141-3p. Similar to the ceRNA of miR-141-3p, AP003352.1 regulates the expression of LPAR3 through this mechanism. In addition, the regulation of AP003352.1 in malignant osteosarcoma progression depends to a certain degree on miR-141-3p. Importantly, the AP003352.1/miR-141-3p/LPAR3 axis can better serve as a multi-gene diagnostic marker for osteosarcoma. In conclusion, our research reveals a new ceRNA regulatory network, which provides a novel potential target for the diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Hongde Yu
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Bolun Zhang
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Lin Qi
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Jian Han
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Mingyang Guan
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Jiaze Li
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Qingtao Meng
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| |
Collapse
|
3
|
Zhang B, Wu F, Li P, Li H. ARRDC3 inhibits liver fibrosis and epithelial-to-mesenchymal transition via the ITGB4/PI3K/Akt signaling pathway. Immunopharmacol Immunotoxicol 2022; 45:160-171. [PMID: 36154540 DOI: 10.1080/08923973.2022.2128369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective The effect of ARRDC3 has not been reported in liver fibrosis. Our study aimed to explore the molecular mechanisms by which ARRDC3 attenuates liver fibrosis.Methods The vectors pcDNA-ARRDC3 (which promotes ARRDC3 expression) and si-ITGB4 (which blocks IGTB4 expression) and their negative controls were constructed. The rat liver fibrosis model was established by intraperitoneal injection of CCl4 with or without intraperitoneal injection of pcDNA-ARRDC3. ELISA was used to detect the concentrations of γ-GGT, ALT, AST, and ALP in serum. HE, Masson's trichome, and Sirius red staining were used to observe the pathological changes in liver tissue. LX-2 cells were treated with TGF-β, and pcDNA-ARRDC3 or si-ITGB4RNA was transfected to promote ARRDC3 expression or knock down ITGB4 expression. Western blotting was used to detect the expression levels of proteins.Results ARRDC3 effectively reduced liver injury, improved liver function, and decreased collagen production and deposition in the CCl4-induced rat fibrosis model. The studies showed that overexpressed ARRDC3 remarkably reduced the expression of E-cadherin and collagen-related protein and increased the expression of mesenchymal markers and EMT-related transcription factors, consequently inhibiting the activity of the ITGB4/PI3K/Akt signaling pathway.Conclusion Our study shows that ARRDC3 could ameliorate CCl4-induced liver fibrosis and EMT progression via the ITGB4/PI3K/Akt signaling pathway, which provides a meaningful reference for the clinical targeted treatment of liver fibrosis.
Collapse
Affiliation(s)
- Bingling Zhang
- Zhangqiao Branch, Ningbo Ninth Hospital, Ningbo, Zhejiang, China
| | - Feng Wu
- Jiangbei Center for Disease Control and Prevention, Ningbo, Zhejiang, China
| | - Pingping Li
- Jiangbei Center for Disease Control and Prevention, Ningbo, Zhejiang, China
| | - Haiding Li
- Zhangqiao Branch, Ningbo Ninth Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Khan MM, Serajuddin M, Malik MZ. Identification of microRNA and gene interactions through bioinformatic integrative analysis for revealing candidate signatures in prostate cancer. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Gu P, Yang D, Zhu J, Zhang M, He X. Bioinformatics analysis identified hub genes in prostate cancer tumorigenesis and metastasis. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:3180-3196. [PMID: 34198380 DOI: 10.3934/mbe.2021158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Prostate cancer (PCa) is the most frequent cancer found in males worldwide, and its mortality rate is increasing every year. To discover key molecular changes in PCa development and metastasis, we analyzed microarray data of localized PCa, metastatic PCa and normal prostate tissue samples from clinical specimens. METHODS Gene expression profiling datasets of PCa were analyzed online. The DAVID was used to perform GO functional and KEGG pathway enrichment analyses. CytoHubba in Cytoscape software was applied to identify hub genes. Survival data were downloaded from GEPIA. Gene expression data were obtained from ONCOMINE and UALCAN. RESULTS We obtained 4 sets of differentially expressed genes (DEGs), DEGs 1: a comparison of the gene expression between 4 normal prostate and 5 localized PCa samples in GSE27616; DEGs 2: a comparison of the gene expression between 6 normal prostate and 7 localized PCa samples in GSE3325; DEGs 3: a comparison of the gene expression between 5 localized PCa and 4 metastatic PCa samples in GSE27616; DEGs 4: a comparison of the gene expression between 7 localized PCa and 6 metastatic PCa samples in GSE3325. A comparison of these 4 sets of genes revealed 51 overlapped genes. GO function analysis revealed enrichment of the 51 DEGs in functions related to the proteinaceous extracellular matrix and centrosome, protein homodimerization activity and chromatin binding were the main functions of these genes, which participated in regulating cell division, mitotic nuclear division, proteinaceous extracellular matrix, cell adhesion and apoptotic process. KEGG pathway analysis indicated that these identified DEGs were mainly enriched in progesterone-mediated oocyte maturation, oocyte meiosis and cell cycle. We defined the 16 genes with the highest degree of connectivity as the hub genes in the 51 overlapped DEGs. Cox regression revealed TOP2A, CCNB2, BUB1, CDK1 and EZH2 were related to Disease-free survival (DFS). The expression levels of the 5 genes were 2.232-, 1.786-, 2.303-, 1.699-, and 1.986-fold higher in PCa than the levels in normal tissues, respectively (P < 0.05). We obtained 20 hub genes from DEGs by the comparison of normal prostate tissue vs. localized cancer tissue. Among them, KIF20A, CDKN3, PBK and CDCA2, were expressed higher in PCa than in normal tissues, and were associated with the DFS of PCa patients. Meanwhile, we obtained 20 hub genes from DEGs by the comparison of localized cancer tissue vs. metastatic cancer tissue. Cox regression revealed PLK1, CCNA2 and CDC20, were associated with both the DFS and overall survival of PCa patients. CONCLUSIONS The results suggested that the functions of KIF20A, CDKN3, PBK and CDCA2 may contribute to PCa development and the functions of PLK1, CCNA2 and CDC20 may contribute to PCa metastasis. Meanwhile, the functions of TOP2A, CCNB2, BUB1, CDK1 and EZH2 may contribute to both PCa development and metastasis.
Collapse
Affiliation(s)
- Peng Gu
- Department of Urology, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215000, China
- Department of Urology, Wuxi Xishan People's Hospital, 1128 Dacheng Road, Wuxi 214000, China
| | - Dongrong Yang
- Department of Urology, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215000, China
| | - Jin Zhu
- Department of Urology, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215000, China
| | - Minhao Zhang
- Department of Urology, Wuxi Xishan People's Hospital, 1128 Dacheng Road, Wuxi 214000, China
| | - Xiaoliang He
- Department of Urology, Wuxi Xishan People's Hospital, 1128 Dacheng Road, Wuxi 214000, China
| |
Collapse
|
6
|
Wang Y, Wang J, Tang Q, Ren G. Identification of UBE2C as hub gene in driving prostate cancer by integrated bioinformatics analysis. PLoS One 2021; 16:e0247827. [PMID: 33630978 PMCID: PMC7906463 DOI: 10.1371/journal.pone.0247827] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 02/14/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The aim of this study was to identify novel genes in promoting primary prostate cancer (PCa) progression and to explore its role in the prognosis of prostate cancer. METHODS Four microarray datasets containing primary prostate cancer samples and benign prostate samples were downloaded from Gene Expression Omnibus (GEO), then differentially expressed genes (DEGs) were identified by R software (version 3.6.2). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to identify the function of DEGs. Using STRING and Cytoscape (version 3.7.1), we constructed a protein-protein interaction (PPI) network and identified the hub gene of prostate cancer. Clinical data on GSE70770 and TCGA was collected to show the role of hub gene in prostate cancer progression. The correlations between hub gene and clinical parameters were also indicated by cox regression analysis. Gene Set Enrichment Analysis (GSEA) was performed to highlight the function of Ubiquitin-conjugating enzyme complex (UBE2C) in prostate cancer. RESULTS 243 upregulated genes and 298 downregulated genes that changed in at least two microarrays have been identified. GO and KEGG analysis indicated significant changes in the oxidation-reduction process, angiogenesis, TGF-beta signaling pathway. UBE2C, PDZ-binding kinase (PBK), cyclin B1 (CCNB1), Cyclin-dependent kinase inhibitor 3 (CDKN3), topoisomerase II alpha (TOP2A), Aurora kinase A (AURKA) and MKI67 were identified as the candidate hub genes, which were all correlated with prostate cancer patient' disease-free survival in TCGA. In fact, only UBE2C was highly expressed in prostate cancer when compared with benign prostate tissue in TCGA and the expression of UBE2C was also in parallel with the Gleason score of prostate cancer. Cox regression analysis has indicated UBE2C could function as the independent prognostic factor of prostate cancer. GSEA showed UBE2C had played an important role in the pathway of prostate cancer, such as NOTCH signaling pathway, WNT-β-catenin signaling pathway. CONCLUSIONS UBE2C was pivotal for the progression of prostate cancer and the level of UBE2C was important to predict the prognosis of patients.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jili Wang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiusu Tang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoping Ren
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail:
| |
Collapse
|
7
|
Pan H, Rui X, Wei W, Shao S, Zhu Y. Prognostic value of miR-339-5p in patients with prostate cancer and its effects on tumor progression. Exp Ther Med 2021; 21:390. [PMID: 33680112 DOI: 10.3892/etm.2021.9821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer places a serious health burden on males. The present study aimed to explore the potential prognostic significance and biological function of microRNA (miR)-339-5p in patients with prostate cancer. The expression of miR-339-5p was detected in prostate cancer tissues and cell lines by using reverse transcription-quantitative PCR. Kaplan-Meier survival curves and Cox regression analyses were used to investigate the prognostic significance of miR-339-5p in prostate cancer. The Cell Counting Kit-8 assay was used to determine the effect of miR-339-5p on prostate cancer cell proliferation. Transwell assays were used to assess the effect of miR-339-5p on cell migration and invasion. The results indicated that the expression of miR-339-5p was downregulated in prostate cancer tissues and cell lines. Downregulation of miR-339-5p was significantly associated with the Gleason score, lymph node metastasis and TNM stage. Patients with high miR-339-5p expression levels had a longer survival time than those with low expression levels. Multivariate Cox regression analysis indicated that miR-339-5p may be an independent prognostic factor for the overall survival of patients with prostate cancer. Overexpression of miR-339-5p inhibited the proliferation, migration and invasion of prostate cancer cells. Taken together, these results indicated that miR-339-5p functions as a suppressor gene in prostate cancer and acts by inhibiting cell proliferation, migration and invasion of prostate cancer cells. miR-339-5p may serve as an independent prognostic biomarker and therapeutic target for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Huafeng Pan
- Department of Urology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315021, P.R. China
| | - Xin Rui
- Department of Urology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315021, P.R. China
| | - Wei Wei
- Department of Urology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315021, P.R. China
| | - Siliang Shao
- Department of Urology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315021, P.R. China
| | - Yudi Zhu
- Department of Urology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315021, P.R. China
| |
Collapse
|
8
|
Lima T, Henrique R, Vitorino R, Fardilha M. Bioinformatic analysis of dysregulated proteins in prostate cancer patients reveals putative urinary biomarkers and key biological pathways. Med Oncol 2021; 38:9. [PMID: 33452612 DOI: 10.1007/s12032-021-01461-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/03/2021] [Indexed: 11/26/2022]
Abstract
Prostate cancer (PCa) is one of the most common cancer types among men. The quantification of prostate-specific antigen used for PCa detection has revealed limited applicability. Thus, it is crucial to identify new minimally invasive biomarkers for PCa. It is believed that the integration of proteomics data from different studies is vital for identifying new biomarkers for PCa, but studies carried out in this regard have few converging results. Using a different approach, this study aimed to unveil molecular features consistently dysregulated in PCa and potential urinary biomarkers for PCa. The novelty of this analysis relies on the comparison of urinary and tissue proteomes from PCa patients and consequent exclusion of kidney and bladder cancer interference. The conducted bioinformatic analysis revealed molecular processes dysregulated in urine from PCa patients that mirror the alterations in prostate tumor tissue. To identify putative urinary biomarkers, proteins previously detected in kidney and bladder tissues were eliminated from the final list of potential urinary biomarkers for PCa. After a detailed analysis, MSMB, KLK3, ITIH4, ITIH2, HPX, GP2, APOA2 and AZU1 proteins stood out as candidate urinary biomarkers for PCa.
Collapse
Affiliation(s)
- Tânia Lima
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of Portuguese Oncology Institute of Porto (GEBC CI-IPOP) and Porto Comprehensive Cancer Center (P.CCC), 4200-072, Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-513, Porto, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
- UnIC, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
9
|
Hua YT, Xu WX, Li H, Xia M. Emerging roles of MiR-133a in human cancers. J Cancer 2021; 12:198-206. [PMID: 33391416 PMCID: PMC7738817 DOI: 10.7150/jca.48769] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) can post-transcriptionally regulate the expression of cancer-relevant genes via binding to the 3'-untranslated region (3'-UTR) of the target mRNAs. MiR-133a, as a miRNA, participate in tumorigenesis, progression, autophagy and drug-resistance in various malignancies. Based on the recent insights, we discuss the functions of miR-133a in physiological and pathological processes and its potential effects on cancer diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Yu-Ting Hua
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, China
| | - Wen-Xiu Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P.R. China
| | - Hui Li
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, China
| | - Min Xia
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, China
| |
Collapse
|
10
|
Jiang Y, Song H, Jiang L, Qiao Y, Yang D, Wang D, Li J. Silybin Prevents Prostate Cancer by Inhibited the ALDH1A1 Expression in the Retinol Metabolism Pathway. Front Cell Dev Biol 2020; 8:574394. [PMID: 32984354 PMCID: PMC7487981 DOI: 10.3389/fcell.2020.574394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/14/2020] [Indexed: 12/31/2022] Open
Abstract
Background Silybin was known to exert inhibition in prostate cancer, but the underlying mechanism remained largely unknown. This study was designed to find out the potential target of Silybin on prostate cancer and explore the relative mechanisms. Methods Firstly, we screened the possible targets of Silybin through the PubChem database and Subpathway – GM. Then DU145 cells were transferred to investigate the correction about related targets, magnetic bead sorting and flow cytometry were used to sort and identify the cells. Proliferation, migration and invasion ability of DU145 cells were detected by MTT assay, Transwell assay, plate clonality and sphere formation assay. BALB/c nude mice were constructed models with implanted sarcoma and measured the tumor volume every 5 days as wells tumor weight. The levels of proteins were detected by Western blot and immunocytochemistry. RT-PCR was selected to test the expression of protein’s mRNA. Results It was screened out the ALDH1A1 was highly correlated with subpathways of the Silybin risk metabolic pathway. And ALDH1A1 expression was positively correlated RARα with Ets1 by interfering with the ALDH1A1 gene. Importantly, ALDH1A1(+) cells showed proliferation, migration and invasion ability. In addition, it showed that Silybin exerted the inhibition on prostate cells by suppressed the proliferation, migration and invasion ability of cells in vitro experiment. Silybin also reduced the tumor volume and weight. And Silybin displayed obviously reduced the proteins and mRNA of ALDH1A1, RARα, Ets1 and MMP9 expressions. Conclusion Our results indicated that Silybin showed inhibition of prostate cancer and the mechanism was involving with downregulating ALDH1A1 expression, thereby inhibiting the activation of RARα and preventing the activation of Ets1 to inhibit the growth and invasion of prostate cancer.
Collapse
Affiliation(s)
- Ying Jiang
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hanbing Song
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ling Jiang
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Qiao
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dan Yang
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Donghua Wang
- Department of General Surgery, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China
| | - Ji Li
- College of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
11
|
Mota STS, Vecchi L, Alves DA, Cordeiro AO, Guimarães GS, Campos-Fernández E, Maia YCP, Dornelas BDC, Bezerra SM, de Andrade VP, Goulart LR, Araújo TG. Annexin A1 promotes the nuclear localization of the epidermal growth factor receptor in castration-resistant prostate cancer. Int J Biochem Cell Biol 2020; 127:105838. [PMID: 32858191 DOI: 10.1016/j.biocel.2020.105838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022]
Abstract
Epidermal growth factor receptor is a cancer driver whose nuclear localization has been associated with the progression of prostate cancer to the castration-resistant phenotype. Previous reports indicated a functional interaction between this receptor and the protein Annexin A1, which has also been associated with aggressive tumors. The molecular pathogenesis of castration-resistant prostate cancer remains largely unresolved, and herein we have demonstrated the correlation between the expression levels and localization of the epidermal growth factor receptor and Annexin A1 in prostate cancer samples and cell lines. Interestingly, a higher expression of both proteins was detected in castration-resistant prostate cancer cell lines and the strongest correlation was seen at the nuclear level. We verified that Annexin A1 interacts with the epidermal growth factor receptor, and by using prostate cancer cell lines knocked down for Annexin A1, we succeeded in demonstrating that Annexin A1 promotes the nuclear localization of epidermal growth factor receptor. Finally, we showed that Annexin A1 activates an autocrine signaling in castration-resistant prostate cells through the formyl peptide receptor 1. The inhibition of such signaling by Cyclosporin H inhibits the nuclear localization of epidermal growth factor receptor and its downstream signaling. The present work sheds light on the functional interaction between nuclear epidermal growth factor receptor and nuclear Annexin A1 in castration-resistant prostate cancer. Therefore, strategies to inhibit the nuclear localization of epidermal growth factor receptor through the suppression of the Annexin A1 autocrine loop could represent an important intervention strategy for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Sara Teixeira Soares Mota
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG, 387400-128, Brazil; Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| | - Lara Vecchi
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| | - Douglas Alexsander Alves
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG, 387400-128, Brazil; Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| | - Antonielle Oliveira Cordeiro
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG, 387400-128, Brazil; Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| | - Gabriela Silva Guimarães
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG, 387400-128, Brazil; Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| | - Esther Campos-Fernández
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| | | | - Bruno de Carvalho Dornelas
- Pathology Division, Internal Medicine, University Hospital, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| | | | | | - Luiz Ricardo Goulart
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG, 387400-128, Brazil; University of California, Davis, Dept. of Medical Microbiology and Immunology, Davis, CA, 95616, USA.
| | - Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG, 387400-128, Brazil; Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, 38400-902, Brazil.
| |
Collapse
|
12
|
Shi J, Jiang D, Yang S, Zhang X, Wang J, Liu Y, Sun Y, Lu Y, Yang K. LPAR1, Correlated With Immune Infiltrates, Is a Potential Prognostic Biomarker in Prostate Cancer. Front Oncol 2020; 10:846. [PMID: 32656075 PMCID: PMC7325998 DOI: 10.3389/fonc.2020.00846] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is a common malignancy in men worldwide. Lysophosphatidic acid receptor 1 (LPAR1) is a critical gene and it mediates diverse biologic functions in tumor. However, the correlation between LPAR1 and prognosis in prostate cancer, as well as the potential mechanism, remains unclear. In the present study, LPAR1 expression analysis was based on The Cancer Genome Atlas (TCGA) and the Oncomine database. The correlation of LPAR1 on prognosis was also analyzed based on R studio. The association between LPAR1 and tumor-infiltrating immune cells were evaluated in the Tumor Immune Estimation Resource site, ssGSEA, and MCPcounter packages in R studio. Gene Set Enrichment Analysis and Gene Ontology analysis were used to analyze the function of LPAR1. TCGA datasets and the Oncomine database revealed that LPAR1 was significantly downregulated in prostate cancer. High LPAR1 expression was correlated with favorable overall survival. LPAR1 was involved in the activation, proliferation, differentiation, and migration of immune cells, and its expression was positively correlated with immune infiltrates, including CD4+ T cells, B cells, CD8+ T cells, neutrophils, macrophages, dendritic cells, and natural killer cells. Moreover, LPAR1 expression was positively correlated with those chemokine/chemokine receptors, indicating that LPAR1 may regulate the migration of immune cells. In summary, LPAR1 is a potential prognostic biomarker and plays an important part in immune infiltrates in prostate cancer.
Collapse
Affiliation(s)
- Jingqi Shi
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Dongbo Jiang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Shuya Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Xiyang Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yuanjie Sun
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yuchen Lu
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Kun Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Liang X, Hu K, Li D, Wang Y, Liu M, Wang X, Zhu W, Wang X, Yang Z, Lu J. Identification of Core Genes and Potential Drugs for Castration-Resistant Prostate Cancer Based on Bioinformatics Analysis. DNA Cell Biol 2020; 39:836-847. [PMID: 32101033 DOI: 10.1089/dna.2019.5247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Xiao Liang
- School of Management, Jilin University, Changchun, China
| | - Kebang Hu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Dawei Li
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Yanbo Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Min Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoxue Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Wanying Zhu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xinyu Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Zixuan Yang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Yaan, China
| | - Ji Lu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Lin Y, Zhao X, Miao Z, Ling Z, Wei X, Pu J, Hou J, Shen B. Data-driven translational prostate cancer research: from biomarker discovery to clinical decision. J Transl Med 2020; 18:119. [PMID: 32143723 PMCID: PMC7060655 DOI: 10.1186/s12967-020-02281-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer (PCa) is a common malignant tumor with increasing incidence and high heterogeneity among males worldwide. In the era of big data and artificial intelligence, the paradigm of biomarker discovery is shifting from traditional experimental and small data-based identification toward big data-driven and systems-level screening. Complex interactions between genetic factors and environmental effects provide opportunities for systems modeling of PCa genesis and evolution. We hereby review the current research frontiers in informatics for PCa clinical translation. First, the heterogeneity and complexity in PCa development and clinical theranostics are introduced to raise the concern for PCa systems biology studies. Then biomarkers and risk factors ranging from molecular alternations to clinical phenotype and lifestyle changes are explicated for PCa personalized management. Methodologies and applications for multi-dimensional data integration and computational modeling are discussed. The future perspectives and challenges for PCa systems medicine and holistic healthcare are finally provided.
Collapse
Affiliation(s)
- Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xiaojun Zhao
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhijun Miao
- Department of Urology, Suzhou Dushuhu Public Hospital, Suzhou, 215123, China
| | - Zhixin Ling
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jinxian Pu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|