1
|
Zhuo T, Wan Q, Chai B, Ren D, Lei X, He L, Chen B. Eutrophic water remediation efficiency of algicidal bacteria, Cellvibrio sp. G1 and Chitinimonas sp. G2, and their influence on microbial community structure. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
2
|
Ho QN, Fettweis M, Hur J, Desmit X, Kim JI, Jung DW, Lee SD, Lee S, Choi YY, Lee BJ. Flocculation kinetics and mechanisms of microalgae- and clay-containing suspensions in different microalgal growth phases. WATER RESEARCH 2022; 226:119300. [PMID: 36323221 DOI: 10.1016/j.watres.2022.119300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Interplays between microalgae and clay minerals enhance biologically mediated flocculation, thereby affecting the sedimentation and transportation of suspended particulate matter (SPM) in water and benthic environments. This interaction forms larger flocs with a higher settling velocity and enhances SPM sinking. The aim of this study was to investigate the flocculation kinetics of microalgae and clay in suspension and to elucidate the mechanisms associated with such interactions. Standard jar test experiments were conducted using various mixtures of kaolinite and microalgal samples from batch cultures (Chlorella vulgaris) to estimate biologically mediated flocculation kinetics. The organic matter (OM) composition secreted by the microalgae was characterized using a liquid chromatography - organic carbon detection system, and quantitative analysis of transparent exopolymer particles was conducted separately. A two-class flocculation kinetic model, based on the interaction between flocculi and flocs, was also adopted to quantitatively analyze the experimental data from flocculation. Results from the flocculation kinetic tests and OM analyses, in association with other data analyses (i.e., floc size distribution and flocculation kinetic model), showed that flocculation increased with OM concentration during the growth phase (10-20 d). However, on day 23 during the early stationary phase, flocculation kinetics started decreasing and substantially declined on day 30, even though the amount of OM (mainly biopolymers) continued to increase. Our results indicate that an adequate quantity of biopolymers produced by the microalgal cells in the growth phase enhanced floc-to-floc attachment and hence flocculation kinetics. In contrast, an excessive quantity of biopolymers and humic substances in the stationary phase enhanced the formation of polymeric backbone structures and flocculation via scavenging particles but simultaneously increased steric stabilization with the production of a large number of fragmented particles.
Collapse
Affiliation(s)
- Que Nguyen Ho
- Energy Environment Institute, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, South Korea; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Michael Fettweis
- Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, Bruxelles B-1000, Belgium
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea
| | - Xavier Desmit
- Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, Bruxelles B-1000, Belgium
| | - Jae In Kim
- Energy Environment Institute, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, South Korea
| | - Dae Won Jung
- Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, Gyeongsangbuk-do 37242, South Korea
| | - Sang Deuk Lee
- Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, Gyeongsangbuk-do 37242, South Korea
| | - Sungyun Lee
- Energy Environment Institute, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, South Korea; Department of Advanced Science and Technology Convergence, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, South Korea
| | - Yun Young Choi
- Energy Environment Institute, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, South Korea
| | - Byung Joon Lee
- Energy Environment Institute, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, South Korea; Department of Advanced Science and Technology Convergence, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, South Korea.
| |
Collapse
|
3
|
Photocatalytic Remediation of Harmful Alexandrium minutum Bloom Using Hybrid Chitosan-Modified TiO2 Films in Seawater: A Lab-Based Study. Catalysts 2022. [DOI: 10.3390/catal12070707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The uncontrolled growth of harmful algal blooms (HABs) can negatively impact the environment and pose threats to human health and aquatic ecosystems. Titanium dioxide (TiO2) is known to be effective in killing harmful algae through flocculation and sedimentation. However, TiO2 in a dispersed form can harm other non-target marine organisms, which has raised concerns by environmentalists and scientists. This research seeks to explore the utility of immobilized titanium oxide as a photocatalyst for mitigation of HABs, where the Alexandrium minutum bloom was used as a model system herein. Chitosan was modified with 0.2 wt.% TiO2 (Chi/TiO2 (x mL; x = 1, 3 and 5 mL) and the corresponding films were prepared via solvent casting method. Scanning electron microscope (SEM) images of the films reveal a highly uneven surface. X-ray diffraction (XRD) analysis indicates the reduction in chitosan crystallinity, where the presence of TiO2 was negligible, in accordance with its dispersion within the chitosan matrix. The photocatalytic mitigation of A.minutum was carried out via a physical approach in a laboratory-scale setting. The negative surface charge of the films was observed to repel the negatively charged A.minutum causing fluctuation in the removal efficiency (RE). The highest RE (76.1 ± 13.8%) was obtained when Chi/TiO2 (1 mL) was used at 72 h, where the hydroxyl radicals generated were inferred to contribute to the deactivation of the algae cells by causing oxidative stress. An outcome of this study indicates that such hybrid films have the potential to replace the non-immobilized (dispersed) TiO2 for HAB mitigation. However, further investigation is required to deploy these films for field applications at a larger scale.
Collapse
|
4
|
Coagulant Plus Bacillus nitratireducens Fermentation Broth Technique Provides a Rapid Algicidal Effect of Toxic Red Tide Dinoflagellate. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9040395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
When the toxic red tide alga Gymnodinium catenatum H.W. Graham accumulates in sediment through sexual reproduction, it provides the provenance of a periodic outbreak of red tide, a potential threat to the marine environment. In our study, the flocculation effects of four coagulants were compared. Bacteria fermentation (Ba3) broth and coagulant were combined with Ba3 to reduce the vegetative cells of G. catenatum, inhibit the cystic germination in the sediment, and control the red tide outbreak. To promote a more efficient and environmentally friendly algae suppression method, we studied these four coagulants combined with algae suppression bacteria for their effect on G. catenatum. The results show that polyaluminum chloride (PAC) is more efficient than other coagulants when used alone because it had a more substantial inhibitory effect. Ba3 broth also had a beneficial removal effect on the vegetative cells of G. catenatum. The inhibition efficiency of 2-day fermentation liquid was higher than that of 1-day and 3-day fermentation liquids. When combined, the PAC and Ba3 broth produced a pronounced algae inhibition effect that effectively hindered the germination of algae cysts. We conclude that this combination provides a scientific reference for the prevention and control of marine red tide. Our results suggest that designing environmentally friendly methods for the management of harmful algae is quite feasible.
Collapse
|
5
|
Zhu J, Yang Y, Duan S, Sun D. The Antialgal Mechanism of Luteolin-7-O-Glucuronide on Phaeocystis globosa by Metabolomics Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3222. [PMID: 31484378 PMCID: PMC6747131 DOI: 10.3390/ijerph16173222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 11/22/2022]
Abstract
Antialgal compounds from plants have been identified as promising candidates for controlling harmful algal blooms (HABs). In our previous study, luteolin-7-O-glucuronide was used as a promising algistatic agent to control Phaeocystis globosa (P. globose) blooms; however, its antialgal mechanism on P. globosa have not yet been elaborated in detail. In this study, a liquid chromatography linked to tandem mass spectrometry (LC-MS/MS)-based untargeted metabolomic approach was used to investigate changes in intracellular and extracellular metabolites of P. globosa after exposure to luteolin-7-O-glucuronide. Significant differences in intracellular metabolites profiles were observed between treated and untreated groups; nevertheless, metabolic statuses for extracellular metabolites were similar among these two groups. For intracellular metabolites, 20 identified metabolites showed significant difference. The contents of luteolin, gallic acid, betaine and three fatty acids were increased, while the contents of α-Ketoglutarate and acetyl-CoA involved in tricarboxylic acid cycle, glutamate, and 11 organic acids were decreased. Changes in those metabolites may be induced by the antialgal compound in response to stress. The results revealed that luteolin played a vital role in the antialgal mechanism of luteolin-7-O-glucuronide on P. globosa, because luteolin increased the most in the treatment groups and had strong antialgal activity on P. globosa. α-Ketoglutarate and acetyl-CoA were the most inhibited metabolites, indicating that the antialgal compound inhibited the growth through disturbed the tricarboxylic acid (TCA) cycle of algal cells. To summarize, our data provides insights into the antialgal mechanism of luteolin-7-O-glucuronide on P. globosa, which can be used to further control P. globosa blooms.
Collapse
Affiliation(s)
- Jingyi Zhu
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yeyin Yang
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shunshan Duan
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Dong Sun
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Ai H, Qiu Y, He Q, He Y, Yang C, Kang L, Luo H, Li W, Mao Y, Hu M, Li H. Turn the potential greenhouse gases into biomass in harmful algal blooms waters: A microcosm study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:520-528. [PMID: 30476831 DOI: 10.1016/j.scitotenv.2018.11.262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/22/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
Carbon sources are a critical requirement for the proliferation of algae and the occurrence of harmful algal blooms (HABs), but are often turned into methane (CH4) after the collapse of severe HABs. Here, we attempt to remove HABs, reduce algal-derived CH4 emissions, and repair the broken carbon biogeochemical cycle in aquatic systems using an integrated ecological approach including flocculation, capping, and submerged macrophyte induction, preliminary at a microcosm scale. This strategy sustainably reached 98% algal removal after 65 days of incubation and resulted in an aerobic microenvironment (ORP = +12 mv) at the sediment-water interface. The approach contributed to an approximate 60% decline in CH4 released from the aquatic environment into the atmosphere jointly through assimilation of mineralized organic carbon by submerged macrophytes, production of carbon dioxide (CO2) under aerobic conditions, and aerobic CH4 oxidation. Some of the CO2 produced in the aquatic phase contributed to inorganic carbon and formed the submerged macrophytes biomass. A combination of flocculation, capping, and submerged macrophyte incubation were significant contributors to altering the carbon budget and sealing nearly 99% of the carbon in the simulated ecosystem (the majority in sediment, followed by submerged macrophytes), providing a sustainable way to reuse algal-derived carbon and reduce CH4 emissions.
Collapse
Affiliation(s)
- Hainan Ai
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Yixi Qiu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Yixin He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Chun Yang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Li Kang
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Huarui Luo
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Wei Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Yufeng Mao
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Meijuan Hu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|