1
|
Herrmann LW, Letti LAJ, Penha RDO, Soccol VT, Rodrigues C, Soccol CR. Bacillus genus industrial applications and innovation: First steps towards a circular bioeconomy. Biotechnol Adv 2024; 70:108300. [PMID: 38101553 DOI: 10.1016/j.biotechadv.2023.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
In recent decades, environmental concerns have directed several policies, investments, and production processes. The search for sustainable and eco-friendly strategies is constantly increasing to reduce petrochemical product utilization, fossil fuel pollution, waste generation, and other major ecological impacts. The concepts of circular economy, bioeconomy, and biorefinery are increasingly being applied to solve or reduce those problems, directing us towards a greener future. Within the biotechnology field, the Bacillus genus of bacteria presents extremely versatile microorganisms capable of producing a great variety of products with little to no dependency on petrochemicals. They are able to grow in different agro-industrial wastes and extreme conditions, resulting in healthy and environmentally friendly products, such as foods, feeds, probiotics, plant growth promoters, biocides, enzymes, and bioactive compounds. The objective of this review was to compile the variety of products that can be produced with Bacillus cells, using the concepts of biorefinery and circular economy as the scope to search for greener alternatives to each production method and providing market and bioeconomy ideas of global production. Although the genus is extensively used in industry, little information is available on its large-scale production, and there is little current data regarding bioeconomy and circular economy parameters for the bacteria. Therefore, as this work gathers several products' economic, production, and environmentally friendly use information, it can be addressed as one of the first steps towards those sustainable strategies. Additionally, an extensive patent search was conducted, focusing on products that contain or are produced by the Bacillus genus, providing an indication of global technology development and direction of the bacteria products. The Bacillus global market represented at least $18 billion in 2020, taking into account only the products addressed in this article, and at least 650 patent documents submitted per year since 2017, indicating this market's extreme importance. The data we provide in this article can be used as a base for further studies in bioeconomy and circular economy and show the genus is a promising candidate for a greener and more sustainable future.
Collapse
Affiliation(s)
- Leonardo Wedderhoff Herrmann
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil.
| | - Luiz Alberto Junior Letti
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil
| | - Rafaela de Oliveira Penha
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil
| | - Vanete Thomaz Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil
| | - Cristine Rodrigues
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil
| | - Carlos Ricardo Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Francisco H. dos Santos Street, CP 19011, Centro Politécnico, Curitiba, Paraná, 81531-980, Brazil
| |
Collapse
|
2
|
Nath PC, Sharma R, Debnath S, Sharma M, Inbaraj BS, Dikkala PK, Nayak PK, Sridhar K. Recent trends in polysaccharide-based biodegradable polymers for smart food packaging industry. Int J Biol Macromol 2023; 253:127524. [PMID: 37865365 DOI: 10.1016/j.ijbiomac.2023.127524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Artificial packaging materials, such as plastic, can cause significant environmental problems. Thus, the use of polysaccharide-based biodegradable polymers (cellulose, starch, and alginate) has the potential in the field of environmental sustainability, reprocessing, or protection of the environment. Morphological and structural alterations caused by material degradation have a substantial impact on polymer material characteristics. To avoid degradation during storage, it is critical to evaluate and comprehend the structure, characteristics, and behavior of modern bio-based materials for potential food packaging applications. Hence, this review focused on the various types of polysaccharide-based biodegradable polymers (cellulose, starch, and alginate), their properties, and their commercial potential for food packaging applications. In addition, we overviewed the recent development of polysaccharide-based biodegradable polymer (cellulose, starch, and alginate) packaging for food products. The review concluded that the membrane and chromatographics are widely used in production of cellulose, starch, and alginate-based biodegradable polymers. Also, nanotechnology-based food packaging is widely used to improve the properties of cellulose, starch, and alginate biodegradable polymers and the incorporation of active agents to enhance the shelf life of food products. Overall, the review highlighted the potential of cellulose, starch, and alginate biodegradable polymers in the food packaging industry and the need for potential research and development to improve their properties and commercial viability.
Collapse
Affiliation(s)
- Pinku Chandra Nath
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | - Ramesh Sharma
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Shubhankar Debnath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | | | - Praveen Kumar Dikkala
- College of Food Science and Technology, Acharya NG Ranga Agricultural University, Pulivendula 516390, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
3
|
Hu W, Zhou L, Chen JH. Conversion sweet sorghum biomass to produce value-added products. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:72. [PMID: 35765054 PMCID: PMC9241265 DOI: 10.1186/s13068-022-02170-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022]
Abstract
Currently, most biotechnological products are produced from sugar- or starch-containing crops via microbial conversion, but accelerating the conflict with food supply. Thus, it has become increasingly interesting for industrial biotechnology to seek alternative non-food feedstock, such as sweet sorghum. Value-added chemical production from sweet sorghum not only alleviates dependency and conflict for traditional starch feedstocks (especially corn), but also improves efficient utilization of semi-arid agricultural land resources, especially for China. Sweet sorghum is rich in components, such as fermentable carbohydrates, insoluble lignocellulosic parts and bioactive compounds, making it more likely to produce value-added chemicals. Thus, this review highlights detailed bioconversion methods and its applications for the production of value-added products from sweet sorghum biomass. Moreover, strategies and new perspectives on improving the production economics of sweet sorghum biomass utilization are also discussed, aiming to develop a competitive sweet sorghum-based economy.
Collapse
Affiliation(s)
- Wei Hu
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Libin Zhou
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ji-Hong Chen
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Rami Reddy Tadi S, Dutt Ravindran S, Balakrishnan R, Sivaprakasam S. Recombinant production of poly-(3-hydroxybutyrate) by Bacillus megaterium utilizing millet bran and rapeseed meal hydrolysates. BIORESOURCE TECHNOLOGY 2021; 326:124800. [PMID: 33556706 DOI: 10.1016/j.biortech.2021.124800] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Fermentative poly-3-hydroxybutyrate (PHB) production is mainly limited by the cost of raw material. In this present study, low-cost feedstock viz., millet bran residue (MBRH) and rapeseed meal hydrolysates were successfully utilized for PHB production. Metabolic engineering of Bacillus megaterium by co-expression of both precursor (phbRBC) and NADPH cofactor regeneration (zwf) genes resulted in 2.67-fold enhancement in PHB accumulation compared to wild strain. Modified logistic model characterized B.megaterium growth and PHB production effectively. The kinetic analysis proved that maximum cell concentration (15.01 g.L-1) and growth-associated constant (0.22 g.g-1) were found to be higher for initial MBRH concentration (S0 = 20 g.L-1). PHB production kinetics elucidated its expression in B.megaterium was growth-associated. PHB synthesized by B.megaterium was characterized using FTIR, NMR, XRD, DSC/TGA, FESEM and the physio-chemical properties enumerated its as a potential biodegradable plastic for industrial application.
Collapse
Affiliation(s)
- Subbi Rami Reddy Tadi
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Som Dutt Ravindran
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - Rengesh Balakrishnan
- Department of Pharmaceutical Technology, Mahendra Engineering College, Namakkal District 637503, Tamil Nadu, India
| | - Senthilkumar Sivaprakasam
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
5
|
Bomrungnok W, Arai T, Yoshihashi T, Sudesh K, Hatta T, Kosugi A. Direct production of polyhydroxybutyrate from waste starch by newly-isolated Bacillus aryabhattai T34-N4. ENVIRONMENTAL TECHNOLOGY 2020; 41:3318-3328. [PMID: 30987543 DOI: 10.1080/09593330.2019.1608314] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Polyhydroxybutyrate (PHB) is a natural microbial polyester produced by a variety of bacteria and archaea from renewable resources. PHB resembles some petrochemical plastics but is completely biodegradable. It is desirable to identify suitable microbial strains and develop processes that can directly use starch from agricultural wastes without commercial amylase treatment. Here, PHB production using starch from agricultural waste was developed using a newly isolated strain, Bacillus aryabhattai T34-N4. This strain hydrolyzed cassava pulp and oil palm trunk starch and accumulated up to 17 wt% PHB of the cell dry weight. The α-amylase of this strain, AmyA, showed high activity in the presence of cassava pulp starch (69.72 U) and oil palm trunk starch (70.53 U). High expression of amyA was recorded in the presence of cassava pulp starch, whereas low expression was detected in the presence of glucose. These data suggest that starch saccharification by amyA allows strain T34-N4 to grow and directly produce PHB from waste starch materials such as cassava pulp and oil palm trunk starch, which may be used as low-cost substrates.
Collapse
Affiliation(s)
- Wichittra Bomrungnok
- Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| | - Takamitsu Arai
- Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| | - Tadashi Yoshihashi
- Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Tamao Hatta
- Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| | - Akihiko Kosugi
- Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| |
Collapse
|
6
|
Production of polyhydroxybutyrate from oil palm empty fruit bunch (OPEFB) hydrolysates by Bacillus cereus suaeda B-001. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
Fed-batch production of vanillin by Bacillus aryabhattai BA03. N Biotechnol 2018; 40:186-191. [DOI: 10.1016/j.nbt.2017.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 07/17/2017] [Accepted: 07/30/2017] [Indexed: 11/21/2022]
|
8
|
Bhattacharyya C, Bakshi U, Mallick I, Mukherji S, Bera B, Ghosh A. Genome-Guided Insights into the Plant Growth Promotion Capabilities of the Physiologically Versatile Bacillus aryabhattai Strain AB211. Front Microbiol 2017; 8:411. [PMID: 28377746 PMCID: PMC5359284 DOI: 10.3389/fmicb.2017.00411] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/27/2017] [Indexed: 11/24/2022] Open
Abstract
Bacillus aryabhattai AB211 is a plant growth promoting, Gram-positive firmicute, isolated from the rhizosphere of tea (Camellia sinensis), one of the oldest perennial crops and a major non-alcoholic beverage widely consumed all over the world. The whole genome of B. aryabhattai AB211 was sequenced, annotated and evaluated with special focus on genomic elements related to plant microbe interaction. It’s genome sequence reveals the presence of a 5,403,026 bp chromosome. A total of 5226 putative protein-coding sequences, 16 rRNA, 120 tRNA, 8 ncRNAs, 58 non-protein coding genes, and 11 prophage regions were identified. Genome sequence comparisons between strain AB211 and other related environmental strains of B. aryabhattai, identified about 3558 genes conserved among all B. aryabhattai genomes analyzed. Most of the common genes involved in plant growth promotion activities were found to be present within core genes of all the genomes used for comparison, illustrating possible common plant growth promoting traits shared among all the strains of B. aryabhattai. Besides the core genes, some genes were exclusively identified in the genome of strain AB211. Functional annotation of the genes predicted in the strain AB211 revealed the presence of genes responsible for mineral phosphate solubilization, siderophores, acetoin, butanediol, exopolysaccharides, flagella biosynthesis, surface attachment/biofilm formation, and indole acetic acid production, most of which were experimentally verified in the present study. Genome analysis and experimental evidence suggested that AB211 has robust central carbohydrate metabolism implying that this bacterium can efficiently utilize the root exudates and other organic materials as an energy source. Genes for the production of peroxidases, catalases, and superoxide dismutases, that confer resistance to oxidative stresses in plants were identified in AB211 genome. Besides these, genes for heat shock tolerance, cold shock tolerance, glycine-betaine production, and antibiotic/heavy metal resistance that enable bacteria to survive biotic/abiotic stress were also identified. Based on the genome sequence information and experimental evidence as presented in this study, strain AB211 appears to be metabolically diverse and exhibits tremendous potential as a plant growth promoting bacterium.
Collapse
Affiliation(s)
| | - Utpal Bakshi
- Structural Biology and Bioinformatics Division, CSIR - Indian Institute of Chemical BiologyKolkata, India; Tea Board of India, Ministry of Commerce and IndustryKolkata, India
| | - Ivy Mallick
- Department of Biochemistry, Bose Institute Kolkata, India
| | | | - Biswajit Bera
- Tea Board of India, Ministry of Commerce and Industry Kolkata, India
| | | |
Collapse
|
9
|
Paz A, Carballo J, Pérez MJ, Domínguez JM. Bacillus aryabhattai BA03: a novel approach to the production of natural value-added compounds. World J Microbiol Biotechnol 2016; 32:159. [DOI: 10.1007/s11274-016-2113-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/20/2016] [Indexed: 11/29/2022]
|
10
|
Singhaboot P, Kaewkannetra P. A higher in value biopolymer product of polyhydroxyalkanoates (PHAs) synthesized by Alcaligenes latus in batch/repeated batch fermentation processes of sugar cane juice. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1046-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Draft genome of bagasse-degrading bacteria Bacillus aryabhattai GZ03 from deep sea water. Mar Genomics 2015; 19:13-4. [DOI: 10.1016/j.margen.2014.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 11/17/2022]
|