1
|
Srinak N, Chiewchankaset P, Kalapanulak S, Panichnumsin P, Saithong T. Metabolic cross-feeding interactions modulate the dynamic community structure in microbial fuel cell under variable organic loading wastewaters. PLoS Comput Biol 2024; 20:e1012533. [PMID: 39418284 PMCID: PMC11521316 DOI: 10.1371/journal.pcbi.1012533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/29/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
The efficiency of microbial fuel cells (MFCs) in industrial wastewater treatment is profoundly influenced by the microbial community, which can be disrupted by variable industrial operations. Although microbial guilds linked to MFC performance under specific conditions have been identified, comprehensive knowledge of the convergent community structure and pathways of adaptation is lacking. Here, we developed a microbe-microbe interaction genome-scale metabolic model (mmGEM) based on metabolic cross-feeding to study the adaptation of microbial communities in MFCs treating sulfide-containing wastewater from a canned-pineapple factory. The metabolic model encompassed three major microbial guilds: sulfate-reducing bacteria (SRB), methanogens (MET), and sulfide-oxidizing bacteria (SOB). Our findings revealed a shift from an SOB-dominant to MET-dominant community as organic loading rates (OLRs) increased, along with a decline in MFC performance. The mmGEM accurately predicted microbial relative abundance at low OLRs (L-OLRs) and adaptation to high OLRs (H-OLRs). The simulations revealed constraints on SOB growth under H-OLRs due to reduced sulfate-sulfide (S) cycling and acetate cross-feeding with SRB. More cross-fed metabolites from SRB were diverted to MET, facilitating their competitive dominance. Assessing cross-feeding dynamics under varying OLRs enabled the execution of practical scenario-based simulations to explore the potential impact of elevated acidity levels on SOB growth and MFC performance. This work highlights the role of metabolic cross-feeding in shaping microbial community structure in response to high OLRs. The insights gained will inform the development of effective strategies for implementing MFC technology in real-world industrial environments.
Collapse
Affiliation(s)
- Natchapon Srinak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Porntip Chiewchankaset
- Center for Agricultural Systems Biology (CASB), Systems Biology and Bioinformatics research laboratory, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Saowalak Kalapanulak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- Center for Agricultural Systems Biology (CASB), Systems Biology and Bioinformatics research laboratory, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| | - Pornpan Panichnumsin
- Excellent Center of Waste Utilization and Management, National Center for Genetic Engineering and Biotechnology, National Sciences and Technology Development Agency at King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Treenut Saithong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
- Center for Agricultural Systems Biology (CASB), Systems Biology and Bioinformatics research laboratory, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang Khun Thian), Bangkok, Thailand
| |
Collapse
|
2
|
Pugazhendi A, Jamal MT. Application of halophiles in UMFC (upflow microbial fuel cell) for the treatment of saline olive oil industrial wastewater coupled with eco-energy yield. 3 Biotech 2023; 13:351. [PMID: 37810189 PMCID: PMC10550894 DOI: 10.1007/s13205-023-03772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023] Open
Abstract
The olive oil industry faces a major problem of treating the wastewater with high organic content and safe disposal. Olive oil industrial wastewater (OOIWW) consists of highly toxic environmental pollutants with high salinity. Saline olive oil industrial wastewater was treated using halophilic consortium in UMFC (upflow microbial fuel cell) mobilized with carbon felt as electrode. Total and soluble COD (chemical oxygen demand), total suspended solids and phenol content removal were studied at different organic loads (0.56, 0.77, 1.05, 1.26, 1.52 and 1.8 gCOD/L). UMFC with OOIWW was optimized at 1.52 gCOD/L for high organic removal and corresponding electricity production. Total COD, soluble COD, TSS and phenol removal were 91%, 89%, 78%, and complete removal of phenol was accomplished at the optimized organic load (1.52 gCOD/L). Correspondingly, the maximum bioenergy yield was 784 mV with 439 mW/m2 (power density) and 560 mA/m2 (current density), respectively. The presence of prominent halophilic exo-electrogens such as Ochrobactrum, Marinobacter, Rhodococcus and Bacillus potently treated the OOIWW and exhibited high energy yield.
Collapse
Affiliation(s)
- Arulazhagan Pugazhendi
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mamdoh T. Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
3
|
Ramanaiah SV, Chandrasekhar K, Cordas CM, Potoroko I. Bioelectrochemical systems (BESs) for agro-food waste and wastewater treatment, and sustainable bioenergy-A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121432. [PMID: 36907238 DOI: 10.1016/j.envpol.2023.121432] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 02/09/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Producing food by farming and subsequent food manufacturing are central to the world's food supply, accounting for more than half of all production. Production is, however, closely related to the creation of large amounts of organic wastes or byproducts (agro-food waste or wastewater) that negatively impact the environment and the climate. Global climate change mitigation is an urgent need that necessitates sustainable development. For that purpose, proper agro-food waste and wastewater management are essential, not only for waste reduction but also for resource optimization. To achieve sustainability in food production, biotechnology is considered as key factor since its continuous development and broad implementation will potentially benefit ecosystems by turning polluting waste into biodegradable materials; this will become more feasible and common as environmentally friendly industrial processes improve. Bioelectrochemical systems are a revitalized, promising biotechnology integrating microorganisms (or enzymes) with multifaceted applications. The technology can efficiently reduce waste and wastewater while recovering energy and chemicals, taking advantage of their biological elements' specific redox processes. In this review, a consolidated description of agro-food waste and wastewater and its remediation possibilities, using different bioelectrochemical-based systems is presented and discussed together with a critical view of the current and future potential applications.
Collapse
Affiliation(s)
- S V Ramanaiah
- Food and Biotechnology Research Lab, South Ural State University (National Research University), 454080, Chelyabinsk, Russian Federation.
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Cristina M Cordas
- Laboratório Associado para a Química Verde | Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Irina Potoroko
- Food and Biotechnology Research Lab, South Ural State University (National Research University), 454080, Chelyabinsk, Russian Federation
| |
Collapse
|
4
|
Sonawane JM, Mahadevan R, Pandey A, Greener J. Recent progress in microbial fuel cells using substrates from diverse sources. Heliyon 2022; 8:e12353. [PMID: 36582703 PMCID: PMC9792797 DOI: 10.1016/j.heliyon.2022.e12353] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Increasing untreated environmental outputs from industry and the rising human population have increased the burden of wastewater and other waste streams on the environment. The most prevalent wastewater treatment methods include the activated sludge process, which requires aeration and is, therefore, energy and cost-intensive. The current trend towards a circular economy facilitates the recovery of waste materials as a resource. Along with the amount, the complexity of wastewater is increasing day by day. Therefore, wastewater treatment processes must be transformed into cost-effective and sustainable methods. Microbial fuel cells (MFCs) use electroactive microbes to extract chemical energy from waste organic molecules to generate electricity via waste treatment. This review focuses use of MFCs as an energy converter using wastewater from various sources. The different substrate sources that are evaluated include industrial, agricultural, domestic, and pharmaceutical types. The article also highlights the effect of operational parameters such as organic load, pH, current, and concentration on the MFC output. The article also covers MFC functioning with respect to the substrate, and the associated performance parameters, such as power generation and wastewater treatment matrices, are given. The review also illustrates the success stories of various MFC configurations. We emphasize the significant measures required to fill in the gaps related to the effect of substrate type on different MFC configurations, identification of microbes for use as biocatalysts, and development of biocathodes for the further improvement of the system. Finally, we shortlisted the best performing substrates based on the maximum current and power, Coulombic efficiency, and chemical oxygen demand removal upon the treatment of substrates in MFCs. This information will guide industries that wish to use MFC technology to treat generated effluent from various processes.
Collapse
Affiliation(s)
- Jayesh M. Sonawane
- Department of Chemical Engineering and Applied Chemistry, University of Toronto M5S 3E5, Canada
- Département de Chimie, Faculté des Sciences et de génie, Université Laval, Québec City, QC, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto M5S 3E5, Canada
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
- Centre for Energy and Environmental Sustainability, Lucknow, 226 029, India
| | - Jesse Greener
- Département de Chimie, Faculté des Sciences et de génie, Université Laval, Québec City, QC, Canada
- CHU de Québec, Centre de recherche, Université Laval, 10 rue de l'Espinay, Québec, QC, Canada
| |
Collapse
|
5
|
Rafieenia R, Sulonen M, Mahmoud M, El-Gohary F, Rossa CA. Integration of microbial electrochemical systems and photocatalysis for sustainable treatment of organic recalcitrant wastewaters: Main mechanisms, recent advances, and present prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153923. [PMID: 35182645 DOI: 10.1016/j.scitotenv.2022.153923] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/20/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
In recent years, microbial electrochemical systems (MESs) have demonstrated to be an environmentally friendly technology for wastewater treatment and simultaneous production of value-added products or energy. However, practical applications of MESs for the treatment of recalcitrant wastewater are limited by their low power output and slow rates of pollutant biodegradation. As a novel technology, hybrid MESs integrating biodegradation and photocatalysis have shown great potential to accelerate the degradation of bio-recalcitrant pollutants and increase the system output. In this review, we summarize recent advances of photo-assisted MESs for enhanced removal of recalcitrant pollutants, and present further discussion about the synergistic effect of biodegradation and photocatalysis. In addition, we analyse in detail different set-up configurations, discuss mechanisms of photo-enhanced extracellular electron transfer, and briefly present ongoing research cases. Finally, we highlight the current limitations and corresponding research gaps, and propose insights for future research.
Collapse
Affiliation(s)
- Razieh Rafieenia
- Department of Microbial Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom.
| | - Mira Sulonen
- Department of Microbial Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Mohamed Mahmoud
- Water Pollution Research Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo 12311, Egypt
| | - Fatma El-Gohary
- Water Pollution Research Department, National Research Centre, 33 El-Buhouth St., Dokki, Cairo 12311, Egypt
| | - Claudio Avignone Rossa
- Department of Microbial Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| |
Collapse
|
6
|
From Waste to Watts: Updates on Key Applications of Microbial Fuel Cells in Wastewater Treatment and Energy Production. SUSTAINABILITY 2022. [DOI: 10.3390/su14020955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Due to fossil fuel depletion and the rapid growth of industry, it is critical to develop environmentally friendly and long-term alternative energy technologies. Microbial fuel cells (MFCs) are a powerful platform for extracting energy from various sources and converting it to electricity. As no intermediate steps are required to harness the electricity from the organic substrate’s stored chemical energy, MFC technology offers a sustainable alternative source of energy production. The generation of electricity from the organic substances contained in waste using MFC technology could provide a cost-effective solution to the issue of environmental pollution and energy shortages in the near future. Thus, technical advancements in bioelectricity production from wastewater are becoming commercially viable. Due to practical limitations, and although promising prospects have been reported in recent investigations, MFCs are incapable of upscaling and of high-energy production. In this review paper, intensive research has been conducted on MFCs’ applications in the treatment of wastewater. Several types of waste have been extensively studied, including municipal or domestic waste, industrial waste, brewery wastewater, and urine waste. Furthermore, the applications of MFCs in the removal of nutrients (nitrogen and sulphates) and precious metals from wastewater were also intensively reviewed. As a result, the efficacy of various MFCs in achieving sustainable power generation from wastewater has been critically addressed in this study.
Collapse
|
7
|
Prathiba S, Kumar PS, Vo DVN. Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment. CHEMOSPHERE 2022; 286:131856. [PMID: 34399268 DOI: 10.1016/j.chemosphere.2021.131856] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
The development in urbanization, growth in industrialization and deficiency in crude oil wealth has made to focus more for the renewable and also sustainable spotless energy resources. In the past two decades, the concepts of microbial fuel cell have caught more considerations among the scientific societies for the probability of converting, organic waste materials into bio-energy using microorganisms catalyzed anode, and enzymatic/microbial/abiotic/biotic cathode electro-chemical reactions. The added benefit with MFCs technology for waste water treatment is numerous bio-centered processes are available such as sulfate removal, denitrification, nitrification, removal of chemical oxygen demand and biological oxygen demand and heavy metals removal can be performed in the same MFC designed systems. The various factors intricate in MFC concepts in the direction of bioenergy production consists of maximum coulombic efficiency, power density and also the rate of removal of chemical oxygen demand which calculates the efficacy of the MFC unit. Even though the efficacy of MFCs in bioenergy production was initially quietly low, therefore to overcome these issues few modifications are incorporated in design and components of the MFC units, thereby functioning of the MFC unit have improvised the rate of bioenergy production to a substantial level by this means empowering application of MFC technology in numerous sectors including carbon capture, bio-hydrogen production, bioremediation, biosensors, desalination, and wastewater treatment. The present article reviews about the microbial community, types of substrates and information about the several designs of MFCs in an endeavor to get the better of practical difficulties of the MFC technology.
Collapse
Affiliation(s)
- S Prathiba
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
8
|
Jain S, Mungray AK. Comparative study of different hydro-dynamic flow in microbial fuel cell stacks. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Munoz-Cupa C, Hu Y, Xu C, Bassi A. An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142429. [PMID: 33254845 DOI: 10.1016/j.scitotenv.2020.142429] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Wastewater treatment is a high-cost and energy-intensive process not only due to large amounts of pollutants but also for the large volumes of water to be treated, which are mainly generated by human activities and different industries. In this regard, biological wastewater treatments have become substitutes to the current technologies, owing to the improved treatment efficiency and added value. Microbial fuel cells (MFCs) as one of the promising biological treatments have arisen as a viable solution for chemical oxygen demand (COD) removal and electricity generation simultaneously. Therefore, in this article, the effects of various operating conditions on the COD removal and power production from MFCs are thoroughly discussed. In addition, the advantages and weaknesses of current MFCs technologies used for different types of wastewater are summarized. Finally, the technical barriers facing by MFCs operation and the economic feasibility of using MFCs for wastewater treatment are provided.
Collapse
Affiliation(s)
- Carlos Munoz-Cupa
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 0A7, Canada
| | - Yulin Hu
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 0A7, Canada.
| | - Chunbao Xu
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 0A7, Canada
| | - Amarjeet Bassi
- Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 0A7, Canada.
| |
Collapse
|
10
|
Influence of Humidity on Performance of Single Chamber Air-Cathode Microbial Fuel Cells with Different Separators. Processes (Basel) 2020. [DOI: 10.3390/pr8070861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The maximum performance of microbial fuel cells (MFCs) is significantly affected by the reduction reactions in the cathode, but their optimum condition is not fully understood yet. The air-cathode MFC operations with different separators (Nafion 117 and polypropylene (PP80) were evaluated at various relative humidity (RH) at the cathode chamber. Air cathode MFCs with a Nafion 117 separator at RH of 90 ± 2% produced the highest cell voltage of 0.35 V (600 Ω) and power density of 116 mW/m2. With a PP80 separator, the maximum power generation of 381 mW/m2 was obtained at a relatively lower RH of 30 ± 2%. The cyclic voltammogram and Tafel analysis indicated that the best performance of cathodic oxygen reduction reactions could be observed at 90% RH for Nafion and 50% RH for the PP80 separator. Additionally, the RH conditions also affected the anodic reactions and oxygen mass transfer rates to the anode chamber through the cathode and separators. This study suggests that the optimum RH condition at the cathode is important in order to obtain a high performance of MFC operations and needs to be controlled at different optimum levels depending on the characteristics of the separators.
Collapse
|
11
|
Hou LG, Yang QZ, Li J. Electricity Effectively Utilization by Integrating Microbial Fuel Cells with Microbial Immobilization Technology for Denitrification. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0470-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Khan N, Anwer AH, Ahmad A, Sabir S, Sevda S, Khan MZ. Investigation of CNT/PPy-Modified Carbon Paper Electrodes under Anaerobic and Aerobic Conditions for Phenol Bioremediation in Microbial Fuel Cells. ACS OMEGA 2020; 5:471-480. [PMID: 31956793 PMCID: PMC6964299 DOI: 10.1021/acsomega.9b02981] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/20/2019] [Indexed: 06/01/2023]
Abstract
The study presents the comparative bioelectrochemical treatment of phenol in anodic and cathodic compartments of four identical dual chambered microbial fuel cells (MFCs) with bare and multiwalled carbon nanotube/polypyrrole (MWCNT/PPy)-coated electrodes, respectively. It was observed that systems performing biocathodic treatment of phenol performed better as compared to the systems performing bioanodic treatment. The maximum power densities for bioanodic phenol treatment using bare and coated electrodes were found to be 469.038 and 560.719 mW/m2, while for biocathodic treatment, they were observed to be 604.804 and 650.557 mW/m2, respectively. The MFCs performing biocathodic treatment of phenol consistently showed higher chemical oxygen demand removal efficiency, Coulombic efficiency, and power density and indicated the better performance of the biocathodic bare (B-MFC) and coated (C-MFC) MFCs as compared to the bioanodic B-MFC and C-MFC. UV/vis spectrophotometry revealed that the MWCNT/PPy-coated carbon paper worked significantly better in the treatment of phenol with admirable treatment obtained within a week of the experiment as compared to the system with bare carbon paper. Cyclic voltammetry asserted better electrochemical activity of the MFC systems with coated electrodes in the treatment of phenol. The electrochemical impedance spectroscopy data also supported the better performance of biocathodic phenol treatment with lower internal and charge transfer resistances. The scanning electron microscopy images confirmed the active biofilm formation on the electrode surface. The study indicates MFC as a viable option for the treatment of recalcitrant chemical compounds with energy recovery.
Collapse
Affiliation(s)
- Nishat Khan
- Environmental
Research Laboratory, Department of Chemistry and Industrial Chemistry
Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, Uttar Pradesh, India
| | - Abdul Hakeem Anwer
- Environmental
Research Laboratory, Department of Chemistry and Industrial Chemistry
Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, Uttar Pradesh, India
| | - Anees Ahmad
- Environmental
Research Laboratory, Department of Chemistry and Industrial Chemistry
Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, Uttar Pradesh, India
| | - Suhail Sabir
- Environmental
Research Laboratory, Department of Chemistry and Industrial Chemistry
Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, Uttar Pradesh, India
| | - Surajbhan Sevda
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Mohammad Zain Khan
- Environmental
Research Laboratory, Department of Chemistry and Industrial Chemistry
Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, Uttar Pradesh, India
| |
Collapse
|
13
|
Yasar Arafath K, Baskaralingam P, Gopinath S, Nilavunesan D, Sivanesan S. Degradation of phenol from retting-pond wastewater using anaerobic sludge reactor integrated with photo catalytic treatment. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Process validation of integrated bioelectrochemical and membrane reactor for synchronous bioenergy extraction and sustainable wastewater treatment at a semi-pilot scale. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
15
|
Banu JR, Kumar MD, Gunasekaran M, Kumar G. Biopolymer production in bio electrochemical system: Literature survey. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Ndayisenga F, Yu Z, Yu Y, Lay CH, Zhou D. Bioelectricity generation using microalgal biomass as electron donor in a bio-anode microbial fuel cell. BIORESOURCE TECHNOLOGY 2018; 270:286-293. [PMID: 30241063 DOI: 10.1016/j.biortech.2018.09.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
In this study, microalgal biomass waste (Chlorella regularis) was treated while simultaneously producing bioelectricity in a microbial fuel cell (MFC). Algal biomass was the sole electron donor and was enriched with easily biodegradable proteins (46%) and carbohydrates (22%). The generated power density was 0.86 W/m2 and the columbic efficiency reached ∼61.5%.The power generation could be further increased to 1.07 W/m2 by using a biomass waste concentration enhancement strategy with maximum chemical oxygen demand (COD) removal of ∼65.2%. Via direct comparison, the power generation and COD removal capability of the algal-fed MFC was close to that of the commercial acetate-fed MFC. The algae-fed MFC presented superior electrochemical characteristics that were attributed to the complicated composition of the biomass anolyte. It possessed a multiple anode respiring bacterial group and diverse microbial community. Hence, this study provides a new strategy for the utilization of microalgal biomass as a bioresource.
Collapse
Affiliation(s)
- Fabrice Ndayisenga
- School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Zhisen Yu
- School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Yang Yu
- School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Chyi-How Lay
- General Education Center/Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung 40724, Taiwan
| | - Dandan Zhou
- School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
17
|
Karuppiah T, Pugazhendi A, Subramanian S, Jamal MT, Jeyakumar RB. Deriving electricity from dye processing wastewater using single chamber microbial fuel cell with carbon brush anode and platinum nano coated air cathode. 3 Biotech 2018; 8:437. [PMID: 30306006 DOI: 10.1007/s13205-018-1462-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/26/2018] [Indexed: 01/03/2023] Open
Abstract
Single chamber air cathode microbial fuel cell (MFC) is a promising and sustainable technology to generate electricity. In the present study, the potential of air cathode MFC treating dye processing wastewater was investigated at various organic loads with interest focused on power densities, organic removal and coulombic efficiencies. The highest power density of about 515 mW/m2 (6.03 W/m3) with 56% of coulombic efficiency was procured at 1.0 (g COD/L) organic load. The high potency of TCOD (total chemical oxygen demand), SCOD (soluble chemical oxygen demand) and TSS (Total Suspended Solids) removal of about 85%, 73% and 68% respectively was achieved at the organic load of 1.0 (g COD/L). The bacterial strains in anode region at the initial stage of MFC operation were reported to be responsible for potential organic removal. The bacterial strains in air cathode MFC were identified as Paenibacillus sp. strain JRA1 (MH27077), Pseudomonas sp. strain JRA2 (MH27078), Ochrobactrum sp. strain JRA3 (MH27079), Sphingobacterium sp. strain JRA4 (MH27080), Stenotrophomonas sp. strain JRA5 (MH27081), Bacillus sp. strain JRA6 (MH27082) and Clostridium sp. strain JRA7 (MH27083) using phylogenetic analysis. After 60 days of air cathode MFC operation, the bacterial community in biofilm samples was dominated by Bacillus, Ochrobactrum and Pseudomonas (20-22%). The biofilm sample collected from the carbon brush consisted of Bacillus (33%), Ochrobactrum (30%), Pseudomonas (28%), Clostridium (6%) and Stenotrophomonas (3%). The present study revealed the treatment efficiency of dye processing wastewater along with power generation in single chambered air cathode MFC.
Collapse
Affiliation(s)
- Tamilarasan Karuppiah
- 1Department of Civil Engineering, Regional Campus Anna University, Tirunelveli, 627007 India
| | - Arulazhagan Pugazhendi
- 2Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- 3Faculty of Marine Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Sakthivel Subramanian
- 1Department of Civil Engineering, Regional Campus Anna University, Tirunelveli, 627007 India
| | - Mamdoh T Jamal
- 3Faculty of Marine Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Rajesh Banu Jeyakumar
- 1Department of Civil Engineering, Regional Campus Anna University, Tirunelveli, 627007 India
| |
Collapse
|
18
|
Kim T, Kang S, Kim HW, Paek Y, Sung JH, Kim YH, Jang JK. Assessment of organic removal in series- and parallel-connected microbial fuel cell stacks. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-017-0378-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Shinde OA, Bansal A, Banerjee A, Sarkar S. Bioremediation of steel plant wastewater and enhanced electricity generation in microbial desalination cell. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:2101-2112. [PMID: 29722696 DOI: 10.2166/wst.2018.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microbial desalination cell (MDC) is a propitious technology towards water desalination by utilizing wastewater as an energy source. In this study, a multi-chambered MDC was used to bioremediate steel plant wastewater using the same wastewater as a fuel for anodic bacteria. A pure culture of Pseudomonas putida MTCC 1194 was isolated and inoculated to remove toxic phenol. Three different inoculum conditions, namely P. putida (INC-A), a mixture of P. putida and activated sludge (INC-B), and activated sludge alone (INC-C) were employed in an anodic chamber to mainly compare the electricity generation and phenol degradation in MDCs. The study revealed the maximum phenol removal of 82 ± 2.4%, total dissolved solids (TDS) removal of 68 ± 1.5%, and power generation of 10.2 mW/m2 using INC-B. The synergistic interactions between microorganisms, can enhance the toxic phenol degradation and also electricity generation in MDC for onsite wastewater application.
Collapse
Affiliation(s)
- Omkar A Shinde
- R&D and Scientific Services Department, Tata Steel Limited, Jamshedpur 831007, India E-mail:
| | - Ankita Bansal
- R&D and Scientific Services Department, Tata Steel Limited, Jamshedpur 831007, India E-mail:
| | - Angela Banerjee
- R&D and Scientific Services Department, Tata Steel Limited, Jamshedpur 831007, India E-mail:
| | - Supriya Sarkar
- R&D and Scientific Services Department, Tata Steel Limited, Jamshedpur 831007, India E-mail:
| |
Collapse
|
20
|
Sokkanathan G, Sharmila VG, Kaliappan S, Banu JR, Yeom IT, Rani RU. Combinative treatment of phenol-rich retting-pond wastewater by a hybrid upflow anaerobic sludge blanket reactor and solar photofenton process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 206:999-1006. [PMID: 30029350 DOI: 10.1016/j.jenvman.2017.11.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 11/17/2017] [Accepted: 11/29/2017] [Indexed: 06/08/2023]
Abstract
In this study, recalcitrant rich retting-pond wastewater was treated primarily by anaerobic treatment and subsequently treated with a solar photofenton process to remove phenol and organics. The anaerobic treatment was carried out in a granulated laboratory scale hybrid upflow anaerobic sludge blanket reactor (HUASBR) with a working volume of 5.9 L. It was operated at different hydraulic retention times (HRT) from 40 to 20 h over a period of 140 days. The optimum HRT of the anaerobic reactor was found to be 30 h, with corresponding chemical oxygen demand (COD) and phenol removal of 60% and 47%, respectively. Primary anaerobically treated wastewater was subjected to secondary solar photofenton treatment which was carried out at pH 3.5. Response surface methodology (RSM) was used to design and optimize the performance of the solar photofenton process. Regression quadratic model describing COD removal efficiency of the solar photofenton process was developed and confirmed by analysis of variance (ANOVA). Optimum parameters of the solar photofenton process were found to be: 4 g/L of fenton as catalysts, 25 mL of hydrogen peroxide, and 30 min of reaction time. After the primary anaerobic treatment, solar photofenton oxidation process removed 94% and 96.58% of COD and phenol, respectively. Integration of anaerobic and solar photofenton treatment resulted in 97.5% and 98.4% removal of COD and phenol, respectively, from retting-pond wastewater.
Collapse
Affiliation(s)
- G Sokkanathan
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, Tamil Nadu, India
| | - V Godvin Sharmila
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, Tamil Nadu, India
| | - S Kaliappan
- Department of Civil Engineering, Ponjesley College of Engineering, Nagercoil, India
| | - J Rajesh Banu
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, Tamil Nadu, India.
| | - Ick Tae Yeom
- Department of Civil and Environmental Engineering, Sungkyunkwan University, Seoul, South Korea
| | - R Uma Rani
- Department of Civil Engineering, Ponjesley College of Engineering, Nagercoil, India
| |
Collapse
|