1
|
Rodrigues AS, Batista JGS, Rodrigues MÁV, Thipe VC, Minarini LAR, Lopes PS, Lugão AB. Advances in silver nanoparticles: a comprehensive review on their potential as antimicrobial agents and their mechanisms of action elucidated by proteomics. Front Microbiol 2024; 15:1440065. [PMID: 39149204 PMCID: PMC11325591 DOI: 10.3389/fmicb.2024.1440065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Nanoparticles play a crucial role in the field of nanotechnology, offering different properties due to their surface area attributed to their small size. Among them, silver nanoparticles (AgNPs) have attracted significant attention due to their antimicrobial properties, with applications that date back from ancient medicinal practices to contemporary commercial products containing ions or silver nanoparticles. AgNPs possess broad-spectrum biocidal potential against bacteria, fungi, viruses, and Mycobacterium, in addition to exhibiting synergistic effects when combined with certain antibiotics. The mechanisms underlying its antimicrobial action include the generation of oxygen-reactive species, damage to DNA, rupture of bacterial cell membranes and inhibition of protein synthesis. Recent studies have highlighted the effectiveness of AgNPs against various clinically relevant bacterial strains through their potential to combat antibiotic-resistant pathogens. This review investigates the proteomic mechanisms by which AgNPs exert their antimicrobial effects, with a special focus on their activity against planktonic bacteria and in biofilms. Furthermore, it discusses the biomedical applications of AgNPs and their potential non-preparation of antibiotic formulations, also addressing the issue of resistance to antibiotics.
Collapse
Affiliation(s)
- Adriana S Rodrigues
- Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, São Paulo, Brazil
| | - Jorge G S Batista
- Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, São Paulo, Brazil
| | - Murilo Á V Rodrigues
- Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, São Paulo, Brazil
| | - Velaphi C Thipe
- Department of Radiology, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Luciene A R Minarini
- Federal University of São Paulo, Institute of Environmental, Chemical and Pharmaceutical Sciences, São Paulo, Brazil
| | - Patricia S Lopes
- Federal University of São Paulo, Institute of Environmental, Chemical and Pharmaceutical Sciences, São Paulo, Brazil
| | - Ademar B Lugão
- Institute for Energy and Nuclear Research, National Nuclear Energy Commission-IPEN/CNEN-SP, São Paulo, Brazil
| |
Collapse
|
2
|
Harutyunyan A, Gabrielyan L, Aghajanyan A, Gevorgyan S, Schubert R, Betzel C, Kujawski W, Gabrielyan L. Comparative Study of Physicochemical Properties and Antibacterial Potential of Cyanobacteria Spirulina platensis-Derived and Chemically Synthesized Silver Nanoparticles. ACS OMEGA 2024; 9:29410-29421. [PMID: 39005782 PMCID: PMC11238227 DOI: 10.1021/acsomega.4c01604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024]
Abstract
The "green synthesis" of nanoparticles (NPs) offers cost-effective and environmentally friendly advantages over chemical synthesis by utilizing biological sources such as bacteria, algae, fungi, or plants. In this context, cyanobacteria and their components are valuable sources to produce various NPs. The present study describes the comparative analysis of physicochemical and antibacterial properties of chemically synthesized (Chem-AgNPs) and cyanobacteria Spirulina platensis-derived silver NPs (Splat-AgNPs). The physicochemical characterization applying complementary dynamic light scattering and transmission electron microscopy revealed that Splat-AgNPs have an average hydrodynamic radius of ∼ 28.70 nm and spherical morphology, whereas Chem-AgNPs are irregular-shaped with an average radius size of ∼ 53.88 nm. The X-ray diffraction pattern of Splat-AgNPs confirms the formation of face-centered cubic crystalline AgNPs by "green synthesis". Energy-dispersive spectroscopy analysis demonstrated the purity of the Splat-AgNPs. Fourier transform infrared spectroscopy analysis of Splat-AgNPs demonstrated the involvement of some functional groups in the formation of NPs. Additionally, Splat-AgNPs demonstrated high colloidal stability with a zeta-potential value of (-50.0 ± 8.30) mV and a pronounced bactericidal activity against selected Gram-positive (Enterococcus hirae and Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa and Salmonella typhimurium) bacteria compared with Chem-AgNPs. Furthermore, our studies toward understanding the action mechanism of NPs showed that Splat-AgNPs alter the permeability of bacterial membranes and the energy-dependent H+-fluxes via FoF1-ATPase, thus playing a crucial role in bacterial energetics. The insights gained from this study show that Spirulina-derived synthesis is a low-cost, simple approach to producing stable AgNPs for their energy-metabolism-targeted antibacterial applications in biotechnology and biomedicine.
Collapse
Affiliation(s)
- Ani Harutyunyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia
| | - Liana Gabrielyan
- Department of Physical and Colloids Chemistry, Chemistry Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia
- Chemical Research Center, Laboratory of Physical Chemistry, 1 Alex Manoukian Str., Yerevan 0025, Armenia
| | - Anush Aghajanyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia
| | - Susanna Gevorgyan
- The Hamburg Centre for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Notkestrasse 85, Build. 22A, Hamburg 22607, Germany
| | - Robin Schubert
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, Schenefeld 22869, Germany
| | - Christian Betzel
- The Hamburg Centre for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, Hamburg 22761, Germany
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Notkestrasse 85, Build. 22A, Hamburg 22607, Germany
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, Toruń 87-100, Poland
| | - Lilit Gabrielyan
- Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia
| |
Collapse
|
3
|
Kaiser KG, Delattre V, Frost VJ, Buck GW, Phu JV, Fernandez TG, Pavel IE. Nanosilver: An Old Antibacterial Agent with Great Promise in the Fight against Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1264. [PMID: 37627684 PMCID: PMC10451389 DOI: 10.3390/antibiotics12081264] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance in bacteria is a major problem worldwide that costs 55 billion USD annually for extended hospitalization, resource utilization, and additional treatment expenditures in the United States. This review examines the roles and forms of silver (e.g., bulk Ag, silver salts (AgNO3), and colloidal Ag) from antiquity to the present, and its eventual incorporation as silver nanoparticles (AgNPs) in numerous antibacterial consumer products and biomedical applications. The AgNP fabrication methods, physicochemical properties, and antibacterial mechanisms in Gram-positive and Gram-negative bacterial models are covered. The emphasis is on the problematic ESKAPE pathogens and the antibiotic-resistant pathogens of the greatest human health concern according to the World Health Organization. This review delineates the differences between each bacterial model, the role of the physicochemical properties of AgNPs in the interaction with pathogens, and the subsequent damage of AgNPs and Ag+ released by AgNPs on structural cellular components. In closing, the processes of antibiotic resistance attainment and how novel AgNP-antibiotic conjugates may synergistically reduce the growth of antibiotic-resistant pathogens are presented in light of promising examples, where antibiotic efficacy alone is decreased.
Collapse
Affiliation(s)
- Kyra G. Kaiser
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Victoire Delattre
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Victoria J. Frost
- Department of Chemistry, Physics, Geology and the Environment, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA; (V.J.F.); (J.V.P.)
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Gregory W. Buck
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Julianne V. Phu
- Department of Chemistry, Physics, Geology and the Environment, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA; (V.J.F.); (J.V.P.)
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Timea G. Fernandez
- Department of Chemistry, Physics, Geology and the Environment, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA; (V.J.F.); (J.V.P.)
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Ioana E. Pavel
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
4
|
Carrapiço A, Martins MR, Caldeira AT, Mirão J, Dias L. Biosynthesis of Metal and Metal Oxide Nanoparticles Using Microbial Cultures: Mechanisms, Antimicrobial Activity and Applications to Cultural Heritage. Microorganisms 2023; 11:microorganisms11020378. [PMID: 36838343 PMCID: PMC9960935 DOI: 10.3390/microorganisms11020378] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Nanoparticles (1 to 100 nm) have unique physical and chemical properties, which makes them suitable for application in a vast range of scientific and technological fields. In particular, metal nanoparticle (MNPs) research has been showing promising antimicrobial activities, paving the way for new applications. However, despite some research into their antimicrobial potential, the antimicrobial mechanisms are still not well determined. Nanoparticles' biosynthesis, using plant extracts or microorganisms, has shown promising results as green alternatives to chemical synthesis; however, the knowledge regarding the mechanisms behind it is neither abundant nor consensual. In this review, findings from studies on the antimicrobial and biosynthesis mechanisms of MNPs were compiled and evidence-based mechanisms proposed. The first revealed the importance of enzymatic disturbance by internalized metal ions, while the second illustrated the role of reducing and negatively charged molecules. Additionally, the main results from recent studies (2018-2022) on the biosynthesis of MNPs using microorganisms were summarized and analyzed, evidencing a prevalence of research on silver nanoparticles synthesized using bacteria aiming toward testing their antimicrobial potential. Finally, a synopsis of studies on MNPs applied to cultural heritage materials showed potential for their future use in preservation.
Collapse
Affiliation(s)
- António Carrapiço
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Institute for Research and Advanced Training (IIFA), University of Évora, 7000-809 Évora, Portugal
| | - Maria Rosário Martins
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Department of Medicinal Sciences and Health, School of Health and Human Development, University of Évora, 7000-671 Évora, Portugal
| | - Ana Teresa Caldeira
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Department of Chemistry and Biochemistry, School of Sciences and Technology, University of Évora, 7000-671 Évora, Portugal
| | - José Mirão
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Department of Geosciences, School of Sciences and Technology, University of Évora, 7000-671 Évora, Portugal
| | - Luís Dias
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Department of Geosciences, School of Sciences and Technology, University of Évora, 7000-671 Évora, Portugal
- Correspondence:
| |
Collapse
|
5
|
Abo-Amer AE, Gad El-Rab SMF, Halawani EM, Niaz AM, Bamaga MS. Prevalence and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus from Nasal Specimens: Overcoming MRSA with Silver Nanoparticles and Their Applications. J Microbiol Biotechnol 2022; 32:1537-1546. [PMID: 36379700 PMCID: PMC9843750 DOI: 10.4014/jmb.2208.08004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022]
Abstract
Staphylococcus aureus is a cause of high mortality in humans and therefore it is necessary to prevent its transmission and reduce infections. Our goals in this research were to investigate the frequency of methicillin-resistant S. aureus (MRSA) in Taif, Saudi Arabia, and assess the relationship between the phenotypic antimicrobial sensitivity patterns and the genes responsible for resistance. In addition, we examined the antimicrobial efficiency and application of silver nanoparticles (AgNPs) against MRSA isolates. Seventy-two nasal swabs were taken from patients; MRSA was cultivated on Mannitol Salt Agar supplemented with methicillin, and 16S rRNA sequencing was conducted in addition to morphological and biochemical identification. Specific resistance genes such as ermAC, aacA-aphD, tetKM, vatABC and mecA were PCR-amplified and resistance plasmids were also investigated. The MRSA incidence was ~49 % among the 72 S. aureus isolates and all MRSA strains were resistant to oxacillin, penicillin, and cefoxitin. However, vancomycin, linezolid, teicoplanin, mupirocin, and rifampicin were effective against 100% of MRSA strains. About 61% of MRSA strains exhibited multidrug resistance and were resistant to 3-12 antimicrobial medications (MDR). Methicillin resistance gene mecA was presented in all MDR-MRSA strains. Most MDR-MRSA contained a plasmid of > 10 kb. To overcome bacterial resistance, AgNPs were applied and displayed high antimicrobial activity and synergistic effect with penicillin. Our findings may help establish programs to control bacterial spread in communities as AgNPs appeared to exert a synergistic effect with penicillin to control bacterial resistance.
Collapse
Affiliation(s)
- Aly E. Abo-Amer
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Sanaa M. F. Gad El-Rab
- Department of Botany and Microbiology, Faculty of Science, Assuit University, Assiut 71516, Egypt,Corresponding author Phone: +201025475454 E-mail:
| | - Eman M. Halawani
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ameen M. Niaz
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammed S. Bamaga
- Department of Molecular Pathology, Al-Hada Armed Forces Hospital, P.O. Box 1347, HHRC 479, Taif, Saudi Arabia
| |
Collapse
|
6
|
Yang Q, Feng‐ying Y. Saccharification Efficiency Improvement by
Eurotium cristatum
and its Mechanism Study during the Glutinous Rice Wine Fermentation. STARCH-STARKE 2022. [DOI: 10.1002/star.202200070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qin Yang
- College of Food and Chemical Engineering Shao Yang University Shao Yang Hunan Province P. R. China
| | - Yang Feng‐ying
- College of Food and Chemical Engineering Shao Yang University Shao Yang Hunan Province P. R. China
| |
Collapse
|
7
|
Nanomaterials-Based Combinatorial Therapy as a Strategy to Combat Antibiotic Resistance. Antibiotics (Basel) 2022; 11:antibiotics11060794. [PMID: 35740200 PMCID: PMC9220075 DOI: 10.3390/antibiotics11060794] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/10/2023] Open
Abstract
Since the discovery of antibiotics, humanity has been able to cope with the battle against bacterial infections. However, the inappropriate use of antibiotics, the lack of innovation in therapeutic agents, and other factors have allowed the emergence of new bacterial strains resistant to multiple antibiotic treatments, causing a crisis in the health sector. Furthermore, the World Health Organization has listed a series of pathogens (ESKAPE group) that have acquired new and varied resistance to different antibiotics families. Therefore, the scientific community has prioritized designing and developing novel treatments to combat these ESKAPE pathogens and other emergent multidrug-resistant bacteria. One of the solutions is the use of combinatorial therapies. Combinatorial therapies seek to enhance the effects of individual treatments at lower doses, bringing the advantage of being, in most cases, much less harmful to patients. Among the new developments in combinatorial therapies, nanomaterials have gained significant interest. Some of the most promising nanotherapeutics include polymers, inorganic nanoparticles, and antimicrobial peptides due to their bactericidal and nanocarrier properties. Therefore, this review focuses on discussing the state-of-the-art of the most significant advances and concludes with a perspective on the future developments of nanotherapeutic combinatorial treatments that target bacterial infections.
Collapse
|
8
|
Ribeiro AI, Dias AM, Zille A. Synergistic Effects Between Metal Nanoparticles and Commercial Antimicrobial Agents: A Review. ACS APPLIED NANO MATERIALS 2022; 5:3030-3064. [PMID: 36568315 PMCID: PMC9773423 DOI: 10.1021/acsanm.1c03891] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanotechnology has expanded into a broad range of clinical applications. In particular, metal nanoparticles (MNPs) display unique antimicrobial properties, a fundamental function of novel medical devices. The combination of MNPs with commercial antimicrobial drugs (e.g., antibiotics, antifungals, and antivirals) may offer several opportunities to overcome some disadvantages of their individual use and enhance effectiveness. MNP conjugates display multiple advantages. As drug delivery systems, the conjugates can extend the circulation of the drugs in the body, facilitate intercellular targeting, improve drug stabilization, and possess superior delivery. Concomitantly, they reduce the required drug dose, minimize toxicity, and broaden the antimicrobial spectrum. In this work, the common strategies to combine MNPs with clinically used antimicrobial agents are underscored. Furthermore, a comprehensive survey about synergistic antimicrobial effects, the mechanism of action, and cytotoxicity is depicted.
Collapse
Affiliation(s)
- Ana Isabel Ribeiro
- 2C2T
- Centre for Textile Science and Technology, Department of Textile
Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Alice Maria Dias
- Centre
of Chemistry, Department of Chemistry, University
of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Andrea Zille
- 2C2T
- Centre for Textile Science and Technology, Department of Textile
Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
9
|
Li X, Li B, Liu R, Dong Y, Zhao Y, Wu Y. Development of pH-responsive nanocomposites with remarkably synergistic antibiofilm activities based on ultrasmall silver nanoparticles in combination with aminoglycoside antibiotics. Colloids Surf B Biointerfaces 2021; 208:112112. [PMID: 34600361 DOI: 10.1016/j.colsurfb.2021.112112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 01/07/2023]
Abstract
Bacterial biofilms are responsible for many chronic infections because antibacterial agents exhibit poor penetration into the dense matrix barrier and cannot easily reach the internal bacteria. Herein, we reported pH-responsive nanocomposites (PDA@Kana-AgNPs) that could penetrate and disperse biofilms, which were synthesized by the combination of ultrasmall silver nanoparticles (AgNPs) and kanamycin, and then coating with polydopamine. Confocal fluorescence imaging indicated that PDA@Kana-AgNPs could respond to the acidic microenvironment of biofilms, leading to biofilm-triggered on- demand drug release in situ. The zone of inhibition test and Resazurin assay showed that the combination of kanamycin and AgNPs had greater antimicrobial activity against test strains (Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Escherichia coli BL21) than when applied separately. The crystal violet staining test demonstrated that biofilms were effectively dispersed by the proposed nanocomposites. Biocompatibility was also evaluated, which showed that PDA@Kana-AgNPs were non-toxic to mammalian cells. Therefore, the proposed pH-responsive nanocomposites held great potential for efficient antibiotics delivery and showed synergistic antibacterial and antibiofilm activities. This strategy could also be used to encapsulate a variety of antibiotics in combination with other drugs or materials, thereby showing therapeutic potential in preventing biofilm-related infections and realizing fluorescence imaging in situ.
Collapse
Affiliation(s)
- Xizhe Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bingyu Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ruirui Liu
- Department of Chemical Engineering, The University of Western Australia, Perth 6009, Australia
| | - Yanhua Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongxi Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yayan Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
10
|
Biosynthesis of Silver Nanoparticles Using Lavandula stoechas and an Enhancement of Its Antibacterial Activity with Antibiotics. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0379-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|