1
|
Lee HN, Lee S, Hong J, Yoo H, Jeong J, Kim YW, Shin HM, Jang M, Lee CH, Kim HR, Seong J. Novel FRET-based Immunological Synapse Biosensor for the Prediction of Chimeric Antigen Receptor-T Cell Function. SMALL METHODS 2024:e2401016. [PMID: 39258379 DOI: 10.1002/smtd.202401016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized cancer treatment. CARs are activated at the immunological synapse (IS) when their single-chain variable fragment (scFv) domain engages with an antigen, allowing them to directly eliminate cancer cells. Here, an innovative IS biosensor based on fluorescence resonance energy transfer (FRET) for the real-time assessment of CAR-IS architecture and signaling competence is presented. Using this biosensor, scFv variants for mesothelin-targeting CARs and identified as a novel scFv with enhanced CAR-T cell functionality despite its lower affinity than the original screened. The original CAR promoted internalization and trogocytosis, disrupting stable IS formation and impairing functionality are further observed. These findings emphasize the importance of enhancing IS quality rather than maximizing scFv affinity for superior CAR-T cell responses. Therefore, the FRET-based IS biosensor is a powerful tool for predicting CAR-T cell function, enabling the efficient engineering of next-generation CARs with enhanced antitumor potency.
Collapse
Affiliation(s)
- Hae Nim Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Soojin Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jisu Hong
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyejin Yoo
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jiyun Jeong
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yong-Woo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea
| | - Hyun Mu Shin
- Medical Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Mihue Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Chang-Han Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Hang-Rae Kim
- Medical Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jihye Seong
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| |
Collapse
|
2
|
Kim M, Bai X, Im H, Yang J, Kim Y, Kim MMJ, Oh Y, Jeon Y, Kwon H, Lee S, Lee CH. Construction and validation of a synthetic phage-displayed nanobody library. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:457-467. [PMID: 39198226 PMCID: PMC11361996 DOI: 10.4196/kjpp.2024.28.5.457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 09/01/2024]
Abstract
Nanobodies derived from camelids and sharks offer unique advantages in therapeutic applications due to their ability to bind to epitopes that were previously inaccessible. Traditional methods of nanobody development face challenges such as ethical concerns and antigen toxicity. Our study presents a synthetic, phagedisplayed nanobody library using trinucleotide-directed mutagenesis technology, which allows precise amino acid composition in complementarity-determining regions (CDRs), with a focus on CDR3 diversity. This approach avoids common problems such as frameshift mutations and stop codon insertions associated with other synthetic antibody library construction methods. By analyzing FDA-approved nanobodies and Protein Data Bank sequences, we designed sub-libraries with different CDR3 lengths and introduced amino acid substitutions to improve solubility. The validation of our library through the successful isolation of nanobodies against targets such as PD-1, ATXN1 and STAT3 demonstrates a versatile and ethical platform for the development of high specificity and affinity nanobodies and represents a significant advance in biotechnology.
Collapse
Affiliation(s)
- Minju Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Xuelian Bai
- Research Center, EPD Biotherapeutics Inc., Seoul 08378, Korea
| | - Hyewon Im
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jisoo Yang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Youngju Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Minjoo MJ Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yeonji Oh
- Research Center, EPD Biotherapeutics Inc., Seoul 08378, Korea
| | - Yuna Jeon
- Research Center, EPD Biotherapeutics Inc., Seoul 08378, Korea
| | - Hayoung Kwon
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seunghyun Lee
- Research Center, EPD Biotherapeutics Inc., Seoul 08378, Korea
| | - Chang-Han Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul 03080, Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon 25159, Korea
- SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul 03080, Korea
- Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
3
|
Yap SY, Butcher T, Spears RJ, McMahon C, Thanasi IA, Baker JR, Chudasama V. Chemo- and regio-selective differential modification of native cysteines on an antibody via the use of dehydroalanine forming reagents. Chem Sci 2024; 15:8557-8568. [PMID: 38846383 PMCID: PMC11151841 DOI: 10.1039/d4sc00392f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Protein modification has garnered increasing interest over the past few decades and has become an important tool in many aspects of chemical biology. In recent years, much effort has focused on site-selective modification strategies that generate more homogenous bioconjugates, and this is particularly so in the antibody modification space. Modifying native antibodies by targeting solvent-accessible cysteines liberated by interchain disulfide reduction is, perhaps, the predominant strategy for achieving more site-selectivity on an antibody scaffold. This is evidenced by numerous approved antibody therapeutics that have utilised cysteine-directed conjugation reagents and the plethora of methods/strategies focused on antibody cysteine modification. However, all of these methods have a common feature in that after the reduction of native solvent-accessible cystines, the liberated cysteines are all reacted in the same manner. Herein, we report the discovery and application of dehydroalanine forming reagents (including novel reagents) capable of regio- and chemo-selectively modifying these cysteines (differentially) on a clinically relevant antibody fragment and a full antibody. We discovered that these reagents could enable differential reactivity between light chain C-terminal cysteines, heavy chain hinge region cysteines (cysteines with an adjacent proline residue, Cys-Pro), and other heavy chain internal cysteines. This differential reactivity was also showcased on small molecules and on the peptide somatostatin. The application of these dehydroalanine forming reagents was exemplified in the preparation of a dually modified antibody fragment and full antibody. Additionally, we discovered that readily available amide coupling agents can be repurposed as dehydroalanine forming reagents, which could be of interest to the broader field of chemical biology.
Collapse
Affiliation(s)
- Steven Y Yap
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Tobias Butcher
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Richard J Spears
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Clíona McMahon
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Ioanna A Thanasi
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - James R Baker
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
4
|
Ribeiro R, Moreira JN, Goncalves J. Development of a new affinity maturation protocol for the construction of an internalizing anti-nucleolin antibody library. Sci Rep 2024; 14:10608. [PMID: 38719911 PMCID: PMC11079059 DOI: 10.1038/s41598-024-61230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Over the last decades, monoclonal antibodies have substantially improved the treatment of several conditions. The continuous search for novel therapeutic targets and improvements in antibody's structure, demands for a constant optimization of their development. In this regard, modulation of an antibody's affinity to its target has been largely explored and culminated in the discovery and optimization of a variety of molecules. It involves the creation of antibody libraries and selection against the target of interest. In this work, we aimed at developing a novel protocol to be used for the affinity maturation of an antibody previously developed by our group. An antibody library was constructed using an in vivo random mutagenesis approach that, to our knowledge, has not been used before for antibody development. Then, a cell-based phage display selection protocol was designed to allow the fast and simple screening of antibody clones capable of being internalized by target cells. Next generation sequencing coupled with computer analysis provided an extensive characterization of the created library and post-selection pool, that can be used as a guide for future antibody development. With a single selection step, an enrichment in the mutated antibody library, given by a decrease in almost 50% in sequence diversity, was achieved, and structural information useful in the study of the antibody-target interaction in the future was obtained.
Collapse
Affiliation(s)
- Rita Ribeiro
- CNC-Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, University of Lisbon, Lisbon, Portugal
- Univ Coimbra-University of Coimbra, CIBB, Faculty of Pharmacy, Coimbra, Portugal
| | - João N Moreira
- CNC-Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Polo 1), University of Coimbra, Coimbra, Portugal.
- Univ Coimbra-University of Coimbra, CIBB, Faculty of Pharmacy, Coimbra, Portugal.
| | - João Goncalves
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
5
|
Kong C, Yang EJ, Shin J, Park J, Kim SH, Park SW, Chang WS, Lee CH, Kim H, Kim HS, Chang JW. Enhanced delivery of a low dose of aducanumab via FUS in 5×FAD mice, an AD model. Transl Neurodegener 2022; 11:57. [PMID: 36575534 PMCID: PMC9793531 DOI: 10.1186/s40035-022-00333-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Aducanumab (Adu), which is a human IgG1 monoclonal antibody that targets oligomer and fibril forms of beta-amyloid, has been reported to reduce amyloid pathology and improve impaired cognition after administration of a high dose (10 mg/kg) of the drug in Alzheimer's disease (AD) clinical trials. The purpose of this study was to investigate the effects of a lower dose of Adu (3 mg/kg) with enhanced delivery via focused ultrasound (FUS) in an AD mouse model. METHODS The FUS with microbubbles opened the blood-brain barrier (BBB) of the hippocampus for the delivery of Adu. The combined therapy of FUS and Adu was performed three times in total and each treatment was performed biweekly. Y-maze test, Brdu labeling, and immunohistochemical experimental methods were employed in this study. In addition, RNA sequencing and ingenuity pathway analysis were employed to investigate gene expression profiles in the hippocampi of experimental animals. RESULTS The FUS-mediated BBB opening markedly increased the delivery of Adu into the brain by approximately 8.1 times in the brains. The combined treatment induced significantly less cognitive decline and decreased the level of amyloid plaques in the hippocampi of the 5×FAD mice compared with Adu or FUS alone. Combined treatment with FUS and Adu activated phagocytic microglia and increased the number of astrocytes associated with amyloid plaques in the hippocampi of 5×FAD mice. Furthermore, RNA sequencing identified that 4 enriched canonical pathways including phagosome formation, neuroinflammation signaling, CREB signaling and reelin signaling were altered in the hippocami of 5×FAD mice receiving the combined treatment. CONCLUSION In conclusion, the enhanced delivery of a low dose of Adu (3 mg/kg) via FUS decreases amyloid deposits and attenuates cognitive function deficits. FUS-mediated BBB opening increases adult hippocampal neurogenesis as well as drug delivery. We present an AD treatment strategy through the synergistic effect of the combined therapy of FUS and Adu.
Collapse
Affiliation(s)
- Chanho Kong
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea
| | - Eun-Jeong Yang
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea
- Neuroscience Research Center, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea
| | - Jaewoo Shin
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea
| | - Junwon Park
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea
| | - Si-Hyun Kim
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea
- Neuroscience Research Center, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea
| | - Seong-Wook Park
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea
| | - Won Seok Chang
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea
| | - Chang-Han Lee
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea
| | - Hyunju Kim
- Department of Pharmacology, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea.
- Neuroscience Research Center, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea.
| | - Hye-Sun Kim
- Department of Biomedical Sciences, College of Medicine, Seoul National University, 103 Daehakro, Jongro-Gu, Seoul, Republic of Korea.
- Bundang Hospital, Seoul National University College of Medicine, Bundang-Gu, Sungnam, Republic of Korea.
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Shin G, Lim SI. Unveiling the biological interface of protein complexes by mass spectrometry-coupled methods. Proteins 2022; 91:593-607. [PMID: 36573681 DOI: 10.1002/prot.26459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Most biomolecules become functional and bioactive by forming protein complexes through interaction with ligands that are diverse in size, shape, and physicochemical properties. In the complex biological milieu, the interaction is ligand-specific, driven by molecular sensing, and involves the recognition of a binding interface localized within a protein structure. Mapping interfaces of protein complexes is a highly sought area of research as it delivers fundamental insights into proteomes and pathology and hence strategies for therapeutics. While X-ray crystallography and electron microscopy remain the gold standard for structural elucidation of protein complexes, their artificial and static analytic nature often produces a non-native interface that otherwise might be negligible or non-existent in a biological environment. Recently, the mass spectrometry-coupled approaches, chemical crosslinking (CLMS) and hydrogen-deuterium exchange (HDMS) have become valuable analytic complements to the traditional techniques. These methods explicitly identify hot residues and motifs embedded in binding interfaces, especially when the interaction is predominantly dynamic, transient, and/or caused by an intrinsically disordered domain. Here, we review the principal role of CLMS and HDMS in protein structural biology with a particular emphasis on the contribution of recent examples to exploring biological interfaces. Additionally, we describe recent studies that utilized these methods to expand our understanding of protein complex formation and the related biological processes, to increase the probability of structure-based drug design.
Collapse
Affiliation(s)
- Goeun Shin
- Department of Chemical Engineering, Pukyong National University, Busan, South Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan, South Korea
| |
Collapse
|
7
|
James BH, Papakyriacou P, Gardener MJ, Gliddon L, Weston CJ, Lalor PF. The Contribution of Liver Sinusoidal Endothelial Cells to Clearance of Therapeutic Antibody. Front Physiol 2022; 12:753833. [PMID: 35095549 PMCID: PMC8795706 DOI: 10.3389/fphys.2021.753833] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Many chronic inflammatory diseases are treated by administration of “biological” therapies in terms of fully human and humanized monoclonal antibodies or Fc fusion proteins. These tools have widespread efficacy and are favored because they generally exhibit high specificity for target with a low toxicity. However, the design of clinically applicable humanized antibodies is complicated by the need to circumvent normal antibody clearance mechanisms to maintain therapeutic dosing, whilst avoiding development of off target antibody dependent cellular toxicity. Classically, professional phagocytic immune cells are responsible for scavenging and clearance of antibody via interactions with the Fc portion. Immune cells such as macrophages, monocytes, and neutrophils express Fc receptor subsets, such as the FcγR that can then clear immune complexes. Another, the neonatal Fc receptor (FcRn) is key to clearance of IgG in vivo and serum half-life of antibody is explicitly linked to function of this receptor. The liver is a site of significant expression of FcRn and indeed several hepatic cell populations including Kupffer cells and liver sinusoidal endothelial cells (LSEC), play key roles in antibody clearance. This combined with the fact that the liver is a highly perfused organ with a relatively permissive microcirculation means that hepatic binding of antibody has a significant effect on pharmacokinetics of clearance. Liver disease can alter systemic distribution or pharmacokinetics of antibody-based therapies and impact on clinical effectiveness, however, few studies document the changes in key membrane receptors involved in antibody clearance across the spectrum of liver disease. Similarly, the individual contribution of LSEC scavenger receptors to antibody clearance in a healthy or chronically diseased organ is not well characterized. This is an important omission since pharmacokinetic studies of antibody distribution are often based on studies in healthy individuals and thus may not reflect the picture in an aging or chronically diseased population. Therefore, in this review we consider the expression and function of key antibody-binding receptors on LSEC, and the features of therapeutic antibodies which may accentuate clearance by the liver. We then discuss the implications of this for the design and utility of monoclonal antibody-based therapies.
Collapse
Affiliation(s)
- Bethany H. James
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Pantelitsa Papakyriacou
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Matthew J. Gardener
- Antibody Pharmacology, Biopharm Discovery, Glaxo Smith Kline Research and Development, Stevenage, United Kingdom
| | - Louise Gliddon
- Antibody Pharmacology, Biopharm Discovery, Glaxo Smith Kline Research and Development, Stevenage, United Kingdom
| | - Christopher J. Weston
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Patricia F. Lalor
- Centre for Liver and Gastroenterology Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Patricia F. Lalor,
| |
Collapse
|
8
|
Lee H, Ji SY, Hwangbo H, Kim MY, Kim DH, Park BS, Park JH, Lee BJ, Kim GY, Jeon YJ, Choi YH. Protective Effect of Gamma Aminobutyric Acid against Aggravation of Renal Injury Caused by High Salt Intake in Cisplatin-Induced Nephrotoxicity. Int J Mol Sci 2022; 23:ijms23010502. [PMID: 35008928 PMCID: PMC8745502 DOI: 10.3390/ijms23010502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is one of the inhibitory neurotransmitters. Several studies have suggested that GABA supplements can reduce blood pressure and modulate the renal immune system in vitro and in vivo. In the present study, we investigated the effect of GABA-enriched salt as an alternative to traditional salt on aggravated renal injury by high salt intake in cisplatin-induced nephrotoxicity mice. High salt intake accelerated the increase of biomarkers, such as blood urea nitrogen and serum creatinine levels for renal injury in cisplatin-induced nephrotoxicity mice. However, oral administration of GABA-contained salt notably suppressed serum BUN and creatinine levels. The efficacy of GABA salt was superior to lacto GABA salt and postbiotics GABA salt. Furthermore, GABA-enriched salt markedly restored histological symptoms of nephrotoxicity including renal hypertrophy, tubular dilation, hemorrhage, and collagen deposition aggravated by salt over-loading in cisplatin-exposed mice. Among them, GABA salt showed a higher protective effect against cisplatin-induced renal histological changes than lacto GABA salt and postbiotics GABA salt. In addition, administration of high salt significantly enhanced expression levels of apoptosis and inflammatory mediators in cisplatin-induced nephrotoxicity mice, while GABA-enriched salt greatly down-regulated the expression of these mediators. Taken together, these results demonstrate the protective effect of GABA against damage caused by high salt intake in cisplatin-induced renal toxicity. Its mechanism may be due to the suppression of hematological and biochemical toxicity, apoptosis, and inflammation. In conclusion, although the protective efficacy of GABA salt on renal injury is different depending on the sterilization and filtration process after fermentation with L. brevis BJ20 and L. plantarum BJ21, our findings suggest that GABA-enriched salt has a beneficial effect against immoderate high salt intake-mediated kidney injury in patients with cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Hyesook Lee
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea; (H.L.); (S.Y.J.); (M.Y.K.); (B.S.P.)
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
| | - Seon Yeong Ji
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea; (H.L.); (S.Y.J.); (M.Y.K.); (B.S.P.)
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
| | - Hyun Hwangbo
- Korea Nanobiotechnology Center, Pusan National University, Busan 46241, Korea;
| | - Min Yeong Kim
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea; (H.L.); (S.Y.J.); (M.Y.K.); (B.S.P.)
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
| | - Da Hye Kim
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea;
| | - Beom Su Park
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea; (H.L.); (S.Y.J.); (M.Y.K.); (B.S.P.)
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
| | - Joung-Hyun Park
- Ocean Fisheries & Biology Center, Marine Bioprocess Co., Ltd., Busan 46048, Korea; (J.-H.P.); (B.-J.L.)
| | - Bae-Jin Lee
- Ocean Fisheries & Biology Center, Marine Bioprocess Co., Ltd., Busan 46048, Korea; (J.-H.P.); (B.-J.L.)
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (G.-Y.K.); (Y.-J.J.)
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (G.-Y.K.); (Y.-J.J.)
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea; (H.L.); (S.Y.J.); (M.Y.K.); (B.S.P.)
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea
- Correspondence: ; Tel.: +82-51-890-3319
| |
Collapse
|
9
|
Yang W, Ivanov DG, Kaltashov IA. Extending the capabilities of intact-mass analyses to monoclonal immunoglobulins of the E-isotype (IgE). MAbs 2022; 14:2103906. [PMID: 35895856 PMCID: PMC9336480 DOI: 10.1080/19420862.2022.2103906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Mass spectrometry (MS) has become an indispensable tool in structural characterization and quality control of monoclonal antibodies (mAbs). Intact-mass analysis is a particularly attractive option that provides a powerful and cost-effective means to not only confirm the structural integrity of the protein, but also probe its interactions with therapeutic targets. To a certain extent, this success can be attributed to relatively modest glycosylation levels exhibited by IgG molecules, which limits their structural heterogeneity and enables straightforward mass measurements at the intact molecule level. The recent surge of interest in expanding the repertoire of mAbs to include other classes of immunoglobulins places a premium on efforts to adapt the IgG-tailored experimental strategies to other classes of antibodies, but their dramatically higher levels of glycosylation may create insurmountable obstacles. The monoclonal murine IgE antibody explored in this work provides a challenging model system, as its glycosylation level exceeds that of conventional IgG mAbs by a factor of nine. The commercial sample, which included various IgE fragments, yields a poorly resolved ionic signal in intact-mass measurements, from which little useful information can be extracted. However, coupling MS measurements with the limited charge reduction of select polycationic species in the gas phase gives rise to well-defined charge ladders, from which both ionic masses and charges can be readily determined. The measurements reveal significant variation of the extent of glycosylation within intact IgE molecules, as well as the presence of low-molecular weight impurities in the commercial IgE sample. Furthermore, incubation of the monoclonal IgE with its antigen (ovalbumin) gives rise to the formation of complexes with varying stoichiometries, which can also be uniquely identified using a combination of native MS, limited charge reduction in the gas phase and data fitting procedures. This work demonstrates that following appropriate modifications, intact-mass analysis measurements can be successfully applied to mAbs beyond the IgG isotype, providing a wealth of information not only on the mass distribution of the intact IgE molecules, but also their large-scale conformational integrity, the integrity of their covalent structure, and their interactions with antigens.
Collapse
Affiliation(s)
- Wenhua Yang
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, USA.,College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Daniil G Ivanov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
10
|
Matsuda Y, Seki T, Yamada K, Ooba Y, Takahashi K, Fujii T, Kawaguchi S, Narita T, Nakayama A, Kitahara Y, Mendelsohn BA, Okuzumi T. Chemical Site-Specific Conjugation Platform to Improve the Pharmacokinetics and Therapeutic Index of Antibody-Drug Conjugates. Mol Pharm 2021; 18:4058-4066. [PMID: 34579528 DOI: 10.1021/acs.molpharmaceut.1c00473] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To overcome a lack of selectivity during the chemical modification of native non-engineered antibodies, we have developed a technology platform termed "AJICAP" for the site-specific chemical conjugation of antibodies through the use of a class of IgG Fc-affinity reagents. To date, a limited number of antibody-drug conjugates (ADCs) have been synthesized via this approach, and no toxicological study was reported. Herein, we describe the compatibility and robustness of AJICAP technology, which enabled the synthesis of a wide variety of ADCs. A stability assessment of a thiol-modified antibody synthesized by AJICAP technology indicated no appreciable increase in aggregation or decomposition upon prolonged storage, indicating that the unexpectedly stable thiol intermediate has a great potential intermediate for payload or linker screening or large-scale manufacturing. Payload conjugation with this stable thiol intermediate generated several AJICAP-ADCs. In vivo xenograft studies indicated that the AJICAP-ADCs displayed significant tumor inhibition comparable to benchmark ADC Kadcyla. Furthermore, a rat pharmacokinetic analysis and toxicology study indicated an increase in the maximum tolerated dose, demonstrating an expansion of the AJICAP-ADC therapeutic index, compared with stochastic conjugation technology. This is the first report of the therapeutic index estimation of site-specific ADCs produced by utilizing Fc affinity reagent conjugation. The described site-specific conjugation technology is a powerful platform to enable next-generation ADCs through reduced heterogeneity and enhanced therapeutic index.
Collapse
Affiliation(s)
- Yutaka Matsuda
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan.,Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, California 92121, United States
| | - Takuya Seki
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Kei Yamada
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Yuri Ooba
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Kazutoshi Takahashi
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Tomohiro Fujii
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Sayaka Kawaguchi
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Takahiro Narita
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Akira Nakayama
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Yoshiro Kitahara
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| | - Brian A Mendelsohn
- Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, California 92121, United States
| | - Tatsuya Okuzumi
- Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki-Ku, Kawasaki-Shi, Kanagawa 210-8681, Japan
| |
Collapse
|
11
|
Kamuyu G, Suen Cheng Y, Willcocks S, Kewcharoenwong C, Kiratisin P, Taylor PW, Wren BW, Lertmemongkolchai G, Stabler RA, Brown J. Sequential Vaccination With Heterologous Acinetobacter baumannii Strains Induces Broadly Reactive Antibody Responses. Front Immunol 2021; 12:705533. [PMID: 34394105 PMCID: PMC8363311 DOI: 10.3389/fimmu.2021.705533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Antibody therapy may be an alternative treatment option for infections caused by the multi-drug resistant (MDR) bacterium Acinetobacter baumannii. As A. baumannii has multiple capsular serotypes, a universal antibody therapy would need to target conserved protein antigens rather than the capsular polysaccharides. We have immunized mice with single or multiple A. baumannii strains to induce antibody responses to protein antigens, and then assessed whether these responses provide cross-protection against a collection of genetically diverse clinical A. baumannii isolates. Immunized mice developed antibody responses to multiple protein antigens. Flow cytometry IgG binding assays and immunoblots demonstrated improved recognition of both homologous and heterologous clinical strains in sera from mice immunized with multiple strains compared to a single strain. The capsule partially inhibited bacterial recognition by IgG and the promotion of phagocytosis by human neutrophils. However, after immunization with multiple strains, serum antibodies to protein antigens promoted neutrophil phagocytosis of heterologous A. baumannii strains. In an infection model, mice immunized with multiple strains had lower bacterial counts in the spleen and liver following challenge with a heterologous strain. These data demonstrate that antibodies targeting protein antigens can improve immune recognition and protection against diverse A. baumannii strains, providing support for their use as an antibody therapy.
Collapse
Affiliation(s)
- Gathoni Kamuyu
- Centre for Inflammation and Tissue Repair, University College London (UCL) Respiratory, London, United Kingdom
| | - Yat Suen Cheng
- Centre for Inflammation and Tissue Repair, University College London (UCL) Respiratory, London, United Kingdom
| | - Sam Willcocks
- London School of Hygiene and Tropical Medicine, Infectious and Tropical Disease, Department of Infection Biology, London, United Kingdom
| | - Chidchamai Kewcharoenwong
- Cellular and Molecular Immunology Unit, Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Pattarachai Kiratisin
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-Noi, Bangkok, Thailand
| | - Peter W Taylor
- School of Pharmacy, University College London, London, United Kingdom
| | - Brendan W Wren
- London School of Hygiene and Tropical Medicine, Infectious and Tropical Disease, Department of Infection Biology, London, United Kingdom
| | - Ganjana Lertmemongkolchai
- Cellular and Molecular Immunology Unit, Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Richard A Stabler
- London School of Hygiene and Tropical Medicine, Infectious and Tropical Disease, Department of Infection Biology, London, United Kingdom
| | - Jeremy Brown
- Centre for Inflammation and Tissue Repair, University College London (UCL) Respiratory, London, United Kingdom
| |
Collapse
|