1
|
Wang X, Xu J, Guo Q, Li Z, Cao J, Fu R, Xu M, Zhao X, Wang F, Zhang X, Dong T, Li X, Qian W, Hou S, Ji L, Zhang D, Guo H. Improving product quality and productivity of an antibody-based biotherapeutic using inverted frustoconical shaking bioreactors. Front Bioeng Biotechnol 2024; 12:1352098. [PMID: 38585708 PMCID: PMC10995296 DOI: 10.3389/fbioe.2024.1352098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
The Chinese hamster ovarian (CHO) cells serve as a common choice in biopharmaceutical production, traditionally cultivated in stirred tank bioreactors (STRs). Nevertheless, the pursuit of improved protein quality and production output for commercial purposes demand exploration into new bioreactor types. In this context, inverted frustoconical shaking bioreactors (IFSB) present unique physical properties distinct from STRs. This study aims to compare the production processes of an antibody-based biotherapeutic in both bioreactor types, to enhance production flexibility. The findings indicate that, when compared to STRs, IFSB demonstrates the capability to produce an antibody-based biotherapeutic with either comparable or enhanced bioprocess performance and product quality. IFSB reduces shear damage to cells, enhances viable cell density (VCD), and improves cell state at a 5-L scale. Consequently, this leads to increased protein expression (3.70 g/L vs 2.56 g/L) and improved protein quality, as evidenced by a reduction in acidic variants from 27.0% to 21.5%. Scaling up the culture utilizing the Froude constant and superficial gas velocity ensures stable operation, effective mixing, and gas transfer. The IFSB maintains a high VCD and cell viability at both 50-L and 500-L scales. Product expression levels range from 3.0 to 3.6 g/L, accompanied by an improved acidic variants attribute of 20.6%-22.7%. The IFSB exhibits superior productivity and product quality, underscoring its potential for incorporation into the manufacturing process for antibody-based biotherapeutics. These results establish the foundation for IFSB to become a viable option in producing antibody-based biotherapeutics for clinical and manufacturing applications.
Collapse
Affiliation(s)
- Xuekun Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Jin Xu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qingcheng Guo
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Taizhou Mabtech Pharmaceuticals Co., Ltd., Taizhou, China
| | - Zhenhua Li
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, Shanghai Zhangjiang Biotechnology Co., Ltd., Shanghai, China
| | - Jiawei Cao
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, Shanghai Zhangjiang Biotechnology Co., Ltd., Shanghai, China
| | - Rongrong Fu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Mengjiao Xu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Xiang Zhao
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Fugui Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Xinmeng Zhang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Taimin Dong
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Xu Li
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Weizhu Qian
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shen Hou
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lusha Ji
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dapeng Zhang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huaizu Guo
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, Shanghai Zhangjiang Biotechnology Co., Ltd., Shanghai, China
| |
Collapse
|
4
|
Lu Z, Li C, Fei L, Zhang H, Pan Y. Effect of baffle structure on flow field characteristics of orbitally shaken bioreactor. Bioprocess Biosyst Eng 2020; 44:563-573. [PMID: 33200292 DOI: 10.1007/s00449-020-02469-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/22/2020] [Indexed: 11/28/2022]
Abstract
Disposable orbitally shaken bioreactors have been widely used for mammalian cell culture in suspension. Three kinds of baffle structures: vertical baffle, inclined baffle and horizontal baffle were designed in this work. The flow fields of the shaking bioreactor with different baffle structures were simulated, and the turbulence, dissolved oxygen and shear strain rate of the bioreactor were analyzed. The results showed that the quasi-steady-state flow patterns of the unbaffled shaking bioreactors were broken for the bioreactors with the strengthening effects of baffles. The mixing and the oxygen volumetric mass transfer coefficient (kLa) (simulated results) were improved significantly, and the shear strain rates were also increased greatly for the baffle bioreactors. The shear strain rates of the baffle bioreactors were mainly in the range of 0-20 s-1, and they were still low enough for CHO cell cultures.
Collapse
Affiliation(s)
- Zhiming Lu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China.
| | - Chengtuo Li
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Liangqi Fei
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Hongliang Zhang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuhui Pan
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
5
|
Ding N, Li C, Guo M, Mohsin A, Zhang S. Numerical simulation of scaling-up an inverted frusto-conical shaking bioreactor with low shear stress for mammalian cell suspension culture. Cytotechnology 2019; 71:671-678. [PMID: 30848405 PMCID: PMC6465373 DOI: 10.1007/s10616-019-00308-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/20/2019] [Indexed: 11/25/2022] Open
Abstract
Shear stress is one of the key factors affecting the large-scale culture of mammalian cells. In this study, numerical simulation based on computational fluid dynamics was used to conduct a flow-field analysis of 7, 50, 200, and 1200 L inverted frusto-conical shaking bioreactors. The results show that the shear rate, specific mass transfer area (a), and volumetric oxygen mass transfer coefficient (kLa) gradually decreased as the scale of the bioreactor increased. Through application of BHK21 and CHO cells in 7, 200, and 1200 L bioreactors, it was found that the cell density and antibody expression level increased as the volume of the bioreactor increased. Moreover, the antibody expression level in a 1200 L bioreactor was nearly 30% and 35% higher than that of 7 and 200 L bioreactors, respectively. The results demonstrate that the environment with a larger volume is more suitable for the growth and antibody expression of CHO cells, indicating shear stress might be the most critical factor affecting the scale-up of mammalian cells.
Collapse
Affiliation(s)
- Ning Ding
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chao Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Siliang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
6
|
Zhu L, Zhang X, Cheng K, Lv Z, Zhang L, Meng Q, Yuan S, Song B, Wang Z. Characterizing the fluid dynamics of the inverted frustoconical shaking bioreactor. Biotechnol Prog 2018; 34:478-485. [PMID: 29314781 DOI: 10.1002/btpr.2602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/08/2017] [Indexed: 11/11/2022]
Abstract
The authors conducted a three-dimensional computational fluid dynamics (CFD) simulation to calculate the flow field in the inverted frustoconical shaking bioreactor with 5 L working volume (IFSB-5L). The CFD models were established for the IFSB-5L at different operating conditions (different shaking speeds and filling volumes) and validated by comparison of the liquid height distribution in the agitated IFSB-5L. The "out of phase" operating conditions were characterized by analyzing the flow field in the IFSB-5L at different filling volumes and shaking speeds. The values of volumetric power consumption (P/VL ) and volumetric mass transfer coefficient (kL a) were determined from simulated and experimental results, respectively. Finally, the operating condition effect on P/VL and kL a was investigated. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:478-485, 2018.
Collapse
Affiliation(s)
- Likuan Zhu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Xueting Zhang
- Pharmaceutical research center of Harbin Bioengineering Corporation, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Kai Cheng
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Zhonghua Lv
- Pharmaceutical research center of Harbin Bioengineering Corporation, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Lei Zhang
- Pharmaceutical research center of Harbin Bioengineering Corporation, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Qingyong Meng
- Pharmaceutical research center of Harbin Bioengineering Corporation, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Shujie Yuan
- Pharmaceutical research center of Harbin Bioengineering Corporation, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Boyan Song
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Zhenlong Wang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, People's Republic of China
| |
Collapse
|