1
|
Zou J, Mao Y, Hou B, Kang Y, Wang R, Wu H, Ye J, Zhang H. DeoR regulates lincomycin production in Streptomyces lincolnensis. World J Microbiol Biotechnol 2023; 39:332. [DOI: doi.org/10.1007/s11274-023-03788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
|
2
|
Zou J, Mao Y, Hou B, Kang Y, Wang R, Wu H, Ye J, Zhang H. DeoR regulates lincomycin production in Streptomyces lincolnensis. World J Microbiol Biotechnol 2023; 39:332. [PMID: 37801155 DOI: 10.1007/s11274-023-03788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Regulators belonging to the DeoR family are widely distributed among the bacteria. Few studies have reported that DeoR family proteins regulate secondary metabolism of Streptomyces. This study explored the function of DeoR (SLINC_8027) in Streptomyces lincolnensis. Deletion of deoR in NRRL 2936 led to an increase in cell growth. The lincomycin production of the deoR deleted strain ΔdeoR was 3.4-fold higher than that of the wild strain. This trait can be recovered to a certain extent in the deoR complemented strain ΔdeoR::pdeoR. According to qRT-PCR analysis, DeoR inhibited the transcription of all detectable genes in the lincomycin biosynthesis cluster and repressed the expression of glnR, bldD, and SLCG_Lrp, which encode regulators outside the cluster. DeoR also inhibited the transcription of itself, as revealed by the XylE reporter. Furthermore, we demonstrated that DeoR bound directly to the promoter region of deoR, lmbA, lmbC-D, lmbJ-K, lmrA, lmrC, glnR, and SLCG_Lrp, by recognizing the 5'-CGATCR-3' motif. This study found that versatile regulatory factor DeoR negatively regulates lincomycin biosynthesis and cellular growth in S. lincolnensis, which expanded the regulatory network of lincomycin biosynthesis.
Collapse
Affiliation(s)
- Jingyun Zou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yue Mao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yajing Kang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
3
|
Tung Oil-Based Production of High 3-Hydroxyhexanoate-Containing Terpolymer Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate-co-3-Hydroxyhexanoate) Using Engineered Ralstonia eutropha. Polymers (Basel) 2021; 13:polym13071084. [PMID: 33805577 PMCID: PMC8036412 DOI: 10.3390/polym13071084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are attractive new bioplastics for the replacement of plastics derived from fossil fuels. With their biodegradable properties, they have also recently been applied to the medical field. As poly(3-hydroxybutyrate) produced by wild-type Ralstonia eutropha has limitations with regard to its physical properties, it is advantageous to synthesize co- or terpolymers with medium-chain-length monomers. In this study, tung oil, which has antioxidant activity due to its 80% α-eleostearic acid content, was used as a carbon source and terpolymer P(53 mol% 3-hydroxybytyrate-co-2 mol% 3-hydroxyvalerate-co-45 mol% 3-hydroxyhexanoate) with a high proportion of 3-hydroxyhexanoate was produced in R. eutropha Re2133/pCB81. To avail the benefits of α-eleostearic acid in the tung oil-based medium, we performed partial harvesting of PHA by using a mild water wash to recover PHA and residual tung oil on the PHA film. This resulted in a film coated with residual tung oil, showing antioxidant activity. Here, we report the first application of tung oil as a substrate for PHA production, introducing a high proportion of hydroxyhexanoate monomer into the terpolymer. Additionally, the residual tung oil was used as an antioxidant coating, resulting in the production of bioactive PHA, expanding the applicability to the medical field.
Collapse
|
4
|
Lee SM, Lee HJ, Kim SH, Suh MJ, Cho JY, Ham S, Jeon JM, Yoon JJ, Bhatia SK, Gurav R, Lee EY, Yang YH. Screening of the strictly xylose-utilizing Bacillus sp. SM01 for polyhydroxybutyrate and its co-culture with Cupriavidus necator NCIMB 11599 for enhanced production of PHB. Int J Biol Macromol 2021; 181:410-417. [PMID: 33775761 DOI: 10.1016/j.ijbiomac.2021.03.149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022]
Abstract
Polyhydroxybutyrate (PHB) is a biodegradable plastic that can be used as an alternative to petrochemical-based plastics. PHB is produced by various microorganisms such as Ralstonia, Halomonas, and Bacillus species. However, there are very few strains that produce PHB using xylose, an abundant and inexpensive carbon source. In this study, ten xylose-utilizing PHB producers isolated from South Korean marine environments were screened and characterized. Among these isolates, Bacillus sp. SM01, a newly identified strain, produced the highest amount of PHB using xylose. Under optimal conditions, the maximum dry cell weight (DCW) was 3.41 ± 0.09 g/L, with 62% PHB content, and Bacillus sp. SM01 showed Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production with propionate; however, the growth of Bacillus sp. SM01 was greatly inhibited by the presence of glucose. Co-culturing Bacillus sp. SM01 with Cupriavidus necator NCIMB 11599 resulted in increased DCW, PHB production, and utilization of glucose and xylose, the main sugar of lignocellulosic biomass, compared with the monoculture. Our results indicated that this co-culture system can be used to increase PHB production and overcome the limitation of sugar consumption associated with Bacillus sp. SM01 and C. necator.
Collapse
Affiliation(s)
- Sun Mi Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hong-Ju Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Min Ju Suh
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jang Yeon Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sion Ham
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Chungnam 331-825, Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Chungnam 331-825, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|