1
|
Ikram M, Zahoor M, Naeem M, Islam NU, Shah AB, Shahzad B. Bacterial oxidoreductive enzymes as molecular weapons for the degradation and metabolism of the toxic azo dyes in wastewater: a review. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Azo dyes are extremely toxic and pose significant environmental and health risks. Consequently, mineralization and conversion to simple compounds are required to avoid their hazardous effects. A variety of enzymes from the bacterial system are thought to be involved in the degradation and metabolism of azo dyes. Bioremediation, a cost effective and eco-friendly biotechnology, involving bacteria is powered by bacterial enzymes. As mentioned, several enzymes from the bacterial system serve as molecular weapons in the degradation of these dyes. Among these enzymes, azoreductase, oxidoreductase, and laccase are of great interest for the degradation and decolorization of azo dyes. Combination of the oxidative and reductive enzymes is used for the removal of azo dyes from water. The aim of this review article is to provide information on the importance of bacterial enzymes. The review also discusses the genetically modified microorganisms in the biodegradation of azo dyes in polluted water.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Chemistry , Abdul Wali Khan University Mardan , Mardan , 23200 , Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry , University of Malakand at Chakdara , Dir Lower Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Naeem
- Department of Chemistry , Abdul Wali Khan University Mardan , Mardan , 23200 , Pakistan
| | - Noor Ul Islam
- Department of Chemistry , University of Malakand at Chakdara , Dir Lower Khyber Pakhtunkhwa , Pakistan
| | - Abdul Bari Shah
- Division of Applied Life Science (BK21 Plus) , Institute of Agriculture and Life Sciences, Gyeongsang National University , Jinju 52828 , Korea
| | - Babar Shahzad
- Department of Biochemistry , Institute of Basic Medical Sciences, Khyber Medical University Peshawar Khyber Pakhtunkhwa , Peshawar , Pakistan
| |
Collapse
|
2
|
Jayapal M, Jagadeesan H, Krishnasamy V, Shanmugam G, Muniyappan V, Chidambaram D, Krishnamurthy S. Demonstration of a plant-microbe integrated system for treatment of real-time textile industry wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119009. [PMID: 35182656 DOI: 10.1016/j.envpol.2022.119009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/26/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The real-time textile dyes wastewater contains hazardous and recalcitrant chemicals that are difficult to degrade by conventional methods. Such pollutants, when released without proper treatment into the environment, impact water quality and usage. Hence, the textile dye effluent is considered a severe environmental pollutant. It contains mixed contaminants like dyes, sodium bicarbonate, acetic acid. The physico-chemical treatment of these wastewaters produces a large amount of sludge and costly. Acceptance of technology by the industry mandates that it should be efficient, cost-effective and the treated water is safe for reuse. A sequential anaerobic-aerobic plant-microbe system with acclimatized microorganisms and vetiver plants, was evaluated at a pilot-scale on-site. At the end of the sequential process, decolorization and total aromatic amine (TAA) removal were 78.8% and 69.2% respectively. Analysis of the treated water at various stages using Fourier Transform Infrared (FTIR), High Performance Liquid Chromatography (HPLC)) Gas Chromatography-Mass Spectrometry (GC-MS) Liquid Chromatography-Mass Spectrometry (LC-MS) indicated that the dyes were decolourized and the aromatic amine intermediates formed were degraded to give aliphatic compounds. Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM) analysis showed interaction of microbe with the roots of vetiver plants. Toxicity analysis with zebrafish indicated the removal of toxins and teratogens.
Collapse
Affiliation(s)
| | - Hema Jagadeesan
- PSG College of Technology, Coimbatore, Tamil Nadu, 641 004, India.
| | | | | | | | - Dinesh Chidambaram
- M/s.Dinesh Process, (Soft Flow Unit, Dyers of Knitted Fabrics), College Road, Analpalayam, Sirupuluvapatti, Tirupur, TamilNadu, 641603, India
| | - Satheesh Krishnamurthy
- School of Engineering and Innovation, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| |
Collapse
|
3
|
Newton K, Gonzalez E, Pitre FE, Brereton NJB. Microbial community origin and fate through a rural wastewater treatment plant. Environ Microbiol 2022; 24:2516-2542. [PMID: 35466495 DOI: 10.1111/1462-2920.16025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
Abstract
Conventional wastewater treatment relies on a complex microbiota; however, much of this community is still to be characterised. To better understand the origin, dynamics and fate of bacteria within a wastewater treatment plant: untreated primary wastewater, activated sludge, and post-treatment effluent were characterised. From 3,163 Exact Sequence Variants (ESVs), 860 were annotated to species-level. In primary wastewater, 28% of ESVs were putative bacterial species previously associated with humans, 14% with animals and 5% as common to the environment. Differential abundance analysis revealed significant relative reductions in ESVs from potentially humans-associated species from primary wastewater to activated sludge, and significant increases in ESVs from species associated with nutrient cycling. Between primary wastewater and effluent, 51% of ESVs from human-associated species did not significantly differ, and species such as Bacteroides massiliensis and Bacteroides dorei increased. These findings illustrate that activated sludge increased extracellular protease and urease-producing species, ammonia and nitrite oxidizers, denitrifiers and specific phosphorus accumulators. Although many human-associated species declined, some persisted in effluent, including strains of potential health or environmental concern. Species-level microbial assessment may be useful for understanding variation in wastewater treatment efficiency as well as for monitoring the release of microbes into surface water and the wider ecosystem. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kymberly Newton
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, H1X 2B2, Canada
| | - Emmanuel Gonzalez
- Canadian Center for Computational Genomics, Department of Human Genetics, McGill University, Montréal, H3A 1A4, Canada
| | - Frederic E Pitre
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, H1X 2B2, Canada
| | - Nicholas J B Brereton
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, H1X 2B2, Canada
| |
Collapse
|
4
|
Nanomaterials: An alternative source for biodegradation of toxic dyes. Food Chem Toxicol 2022; 164:112996. [PMID: 35398443 DOI: 10.1016/j.fct.2022.112996] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022]
Abstract
Environment contamination is a colossal worriment across the world, owing to its detrimental and negative impact on health and ecological systems. Dyes are one of the synthetic organic chemicals that are utilised in a variety of fields, including textiles. As a result, throughout one's production and subsequently in fibre colouring, these are becoming frequent industry-contributed contaminants. Increasing globalisation of international market has presented a problem to textile sector in terms of consistency and production. Textile processors' primary concern, as the highly competitive environment and environmental standards grow more severe is about being mindful of the grade of goods and even non-toxicity of their production processes. There seems to be an immediate necessity to look for methods and technologies which are useful in removing dye colours. Even though each has benefits and weaknesses, many physical, chemical, and biological approaches were explored and used with the application being dependent on the effluent properties, technical feasibility, and cost. Several remediation technologies are already developed, but they seem to be ineffective at removing dyes completely. There is a fast growth of nanoparticles applications in the past few years which has opened up newer, innovating, highly efficient, and low-cost dyes remediation systems. Nanomaterials with large surface areas change surface characteristics and distinctive electron conducting capabilities which make them ideal candidate for the treatment of wastewater that contains dyes. In this review, we have highlighted not only the role of nanotechnology in dye remediation processes but also different types of nanomaterials that can be used for the remediation of dyes.
Collapse
|
5
|
Ameenudeen S, Unnikrishnan S, Ramalingam K. Statistical optimization for the efficacious degradation of reactive azo dyes using Acinetobacter baumannii JC359. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111512. [PMID: 33162232 DOI: 10.1016/j.jenvman.2020.111512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/14/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study is to biodegrade the reactive azo dyes- Reactive black 5 (B-GDN), Reactive red 120 (RP) and Reactive blue 19 (RNB) using bacteria Acinetobacter baumannii JC359. Optimization of the process variables such as pH, temperature, dye concentration, incubation time, inoculum volume and dynamic incubating conditions for dye decolorization were performed using One Factor At a Time (OFAT) approach. Box- Behnken Design (BBD) of Response Surface Methodology (RSM) was further used to optimize the process variables. Decolorization rates of 98.8% for B-GDN, 96% for RP and 96.2% for RNB were observed after treating with A. baumannii for 48 h using the obtained design value. UV-Visible spectrophotometry and FT-IR spectral scan of dye and degraded metabolites confirmed that biodegradation had taken place. Further, the phytotoxicity evaluation was performed with Vigna radiata seeds and the degraded metabolites proved to be non-toxic. Docking studies were performed and it was found that there was significant binding affinity between the dyes and azoreductase enzyme of A. baumannii. Thus, the biodegradation of these reactive azo dyes was found to be a suitable alternative for the effective treatment of textile dyes.
Collapse
Affiliation(s)
- Shabnam Ameenudeen
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600 048, India.
| | - Sneha Unnikrishnan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600 048, India.
| | - Karthikeyan Ramalingam
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600 048, India.
| |
Collapse
|
6
|
Wu JW, Wu CR, Zhou CS, Dong LL, Liu BF, Xing DF, Yang SS, Fan JN, Feng LP, Cao GL, You SJ. Fate and removal of antibiotic resistance genes in heavy metals and dye co-contaminated wastewater treatment system amended with β-cyclodextrin functionalized biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137991. [PMID: 32213407 DOI: 10.1016/j.scitotenv.2020.137991] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
Biochar has been received increasing concerns regarding its environmental effect, which is promising in wastewater treatment. In this study, the performance of β-cyclodextrin functionalized biochar (β-BC) on the removal of antibiotic resistance genes (ARGs) in wastewater treatment under the co-stresses of heavy metals and dye is evaluated. Results show that when 20 mg/L heavy metals (HMs) and 150 mg/L methyl orange (MO) are present in daily fed influent, only 0.05 mg/L HMs residual and 96.79%-98.84% MO removal efficiency achieved in β-BC additive group, compare to 0.16 mg/L and 87.92%-94.11% of that in control, respectively, indicating that β-BC can benefits the performance of contaminants removal. To evaluate the role of β-BC plays on ARGs in multi-contaminants stressed system, tet W, tet M, sul-1, sul-2, blaTEM, oxa-1, qnr-S, erm-B and intI-1 are identified. The relative abundance of all identified ARGs are decreased when β-BC presence compared to the corresponding groups without β-BC additive. The diversity and composition of microbial community are explored and the reduction of potential antibiotic-resistant bacteria is speculated as a driver of ARGs removal. In conclusion, our study demonstrates that β-BC possesses the ability to promote the removal of ARGs during continuous wastewater treatment under HMs-MO co-contaminant.
Collapse
Affiliation(s)
- Ji-Wen Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cong-Rong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chun-Shuang Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li-Li Dong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia-Ning Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li-Ping Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guang-Li Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Shi-Jie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
7
|
Mishra V, Sharma U, Rawat D, Benson D, Singh M, Sharma RS. Fast-changing life-styles and ecotoxicity of hair dyes drive the emergence of hidden toxicants threatening environmental sustainability in Asia. ENVIRONMENTAL RESEARCH 2020; 184:109253. [PMID: 32145548 DOI: 10.1016/j.envres.2020.109253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
The practice of hair dyeing is a rapidly expanding industry on a global scale; however, it has become a major concern for Asian countries because they have been undergoing rapid transformations of their environment and lifestyles. While the socio-economic benefits and impacts of this globalization trend are widely understood, the environmental effects are largely unknown. In particular, commonly available oxidative dyes potentially pose specific environmental risks due to their use of a toxic aromatic amine p-Phenylenediamine (PPD). In investigating the environmental impacts of PPD chemicals, we first provide context to the study by setting out the socio-psychological drivers to industrial expansion in Asian countries along with an overview of research into its effects, to show that its environmental impacts are under-researched. We then investigate the environmental toxicity of PPD by focusing on the role of microbes in metabolizing waste products. Results show that Acinetobacter baumannii EB1 isolated from dye effluent prevents autoxidation of PPD under oxygen-enriched (shaking) or oxygen-deficient (static) conditions representing different environmental settings. Microbes transformed PPD into more toxic metabolites, which then significantly reduced plant growth, thereby having a direct bearing on ecosystem services. Based on the findings, we argue that stricter regulatory controls on hair dye wastewater are necessary, particularly in newly industrialising Asian countries where the expansion of commercial practice is most prevalent.
Collapse
Affiliation(s)
- Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007, India.
| | - Udita Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007, India
| | - Deepak Rawat
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007, India
| | - David Benson
- Environment and Sustainability Institute and Department of Politics, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Mrinalini Singh
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007, India
| | - Radhey Shyam Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
8
|
Shen L, Jin Z, Xu W, Jiang X, Shen YX, Wang Y, Lu Y. Enhanced Treatment of Anionic and Cationic Dyes in Wastewater through Live Bacteria Encapsulation Using Graphene Hydrogel. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liang Shen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Ziheng Jin
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Wenhao Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Xia Jiang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yue-xiao Shen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| |
Collapse
|
9
|
Castellanos NJ, Martinez Rojas Z, Camargo HA, Biswas S, Granados-Oliveros G. Congo red decomposition by photocatalytic formation of hydroxyl radicals (·OH) using titanium metal–organic frameworks. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0271-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Li R, Ning XA, Sun J, Wang Y, Liang J, Lin M, Zhang Y. Decolorization and biodegradation of the Congo red by Acinetobacter baumannii YNWH 226 and its polymer production's flocculation and dewatering potential. BIORESOURCE TECHNOLOGY 2015; 194:233-239. [PMID: 26207869 DOI: 10.1016/j.biortech.2015.06.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/25/2015] [Accepted: 06/28/2015] [Indexed: 05/27/2023]
Abstract
The strain Acinetobacter baumannii YNWH 226 was utilized to degrade Congo red (CR) under aerobic conditions. CR was employed as the sole carbon source to produce extracellular polymeric substances (EPS) used as potent bioflocculants in this strain. A total of 98.62% CR was removed during the 48-h decoloration experiments using CR (100 mg/L). A total of 83% bioadsorption and 65% biodegradation were responsible for the decoloration and degradation of CR through the strain. The bioflocculant showed high flocculation activity and dewaterability on textile dyeing sludge. A maximum flocculation of 78.62% with a minimum SBF of 3.07×10(9) s(2)/g and a CST of 58.4 s were achieved. We investigated the internal relationship between the decolorization efficiency of YNWH 226 and the flocculation activity and dewatering capacity of its EPS. The components and structure of the EPS highly influenced the decolorization efficiency of CR and the flocculation activity and dewatering capacity on sludge.
Collapse
Affiliation(s)
- Ruijing Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xun-an Ning
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jian Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jieying Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Meiqing Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaping Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
11
|
Neoh CH, Lam CY, Lim CK, Yahya A, Bay HH, Ibrahim Z, Noor ZZ. Biodecolorization of recalcitrant dye as the sole sourceof nutrition using Curvularia clavata NZ2 and decolorization ability of its crude enzymes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:11669-11678. [PMID: 25850745 DOI: 10.1007/s11356-015-4436-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
Extensive use of recalcitrant azo dyes in textile and paper industries poses a direct threat to the environment due to the carcinogenicity of their degradation products. The aim of this study was to investigate the efficiency of Curvularia clavata NZ2 in decolorization of azo dyes. The ability of the fungus to decolorize azo dyes can be evaluated as an important outcome as existing effluent treatment is unable to remove the dyes effectively. C. clavata has the ability to decolorize Reactive Black 5 (RB5), Acid Orange 7 (AO7), and Congo Red azo dyes, utilizing these as sole sources of carbon and nitrogen. Ultraviolet-visible (UV-vis) spectroscopy and Fourier infrared spectroscopy (FTIR) analysis of the extracted RB5's metabolites along with desorption tests confirmed that the decolorization process occurred due to degradation and not merely by adsorption. Enzyme activities of extracellular enzymes such as carboxymethylcellulase (CMCase), xylanase, laccase, and manganese peroxidase (MnP) were also detected during the decolorization process. Toxicity expressed as inhibition of germination was reduced significantly in fungal-treated azo dye solution when compared with the control. The cultivation of C. clavata under sequential batch system also recorded a decolorization efficiency of above 90%. The crude enzyme secreted by C. clavata also showed excellent ability to decolorize RB5 solutions with concentrations of 100 ppm (88-92%) and 1000 ppm (70-77%) without redox mediator. This proved that extracellular enzymes produced by C. clavata played a major role in decolorization of RB5.
Collapse
Affiliation(s)
- Chin Hong Neoh
- Institute of Environmental and Water Resource Management, Water Research Alliance, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | | | | | | | | | | | | |
Collapse
|