1
|
Zhang S, Feng L, Han Y, Xu Z, Xu L, An X, Zhang Q. Revealing the degrading-possibility of methyl red by two azoreductases of Anoxybacillus sp. PDR2 based on molecular docking. CHEMOSPHERE 2024; 351:141173. [PMID: 38232904 DOI: 10.1016/j.chemosphere.2024.141173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/27/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Azo dyes, as the most widely used synthetic dyes, are considered to be one of the culprits of water resources and environmental pollution. Anoxybacillus sp. PDR2 is a thermophilic bacterium with the ability to degrade azo dyes, whose genome contains two genes encoding azoreductases (named AzoPDR2-1 and AzoPDR2-2). In this study, through response surface methodology (RSM), when the initial pH, inoculation volume and Mg2+ addition amount were 7.18, 10.72% and 0.1 g/L respectively, the decolorization rate of methyl red (MR) (200 mg/L) could reach its maximum (98.8%). The metabolites after biodegradation were detected by UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and liquid chromatography mass spectrometry (LC-MS/MS), indicating that MR was successfully decomposed into 4-aminobenzoic acid and other small substrates. In homologous modeling, it was found that both azoreductases were flavin-dependent azoreductases, and belonged to the α/β structure, using the Rossmann fold. In their docking results with the cofactor flavin mononucleotide (FMN), FMN bound to the surface of the protein dimer. Nicotinamide adenine dinucleotide (NADH) was superimposed on the plane of the pyrazine ring between FMN and the activity pocket of protein. Besides, both azoreductase complexes (azoreductase-FMN-NADH) exhibited a substrate preference for MR. Asn104 and Tyr74 played an important role in the combination of the azoreductase AzoPDR2-1 complex and the azoreductase AzoPDR2-2 complex with MR, respectively. This provided assistance for studying the mechanism of azoreductase biodegradation of azo dyes in thermophilic bacteria.
Collapse
Affiliation(s)
- Shulin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Linlin Feng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Yanyan Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Zihang Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Luhui Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China.
| |
Collapse
|
2
|
Harirchi S, Sar T, Ramezani M, Aliyu H, Etemadifar Z, Nojoumi SA, Yazdian F, Awasthi MK, Taherzadeh MJ. Bacillales: From Taxonomy to Biotechnological and Industrial Perspectives. Microorganisms 2022; 10:2355. [PMID: 36557608 PMCID: PMC9781867 DOI: 10.3390/microorganisms10122355] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
For a long time, the genus Bacillus has been known and considered among the most applicable genera in several fields. Recent taxonomical developments resulted in the identification of more species in Bacillus-related genera, particularly in the order Bacillales (earlier heterotypic synonym: Caryophanales), with potential application for biotechnological and industrial purposes such as biofuels, bioactive agents, biopolymers, and enzymes. Therefore, a thorough understanding of the taxonomy, growth requirements and physiology, genomics, and metabolic pathways in the highly diverse bacterial order, Bacillales, will facilitate a more robust designing and sustainable production of strain lines relevant to a circular economy. This paper is focused principally on less-known genera and their potential in the order Bacillales for promising applications in the industry and addresses the taxonomical complexities of this order. Moreover, it emphasizes the biotechnological usage of some engineered strains of the order Bacillales. The elucidation of novel taxa, their metabolic pathways, and growth conditions would make it possible to drive industrial processes toward an upgraded functionality based on the microbial nature.
Collapse
Affiliation(s)
- Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Mohaddaseh Ramezani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Habibu Aliyu
- Institute of Process Engineering in Life Science II: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Zahra Etemadifar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran
| | - Seyed Ali Nojoumi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Xianyang 712100, China
| | | |
Collapse
|
3
|
Zhang S, An X, Gong J, Xu Z, Wang L, Xia X, Zhang Q. Molecular response of Anoxybacillus sp. PDR2 under azo dye stress: An integrated analysis of proteomics and metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129500. [PMID: 35792431 DOI: 10.1016/j.jhazmat.2022.129500] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Treating azo dye wastewater using thermophilic bacteria is considered a more efficient bioremediation strategy. In this study, a thermophilic bacterial strain, Anoxybacillus sp. PDR2, was regarded as the research target. This strain was characterized at different stages of azo dye degradation by using TMT quantitative proteomic and non-targeted metabolome technology. A total of 165 differentially expressed proteins (DEPs) and 439 differentially metabolites (DMs) were detected in comparisons between bacteria with and without azo dye. It was found that Anoxybacillus sp. PDR2 can degrade azo dye Direct Black G (DBG) through extracellular electron transfer with glucose serving as electron donors. Most proteins related to carbohydrate metabolism, including acetoacetate synthase, and malate synthase G, were overexpressed to provide energy. The bacterium can also self-synthesize riboflavin as a redox mediator of in vitro electron transport. These results lay a theoretical basis for industrial bioremediation of azo dye wastewater.
Collapse
Affiliation(s)
- Shulin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jiaming Gong
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zihang Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Liuwei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xiang Xia
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
4
|
Guo G, Liu C, Hao J, Tian F, Ding K, Zhang C, Yang F, Liu T, Xu J, Guan Z. Development and characterization of a halo-thermophilic bacterial consortium for decolorization of azo dye. CHEMOSPHERE 2021; 272:129916. [PMID: 33601203 DOI: 10.1016/j.chemosphere.2021.129916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/14/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Textile wastewater is characterized by high salinity and high temperature, and azo dye decolorization by mixed cultures under extreme salinity and thermophilic environments has received little attention. High salinity and temperature inhibit the biodecolorization efficiency in textile wastewater. In the present study, a halo-thermophilic bacterial consortium (HT1) that can decolorize azo dye at 10% salinity and 50 °C was enriched. Bacillus was the dominant genus, and this genus may play a key role in the decolorization process. HT1 can decolorize metanil yellow G (MYG) at a wide range of pH values (6-8), temperatures (40-60 °C), dye concentrations (100-200 mg/L) and salinities (1-15%). Laccase, manganese peroxidase, lignin peroxidase and azoreductase are involved in the decolorization process of MYG. In addition, the decolorization pathway of MYG was proposed based on GC-MS and FTIR results. The toxicity of MYG decreased after decolorization by HT1. A metagenomic sequencing approach was applied to identify the functional genes involved in degradation. Overall, this halo-thermophilic bacterial consortium could be a promising candidate for the treatment of textile wastewater under elevated temperature and salinity conditions.
Collapse
Affiliation(s)
- Guang Guo
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Chong Liu
- Chinese Academy of Agricultural Sciences, Institute of Environment and Sustainable Development in Agriculture, Beijing, 100081, China
| | - Jiuxiao Hao
- China National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Fang Tian
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China.
| | - Keqiang Ding
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Can Zhang
- Center for Disease Prevention and Control of Chinese PLA, Beijing, 100071, China.
| | - Feng Yang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Tingfeng Liu
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Jin Xu
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Zhengbing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
5
|
Tang J, Wang Y, Yang G, Luo H, Zhuang L, Yu Z, Zhou S. Complete genome sequence of the dissimilatory azo reducing thermophilic bacterium Novibacillus thermophiles SG-1. J Biotechnol 2018; 284:6-10. [PMID: 30053501 DOI: 10.1016/j.jbiotec.2018.07.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 11/17/2022]
Abstract
With the isolation and identification of efficient azo-dye degradation bacteria, bioaugmentation with specific microbial strains has now become an effective strategy to promote the bioremediation of azo dye. However, Azo dye wastewater discharged at high temperature restricted the extensive application of the known mesophilic azoreducing microorganisms. Here we present the complete genome sequence of a bacterium capable of reducing azo dye under thermophilic condition, Novibacillus thermophiles SG-1 (=KCTC 33118T =CGMCC 1.12363T). The complete genome of strain SG-1 contains a circular chromosome of 3,629,225 bp with a G + C content of 50.44%. Genome analysis revealed that strain SG-1 possessed genes encoding riboflavin biosynthesis protein that would secrete riboflavin, which could act as electron shuttles to transport the electrons to extracellular azo dye in decolorization process. HPLC analysis showed that the concentration of riboflavin increased from 0.01 μM to 0.255 μM with the growth of strain SG-1 under azo dye reduction. Quantitative real-time PCR analysis further demonstrated that the gene encoding riboflavin biosynthesis protein would be involved in the azo dye decolorization. The results from this study would be beneficial to research the mechanism of anaerobic reduction of azo dye under thermophilic conditions.
Collapse
Affiliation(s)
- Jia Tang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| | - Yueqiang Wang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China
| | - Guiqin Yang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, China
| | - Hailin Luo
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Zhuang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, China
| | - Zhen Yu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou 510650, China.
| | - Shungui Zhou
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|