1
|
Saud Gany SL, Chin KY, Tan JK, Aminuddin A, Makpol S. Preventative and therapeutic potential of tocotrienols on musculoskeletal diseases in ageing. Front Pharmacol 2023; 14:1290721. [PMID: 38146461 PMCID: PMC10749321 DOI: 10.3389/fphar.2023.1290721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023] Open
Abstract
Musculoskeletal health is paramount in an ageing population susceptible to conditions such as osteoporosis, arthritis and fractures. Age-related changes in bone, muscle, and joint function result in declining musculoskeletal health, reduced mobility, increased risk of falls, and persistent discomfort. Preserving musculoskeletal wellbeing is essential for maintaining independence and enhancing the overall quality of life for the elderly. The global burden of musculoskeletal disorders is significant, impacting 1.71 billion individuals worldwide, with age-related muscle atrophy being a well-established phenomenon. Tocotrienols, a unique type of vitamin E found in various sources, demonstrate exceptional antioxidant capabilities compared to tocopherols. This characteristic positions them as promising candidates for addressing musculoskeletal challenges, particularly in mitigating inflammation and oxidative stress underlying musculoskeletal disorders. This review paper comprehensively examines existing research into the preventive and therapeutic potential of tocotrienols in addressing age-related musculoskeletal issues. It sheds light on the promising role of tocotrienols in enhancing musculoskeletal health and overall wellbeing, emphasizing their significance within the broader context of age-related health concerns.
Collapse
Affiliation(s)
- Siti Liyana Saud Gany
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Khallouki F, Hajji L, Saber S, Bouddine T, Edderkaoui M, Bourhia M, Mir N, Lim A, El Midaoui A, Giesy JP, Aboul-Soud MAM, Silvente-Poirot S, Poirot M. An Update on Tamoxifen and the Chemo-Preventive Potential of Vitamin E in Breast Cancer Management. J Pers Med 2023; 13:jpm13050754. [PMID: 37240924 DOI: 10.3390/jpm13050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Breast cancer (BC) is the most common female cancer in terms of incidence and mortality worldwide. Tamoxifen (Nolvadex) is a widely prescribed, oral anti-estrogen drug for the hormonal treatment of estrogen-receptor-positive BC, which represents 70% of all BC subtypes. This review assesses the current knowledge on the molecular pharmacology of tamoxifen in terms of its anticancer and chemo-preventive actions. Due to the importance of vitamin E compounds, which are widely taken as a supplementary dietary component, the review focuses only on the potential importance of vitamin E in BC chemo-prevention. The chemo-preventive and onco-protective effects of tamoxifen combined with the potential effects of vitamin E can alter the anticancer actions of tamoxifen. Therefore, methods involving an individually designed, nutritional intervention for patients with BC warrant further consideration. These data are of great importance for tamoxifen chemo-prevention strategies in future epidemiological studies.
Collapse
Affiliation(s)
- Farid Khallouki
- Biology Department, FSTE, Moulay Ismail University of Meknes, BP 609, Errachidia 52000, Morocco
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Lhoussain Hajji
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Somayya Saber
- Biology Department, FSTE, Moulay Ismail University of Meknes, BP 609, Errachidia 52000, Morocco
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Toufik Bouddine
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Mouad Edderkaoui
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center & University of California, Los Angeles, CA 90048, USA
| | - Mohammed Bourhia
- Higher Institute of Nursing Professions and Technical Health, Laayoune 70000, Morocco
| | - Nora Mir
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Adrian Lim
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center & University of California, Los Angeles, CA 90048, USA
| | - Adil El Midaoui
- Biology Department, FSTE, Moulay Ismail University of Meknes, BP 609, Errachidia 52000, Morocco
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Environmental Sciences, Baylor University, Waco, TX 76706, USA
| | - Mourad A M Aboul-Soud
- Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Sandrine Silvente-Poirot
- Cancer Research Center of Toulouse, UMR 1037 INSERM, UMR 5071 CNRS, University of Toulouse III, Equipe labellisée par la Ligue Nationale Contre le Cancer, 31037 Toulouse, France
- French Network for Nutrition And Cancer Research (NACRe Network), 78350 Jouy-en-Josas, France
| | - Marc Poirot
- Cancer Research Center of Toulouse, UMR 1037 INSERM, UMR 5071 CNRS, University of Toulouse III, Equipe labellisée par la Ligue Nationale Contre le Cancer, 31037 Toulouse, France
- French Network for Nutrition And Cancer Research (NACRe Network), 78350 Jouy-en-Josas, France
| |
Collapse
|
3
|
Pang KL, Mai CW, Chin KY. Molecular Mechanism of Tocotrienol-Mediated Anticancer Properties: A Systematic Review of the Involvement of Endoplasmic Reticulum Stress and Unfolded Protein Response. Nutrients 2023; 15:1854. [PMID: 37111076 PMCID: PMC10145773 DOI: 10.3390/nu15081854] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Tocotrienol, a type of vitamin E, is well known for its anti-cancer and other biological activities. This systematic review aims to summarize the involvement of endoplasmic reticulum stress (ERS) and subsequent unfolded protein response (UPR) as the underlying molecular mechanisms for the anticancer properties of tocotrienol. METHOD A comprehensive literature search was performed in March 2023 using the PubMed, Scopus, Web of Science, and EMBASE databases. In vitro, in vivo, and human studies were considered. RESULT A total of 840 articles were retrieved during the initial search, and 11 articles that fit the selection criteria were included for qualitative analysis. The current mechanistic findings are based solely on in vitro studies. Tocotrienol induces cancer cell growth arrest, autophagy, and cell death primarily through apoptosis but also through paraptosis-like cell death. Tocotrienol-rich fractions, including α-, γ- and δ-tocotrienols, induce ERS, as evidenced by upregulation of UPR markers and/or ERS-related apoptosis markers. Early endoplasmic reticulum calcium ion release, increased ceramide level, proteasomal inhibition, and upregulation of microRNA-190b were suggested to be essential in modulating tocotrienol-mediated ERS/UPR transduction. Nevertheless, the upstream molecular mechanism of tocotrienol-induced ERS is largely unknown. CONCLUSION ERS and UPR are essential in modulating tocotrienol-mediated anti-cancer effects. Further investigation is needed to elucidate the upstream molecular mechanism of tocotrienol-mediated ERS.
Collapse
Affiliation(s)
- Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
- Newcastle University Medicine Malaysia, Iskandar Puteri 79200, Malaysia
| | - Chun-Wai Mai
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia;
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
4
|
Pang KL, Foong LC, Abd Ghafar N, Soelaiman IN, Law JX, Leong LM, Chin KY. Transcriptomic Analysis of the Anticancer Effects of Annatto Tocotrienol, Delta-Tocotrienol and Gamma-Tocotrienol on Chondrosarcoma Cells. Nutrients 2022; 14:4277. [PMID: 36296960 PMCID: PMC9611384 DOI: 10.3390/nu14204277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Previous studies have demonstrated the anticancer activities of tocotrienol on several types of cancer, but its effects on chondrosarcoma have never been investigated. Therefore, this study aims to determine the anticancer properties of annatto tocotrienol (AnTT), γ-tocotrienol (γ-T3) and δ-tocotrienol (δ-T3) on human chondrosarcoma SW1353 cells. Firstly, the MTT assay was performed to determine the half-maximal inhibitory concentration (IC50) of tocotrienol on SW1353 cells after 24 h treatment. The mode of cell death, cell cycle analysis and microscopic observation of tocotrienol-treated SW1353 cells were then conducted according to the respective IC50 values. Subsequently, RNAs were isolated from tocotrienol-treated cells and subjected to RNA sequencing and transcriptomic analysis. Differentially expressed genes were identified and then verified with a quantitative PCR. The current study demonstrated that AnTT, γ-T3 and δ-T3 induced G1 arrest on SW1353 cells in the early phase of treatment (24 h) which progressed to apoptosis upon 48 h of treatment. Furthermore, tocotrienol-treated SW1353 cells also demonstrated large cytoplasmic vacuolation. The subsequent transcriptomic analysis revealed upregulated signalling pathways in endoplasmic reticulum stress, unfolded protein response, autophagy and transcription upon tocotrienol treatment. In addition, several cell proliferation and cancer-related pathways, such as Hippo signalling pathway and Wnt signalling pathway were also significantly downregulated upon treatment. In conclusion, AnTT, γ-T3 and δ-T3 possess promising anticancer properties against chondrosarcoma cells and further study is required to confirm their effectiveness as adjuvant therapy for chondrosarcoma.
Collapse
Affiliation(s)
- Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Lian-Chee Foong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Ima Nirwana Soelaiman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Lek Mun Leong
- Prima Nexus Sdn. Bhd., Suite 8-1 & 8-2, Level 8, Menara CIMB, Jalan Stesen Sentral 2, Kuala Lumpur 50470, Malaysia
- Department of Biomedical Science, Faculty of Science, Lincoln University College, Wisma Lincoln, No. 12-18, Jalan SS 6/12, Petaling Jaya 47301, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| |
Collapse
|
5
|
Ranasinghe R, Mathai M, Zulli A. Revisiting the therapeutic potential of tocotrienol. Biofactors 2022; 48:813-856. [PMID: 35719120 PMCID: PMC9544065 DOI: 10.1002/biof.1873] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
The therapeutic potential of the tocotrienol group stems from its nutraceutical properties as a dietary supplement. It is largely considered to be safe when consumed at low doses for attenuating pathophysiology as shown by animal models, in vitro assays, and ongoing human trials. Medical researchers and the allied sciences have experimented with tocotrienols for many decades, but its therapeutic potential was limited to adjuvant or concurrent treatment regimens. Recent studies have focused on targeted drug delivery by enhancing the bioavailability through carriers, self-sustained emulsions, nanoparticles, and ethosomes. Epigenetic modulation and computer remodeling are other means that will help increase chemosensitivity. This review will focus on the systemic intracellular anti-cancer, antioxidant, and anti-inflammatory mechanisms that are stimulated and/or regulated by tocotrienols while highlighting its potent therapeutic properties in a diverse group of clinical diseases.
Collapse
Affiliation(s)
- Ranmali Ranasinghe
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| | - Michael Mathai
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| | - Anthony Zulli
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| |
Collapse
|
6
|
Md Amin NA, Sheikh Abdul Kadir SH, Arshad AH, Abdul Aziz N, Abdul Nasir NA, Ab Latip N. Are Vitamin E Supplementation Beneficial for Female Gynaecology Health and Diseases? Molecules 2022; 27:molecules27061896. [PMID: 35335260 PMCID: PMC8955126 DOI: 10.3390/molecules27061896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022] Open
Abstract
Vitamin E is known as an essential vitamin, and many studies had demonstrated the importance of vitamin E throughout the reproductive process, such as miscarriage, premature birth, preeclampsia, and intrauterine growth restriction, which could be caused by a lack of vitamin E during pregnancy. Its potent antioxidant properties can counteract the oxidative stress induced by oxygen free radicals and imbalance of oxidative-antioxidant levels, hence it may play a role in maintaining the normal function of the female reproductive system. Despite the fact that vitamin E is acknowledged as the substance needed for reproduction, its beneficial effects on female fertility, gynaecological health, and diseases are still poorly understood and lacking. Therefore, the goal of this paper is to provide a summary of the known roles of vitamin E supplementation in women for gynaecological health and reproductive-related diseases, as well as its future perspective.
Collapse
Affiliation(s)
- Nur Amira Md Amin
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia;
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia
- Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia;
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia
- Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia
- Correspondence:
| | - Akmal Hisyam Arshad
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia;
| | - Norhaslinda Abdul Aziz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras 56000, Kuala Lumpur, Malaysia;
| | - Nurul Alimah Abdul Nasir
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia;
| | - Normala Ab Latip
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, Puncak Alam 42300, Selangor, Malaysia;
| |
Collapse
|
7
|
Voon PT, Yap SY, Ab Fatah M, Ng YT. Letter to the editor regarding the article 'repeatedly heated palm olein disrupts male reproductive system of rat: A histological and biochemical study'. Andrologia 2022; 54:1784-1785. [PMID: 35238055 DOI: 10.1111/and.14416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/27/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Phooi Tee Voon
- Nutrition Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, Bandar Baru Bangi, Malaysia
| | - Sia Yen Yap
- Nutrition Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, Bandar Baru Bangi, Malaysia
| | - Maisarah Ab Fatah
- Nutrition Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, Bandar Baru Bangi, Malaysia
| | - Yen Teng Ng
- Nutrition Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, Bandar Baru Bangi, Malaysia
| |
Collapse
|
8
|
Idriss M, Younes M, Najem SA, Hodroj MH, Fakhoury R, Rizk S. Gamma-tocotrienol Synergistically Promotes the Anti-proliferative and Pro-apoptotic Effects of Etoposide on Breast Cancer Cell Lines. Curr Mol Pharmacol 2022; 15:980-986. [PMID: 35100963 DOI: 10.2174/1874467215666220131095611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/05/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast Cancer is one of the most commonly diagnosed cancers worldwide and a major cause of death among women. Although chemotherapeutic agents remain the keystones in cancer therapy, significant side effects have failed to provide a safe and tolerable treatment for cancer patients. Dietary antioxidant vitamins were extensively investigated over the past years and their relevance in cancer chemotherapy remains to be elucidated. OBJECTIVE In the current study, we aimed to investigate the anti-proliferative and apoptotic effects of combining γ-tocotrienol, a member of the vitamin E family, with the chemotherapeutic drug etoposide in MCF-7 and MDA-MB-231 breast cancer cell lines. METHODS The antiproliferative effect of etoposide combined with γ-tocotrienol was measured using MTS viability reagent. The pro-apoptotic effect was elucidated through Cell Death ELISA and dual Annexin V/PI staining followed by flow cytometric analysis. RESULTS Our results showed that etoposide significantly decreased the cell growth of both cell lines with MDA-MB-231 cells being more sensitive to etoposide treatment than MCF-7. Moreover, the simultaneous treatment of both breast cancer cell lines with low doses of γ-tocotrienol and etoposide induced a synergistic antiproliferative effect (CI<1). Furthermore, the combination therapy significantly increased the percentage of total apoptotic cells in the MDA-MB-231 cell line and the degree of DNA fragmentation as compared to treatment with either compound alone. CONCLUSION In conclusion, our results provide evidence for the profound anti-tumorigenic effect of combined etoposide and γ-tocotrienol in the breast cancer cell lines.
Collapse
Affiliation(s)
- Maya Idriss
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 36, Lebanon
| | - Maria Younes
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 36, Lebanon
| | - Sonia Abou Najem
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 36, Lebanon
| | - Mohammad Hassan Hodroj
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 36, Lebanon
| | - Rajaa Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 36, Lebanon
| | - Sandra Rizk
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 36, Lebanon
| |
Collapse
|
9
|
Subramaiam H, Chu WL, Radhakrishnan AK, Chakravarthi S, Selvaduray KR, Kok YY. Evaluating Anticancer and Immunomodulatory Effects of Spirulina (Arthrospira) platensis and Gamma-Tocotrienol Supplementation in a Syngeneic Mouse Model of Breast Cancer. Nutrients 2021; 13:2320. [PMID: 34371830 PMCID: PMC8308567 DOI: 10.3390/nu13072320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Nutrition can modulate host immune responses as well as promote anticancer effects. In this study, two nutritional supplements, namely gamma-tocotrienol (γT3) and Spirulina, were evaluated for their immune-enhancing and anticancer effects in a syngeneic mouse model of breast cancer (BC). Five-week-old female BALB/c mice were fed Spirulina, γT3, or a combination of Spirulina and γT3 (Spirulina + γT3) for 56 days. The mice were inoculated with 4T1 cells into their mammary fat pad on day 28 to induce BC. The animals were culled on day 56 for various analyses. A significant reduction (p < 0.05) in tumor volume was only observed on day 37 and 49 in animals fed with the combination of γT3 + Spirulina. There was a marked increase (p < 0.05) of CD4/CD127+ T-cells and decrease (p < 0.05) of T-regulatory cells in peripheral blood from mice fed with either γT3 or Spirulina. The breast tissue of the combined group showed abundant areas of necrosis, but did not prevent metastasis to the liver. Although there was a significant increase (p < 0.05) of MIG-6 and Cadherin 13 expression in tumors from γT3-fed animals, there were no significant (p > 0.05) differences in the expression of MIG-6, Cadherin 13, BIRC5, and Serpine1 upon combined feeding. This showed that combined γT3 + Spirulina treatment did not show any synergistic anticancer effects in this study model.
Collapse
Affiliation(s)
- Hemavathy Subramaiam
- School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Wan-Loy Chu
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Srikumar Chakravarthi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Bandar Saujana Putra 42610, Malaysia
| | - Kanga Rani Selvaduray
- Product Development and Advisory Services Division, Malaysian Palm Oil Board, Bandar Baru Bangi 43000, Malaysia
| | - Yih-Yih Kok
- School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
10
|
Dell’Acqua G, Richards A, Thornton MJ. The Potential Role of Nutraceuticals as an Adjuvant in Breast Cancer Patients to Prevent Hair Loss Induced by Endocrine Therapy. Nutrients 2020; 12:nu12113537. [PMID: 33217935 PMCID: PMC7698784 DOI: 10.3390/nu12113537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
Nutraceuticals, natural dietary and botanical supplements offering health benefits, provide a basis for complementary and alternative medicine (CAM). Use of CAM by healthy individuals and patients with medical conditions is rapidly increasing. For the majority of breast cancer patients, treatment plans involve 5–10 yrs of endocrine therapy, but hair loss/thinning is a common side effect. Many women consider this significant, severely impacting on quality of life, even leading to non-compliance of therapy. Therefore, nutraceuticals that stimulate/maintain hair growth can be proposed. Although nutraceuticals are often available without prescription and taken at the discretion of patients, physicians can be reluctant to recommend them, even as adjuvants, since potential interactions with endocrine therapy have not been fully elucidated. It is, therefore, important to understand the modus operandi of ingredients to be confident that their use will not interfere/interact with therapy. The aim is to improve clinical/healthcare outcomes by combining specific nutraceuticals with conventional care whilst avoiding detrimental interactions. This review presents the current understanding of nutraceuticals beneficial to hair wellness and outcomes concerning efficacy/safety in breast cancer patients. We will focus on describing endocrine therapy and the role of estrogens in cancer and hair growth before evaluating the effects of natural ingredients on breast cancer and hair growth.
Collapse
Affiliation(s)
| | | | - M. Julie Thornton
- Centre for Skin Sciences, University of Bradford, Bradford BD17 7DF, UK
- Correspondence:
| |
Collapse
|
11
|
Idriss M, Hodroj MH, Fakhoury R, Rizk S. Beta-Tocotrienol Exhibits More Cytotoxic Effects than Gamma-Tocotrienol on Breast Cancer Cells by Promoting Apoptosis via a P53-Independent PI3-Kinase Dependent Pathway. Biomolecules 2020; 10:biom10040577. [PMID: 32283796 PMCID: PMC7226046 DOI: 10.3390/biom10040577] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Studies on tocotrienols have progressively revealed the benefits of these vitamin E isoforms on human health. Beta-tocotrienol (beta-T3) is known to be less available in nature compared to other vitamin E members, which may explain the restricted number of studies on beta-T3. In the present study, we aim to investigate the anti-proliferative effects and the pro-apoptotic mechanisms of beta-T3 on two human breast adenocarcinoma cell lines MDA-MB-231 and MCF7. To assess cell viability, both cell lines were incubated for 24 and 48 h, with different concentrations of beta-T3 and gamma-T3, the latter being a widely studied vitamin E isoform with potent anti-cancerous properties. Cell cycle progression and apoptosis induction upon treatment with various concentrations of the beta-T3 isoform were assessed. The effect of beta-T3 on the expression level of several apoptosis-related proteins p53, cytochrome C, cleaved-PARP-1, Bax, Bcl-2, and caspase-3, in addition to key cell survival proteins p-PI3K and p-GSK-3 α/β was determined using western blot analysis. Beta-tocotrienol exhibited a significantly more potent anti-proliferative effect than gamma-tocotrienol on both cell lines regardless of their hormonal receptor status. Beta-T3 induced a mild G1 arrest on both cell lines, and triggered a mitochondrial stress-mediated apoptotic response in MDA-MB-231 cells. Mechanistically, beta-T3′s anti-neoplastic activity involved the downregulation of phosphorylated PI3K and GSK-3 cell survival proteins. These findings suggest that vitamin E beta-T3 should be considered as a promising anti-cancer agent, more effective than gamma-T3 for treating human breast cancer and deserves to be further studied to investigate its effects in vitro and on other cancer types.
Collapse
Affiliation(s)
- Maya Idriss
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 36, Lebanon; (M.I.); (M.H.H.)
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon;
| | - Mohammad Hassan Hodroj
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 36, Lebanon; (M.I.); (M.H.H.)
| | - Rajaa Fakhoury
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon;
| | - Sandra Rizk
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos 36, Lebanon; (M.I.); (M.H.H.)
- Correspondence: ; Tel.: +961-1786456
| |
Collapse
|
12
|
Kang SH, Lee JY, Lee TH, Park SY, Kim CK. De novo transcriptome assembly of the Chinese pearl barley, adlay, by full-length isoform and short-read RNA sequencing. PLoS One 2018; 13:e0208344. [PMID: 30533012 PMCID: PMC6289447 DOI: 10.1371/journal.pone.0208344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/15/2018] [Indexed: 11/29/2022] Open
Abstract
Adlay (Coix lacryma-jobi) is a tropical grass that has long been used in traditional Chinese medicine and is known for its nutritional benefits. Recent studies have shown that vitamin E compounds in adlay protect against chronic diseases such as cancer and heart disease. However, the molecular basis of adlay's health benefits remains unknown. Here, we generated adlay gene sets by de novo transcriptome assembly using long-read isoform sequencing (Iso-Seq) and short-read RNA-Sequencing (RNA-Seq). The gene sets obtained from Iso-seq and RNA-seq contained 31,177 genes and 57,901 genes, respectively. We confirmed the validity of the assembled gene sets by experimentally analyzing the levels of prolamin and vitamin E biosynthesis-associated proteins in adlay plant tissues and seeds. We compared the screened adlay genes with known gene families from closely related plant species, such as rice, sorghum and maize. We also identified tissue-specific genes from the adlay leaf, root, and young and mature seed, and experimentally validated the differential expression of 12 randomly-selected genes. Our study of the adlay transcriptome will provide a valuable resource for genetic studies that can enhance adlay breeding programs in the future.
Collapse
Affiliation(s)
- Sang-Ho Kang
- International Technology Cooperation Center, RDA, Jeonju, Republic of Korea
| | - Jong-Yeol Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Korea
| | - Tae-Ho Lee
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, Korea
| | - Soo-Yun Park
- Biosafety Division, National Institute of Agricultural Sciences, RDA, Jeonju, Korea
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, Korea
| |
Collapse
|
13
|
Bartosińska E, Jacyna J, Borsuk-De Moor A, Kaliszan M, Kondej K, Jankau J, Renkielska A, Kruszewski WJ, Markuszewski MJ, Siluk D. Determination of tocopherols and tocotrienols in human breast adipose tissue with the use of high performance liquid chromatography-fluorescence detection. Biomed Chromatogr 2018; 32:e4361. [PMID: 30114327 DOI: 10.1002/bmc.4361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/02/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022]
Abstract
Tocopherols and tocotrienols have been extensively studied owing to their anticancer potential, especially against breast cancer. Therefore, the aim of this study was to quantitatively determine tocochromanols in human breast adipose tissue with the use of HPLC-FLD. The sample preparation procedure included homogenization and solvent extraction with isopropanol-ethanol-0.1% formic acid mixture prior to solid-phase extraction. After implementation of central composite design, satisfactory separation of all eight target compounds was achieved within 10.5 min. Chromatographic runs were carried out with the use of a naphthylethyl chromatographic column with methanol-water mixture (89:11, v/v) as the mobile phase. Fluorescence detection of tocochromanols was performed with excitation and emission wavelengths 298 and 330 nm, respectively. The method was validated in terms of linearity, carryover, recovery, precision, accuracy and stability. Extraction yield was also determined for accurate evaluation of vitamin E content in human breast adipose tissue samples. Finally, concentrations of particular tocochromanols compounds were assessed in human breast adipose tissue samples obtained from 99 patients, including women with breast cancer, healthy volunteers and deceased women who had died as a result of accidents. The raw data was transformed according to the newly developed equation for accurate estimation of the concentrations of tocochromanols in breast adipose tissue samples. Results obtained in the study indicated that the proposed analytical assay could be useful in breast cancer research.
Collapse
Affiliation(s)
- Ewa Bartosińska
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| | - Julia Jacyna
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| | - Agnieszka Borsuk-De Moor
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| | - Michał Kaliszan
- Department of Forensic Medicine, Medical University of Gdańsk, Dębowa 23, 80-204, Gdańsk, Poland
| | - Karolina Kondej
- Department of Plastic Surgery, Medical University of Gdańsk, M. Skłodowska-Curie 3a, 80-210, Gdańsk, Poland
| | - Jerzy Jankau
- Department of Plastic Surgery, Medical University of Gdańsk, M. Skłodowska-Curie 3a, 80-210, Gdańsk, Poland
| | - Alicja Renkielska
- Department of Plastic Surgery, Medical University of Gdańsk, M. Skłodowska-Curie 3a, 80-210, Gdańsk, Poland
| | - Wiesław Janusz Kruszewski
- Department of Oncological Surgery, Gdynia Centre of Oncology, Maritime Hospital in Gdynia, Powstania Styczniowego 1, 81-519, Gdynia, Poland.,Division of Propedeutics of Oncology, Medical University of Gdańsk, Powstania Styczniowego 9b, 81-519, Gdynia, Poland
| | - Michał Jan Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| | - Danuta Siluk
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| |
Collapse
|
14
|
Bartosińska E, Borsuk-De Moor A, Siluk D, Markuszewski MJ, Wiczling P. Ionization of tocopherols and tocotrienols in atmospheric pressure chemical ionization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:919-927. [PMID: 29578620 DOI: 10.1002/rcm.8124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Tocopherols and tocotrienols are chemical compounds insusceptible to the ionization process under atmospheric pressure conditions. Therefore, the selection of the optimal ion source settings for their quantification requires special attention. The aim of this study was to analyse the influence of the APCI source parameters on the response of tocochromanols and two related compounds. METHODS Standard solutions of target compounds were injected on the high-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry (HPLC/APCI-MS/MS) system separately and analysed with 30 randomly selected ion source settings. The obtained responses were modelled by multivariate linear regression with least absolute shrinkage and selection operator. The developed models were used to choose the best APCI conditions. RESULTS Multivariate linear models were built for eight tocochromanols, trolox and BHT. The APCI settings derived from the models did not increase the peak areas obtained for T and T3 during the ionization process. Ionization conditions based on models for trolox and BHT improved analytical responses by 12-36% and 4-32%, respectively. The application of the ion source settings optimal for trolox and BHT to tocochromanols did not result in better analytical responses. CONCLUSIONS The ionization pattern of tocochromanols in the APCI source is problematic and should be further investigated. Modelling methodology for response improvement presented in this study can be applied in similar studies.
Collapse
Affiliation(s)
- Ewa Bartosińska
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| | - Agnieszka Borsuk-De Moor
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| | - Danuta Siluk
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| | - Michał J Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| | - Paweł Wiczling
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| |
Collapse
|
15
|
Inducers of Senescence, Toxic Compounds, and Senolytics: The Multiple Faces of Nrf2-Activating Phytochemicals in Cancer Adjuvant Therapy. Mediators Inflamm 2018; 2018:4159013. [PMID: 29618945 PMCID: PMC5829354 DOI: 10.1155/2018/4159013] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022] Open
Abstract
The reactivation of senescence in cancer and the subsequent clearance of senescent cells are suggested as therapeutic intervention in the eradication of cancer. Several natural compounds that activate Nrf2 (nuclear factor erythroid-derived 2-related factor 2) pathway, which is involved in complex cytoprotective responses, have been paradoxically shown to induce cell death or senescence in cancer. Promoting the cytoprotective Nrf2 pathway may be desirable for chemoprevention, but it might be detrimental in later stages and advanced cancers. However, senolytic activity shown by some Nrf2-activating compounds could be used to target senescent cancer cells (particularly in aged immune-depressed organisms) that escape immunosurveillance. We herein describe in vitro and in vivo effects of fifteen Nrf2-interacting natural compounds (tocotrienols, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, silybin, phenethyl isothiocyanate, sulforaphane, triptolide, allicin, berberine, piperlongumine, fisetin, and phloretin) on cellular senescence and discuss their use in adjuvant cancer therapy. In light of available literature, it can be concluded that the meaning and the potential of adjuvant therapy with natural compounds in humans remain unclear, also taking into account the existence of few clinical trials mostly characterized by uncertain results. Further studies are needed to investigate the therapeutic potential of those compounds that display senolytic activity.
Collapse
|
16
|
Bartosińska E, Jacyna J, Borsuk-De Moor A, Kaliszan M, Kruszewski WJ, Jankowski Z, Siluk D. HPLC-APCI-MS/MS method development and validation for determination of tocotrienols in human breast adipose tissue. Talanta 2018; 176:108-115. [DOI: 10.1016/j.talanta.2017.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 01/12/2023]
|
17
|
Szymańska R, Kruk J. Novel and rare prenyllipids - Occurrence and biological activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 122:1-9. [PMID: 29169080 DOI: 10.1016/j.plaphy.2017.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
The data presented indicate that there is a variety of unique prenyllipids, often of very limited taxonomic distribution, whose origin, biosynthesis, metabolism and biological function deserves to be elucidated. These compounds include tocoenols, tocochromanol esters, tocochromanol acids, plastoquinones and ubiquinones. Additionally, based on the available data, it can be assumed that there are still unrecognized prenyllipids, like prenylquinols fatty acid esters of the hydroquinone ring, including prenylquinol phosphates, and others, whose biological function might be of great importance. Our knowledge of these compounds is not only important from the scientific point of view, but may also be of practical significance to medicine, pharmacy or cosmetics.
Collapse
Affiliation(s)
- Renata Szymańska
- Department of Medical Physics and Biophysics, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Krakow, Poland.
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
18
|
Hamirah NK, Kamsani YS, Mohamed Nor Khan NA, Ab Rahim S, Rajikin MH. Effects of Nicotine and Tocotrienol-Rich Fraction Supplementation on Cytoskeletal Structures of Murine Pre-Implantation Embryos. Med Sci Monit Basic Res 2017; 23:373-379. [PMID: 29217815 PMCID: PMC5731215 DOI: 10.12659/msmbr.905447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background Cytoskeletal structures, in particular actin and tubulin, provide a fundamental framework in all cells, including embryos. The objective of this study was to evaluate the effects of nicotine, which is a source of oxidative stress, and subsequent supplementation with Tocotrienol-rich fraction (TRF) on actin and tubulin of 2- and 8-cell murine embryos. Material/Methods Thirty female Balb/C mice were divided into 4 groups: Group 1 received: subcutaneous (sc) injection of 0.9% NaCl; Group 2 received sc injection of 3.0 nicotine mg/kg bw/day; Group 3 received 3.0 sc injection of nicotine mg/kg bw/day +60 mg/kg bw/day TRF; and Group 4 received 60 sc injection of TRF mg/kg bw/day for 7 consecutive days. The animals were superovulated with 5 IU PMSG followed by 5 IU hCG 48 h later. Animals were cohabited with fertile males overnight and euthanized through cervical dislocation at 24 h post coitum. Embryos at the 2- and 8-cell stages were harvested, fixed, and stained to visualize actin and tubulin distributions by using CLSM. Results Results showed that at 2-cell stage, actin intensities were significantly reduced in the nicotine group compared to that of the control group (p<0.001). In Group 3, the intensity of actin significantly increased compared to that of the nicotine group (p<0.001). At 8-cell stage, actin intensity of the nicotine group was significantly lower than that of the control group (p<0.001). The intensities of actin in Group 3 were increased compared to that of nicotine treatment alone (p<0.001). The same trend was seen in tubulin at 2- and 8-cell stages. Interestingly, both actin and tubulin structures in the TRF-treated groups were enhanced compared to the control. Conclusions This study suggests that TRF prevents the deleterious effects of nicotine on the cytoskeletal structures of 2- and 8-cell stages of pre-implantation mice embryos in vitro.
Collapse
Affiliation(s)
- Nurul Kamsani Hamirah
- Institute of Medical Molecular Biotechnology, Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh, Malaysia.,Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | - Yuhaniza Shafinie Kamsani
- Institute of Medical Molecular Biotechnology, Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh, Malaysia.,Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia.,Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh, Malaysia
| | - Nor-Ashikin Mohamed Nor Khan
- Institute of Medical Molecular Biotechnology, Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh, Malaysia.,Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia.,Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh, Malaysia
| | - Sharaniza Ab Rahim
- Institute of Medical Molecular Biotechnology, Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh, Malaysia.,Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | - Mohd Hamim Rajikin
- Institute of Medical Molecular Biotechnology, Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh, Malaysia.,Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia.,Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh, Malaysia
| |
Collapse
|
19
|
Tan DMY, Fu JY, Wong FS, Er HM, Chen YS, Nesaretnam K. Tumor regression and modulation of gene expression via tumor-targeted tocotrienol niosomes. Nanomedicine (Lond) 2017; 12:2487-2502. [PMID: 28972460 DOI: 10.2217/nnm-2017-0182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To develop 6-O-palmitoyl-ascorbic acid-based niosomes targeted to transferrin receptor for intravenous administration of tocotrienols (T3) in breast cancer. MATERIALS & METHODS Niosomes were prepared using film hydration and ultrasonication methods. Transferrin was coupled to the surface of niosomes via chemical linker. Nanovesicles were characterized for size, zeta potential, morphology, stability and biological efficacy. RESULTS When evaluated in MDA-MB-231 cells, entrapment of T3 in niosomes caused 1.5-fold reduction in IC50 value compared with nonformulated T3. In vivo, the average tumor volume of mice treated with tumor-targeted niosomes was 12-fold lower than that of untreated group, accompanied by marked downregulation of three genes involved in metastasis. CONCLUSION Findings suggested that tumor-targeted niosomes served as promising delivery system for T3 in cancer therapy.
Collapse
Affiliation(s)
- Doryn Meam-Yee Tan
- Product Development & Advisory Services Division, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia.,Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, No 126, Jalan 19/155B, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Ju-Yen Fu
- Product Development & Advisory Services Division, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia
| | - Fu-Shun Wong
- Product Development & Advisory Services Division, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia
| | - Hui-Meng Er
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, No 126, Jalan 19/155B, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Yu-Sui Chen
- Department of Human Biology, School of Medicine, International Medical University, No 126, Jalan 19/155B, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Kalanithi Nesaretnam
- Product Development & Advisory Services Division, Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
20
|
Cheng HS, Ton SH, Tan JBL, Abdul Kadir K. The Ameliorative Effects of a Tocotrienol-Rich Fraction on the AGE-RAGE Axis and Hypertension in High-Fat-Diet-Fed Rats with Metabolic Syndrome. Nutrients 2017; 9:nu9090984. [PMID: 28880217 PMCID: PMC5622744 DOI: 10.3390/nu9090984] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 02/02/2023] Open
Abstract
The clinical value of tocotrienols is increasingly appreciated because of the unique therapeutic effects that are not shared by tocopherols. However, their effect on metabolic syndrome is not well-established. This study aimed to investigate the effects of a tocotrienol-rich fraction (TRF) from palm oil in high-fat-diet-treated rats. Male, post-weaning Sprague Dawley rats were provided high-fat (60% kcal) diet for eight weeks followed by a TRF (60 mg/kg) treatment for another four weeks. Physical, metabolic, and histological changes were compared to those on control and high-fat diets respectively. High-fat feeding for eight weeks induced all hallmarks of metabolic syndrome. The TRF reversed systolic and diastolic hypertension, hypercholesterolemia, hepatic steatosis, impaired antioxidant defense, and myeloperoxidase hyperactivity triggered by the high-fat diet. It also conferred an inhibitory effect on protein glycation to reduce glycated hemoglobin A1c and advanced glycation end products (AGE). This was accompanied by the suppression of the receptor for advanced glycation end product (RAGE) expression in the liver. The treatment effects on visceral adiposity, glycemic control, triglyceride level, as well as peroxisome proliferator-activated receptor α and γ expression were negligible. To conclude, treatment with a TRF exhibited protective effects on the cardiovascular and liver health in addition to the amelioration of plasma redox imbalance and AGE-RAGE activation. Further investigation as a therapy for metabolic syndrome is therefore worthwhile.
Collapse
Affiliation(s)
- Hong Sheng Cheng
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia.
| | - So Ha Ton
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia.
| | - Joash Ban Lee Tan
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia.
| | - Khalid Abdul Kadir
- School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 46150, Malaysia.
| |
Collapse
|
21
|
BABURA SR, ABDULLAH SNA, KHAZA′AI H. Advances in Genetic Improvement for Tocotrienol Production: A Review. J Nutr Sci Vitaminol (Tokyo) 2017; 63:215-221. [DOI: 10.3177/jnsv.63.215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sulaiman Rufai BABURA
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia
- Department of Plant Biology, Bayero University Kano
| | - Siti Nor Akmar ABDULLAH
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia
| | - Huzwah KHAZA′AI
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia
| |
Collapse
|
22
|
Meganathan P, Fu JY. Biological Properties of Tocotrienols: Evidence in Human Studies. Int J Mol Sci 2016; 17:ijms17111682. [PMID: 27792171 PMCID: PMC5133770 DOI: 10.3390/ijms17111682] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/09/2016] [Accepted: 09/28/2016] [Indexed: 12/25/2022] Open
Abstract
Vitamin E has been recognized as an essential vitamin since their discovery in 1922. Although the functions of tocopherols are well established, tocotrienols have been the unsung heroes of vitamin E. Due to their structural differences, tocotrienols were reported to exert distinctive properties compared to tocopherols. While most vegetable oils contain higher amount of tocopherols, tocotrienols were found abundantly in palm oil. Nature has made palm vitamin E to contain up to 70% of total tocotrienols, among which alpha-, gamma- and delta-tocotrienols are the major constituents. Recent advancements have shown their biological properties in conferring protection against cancer, cardiovascular diseases, neurodegeneration, oxidative stress and immune regulation. Preclinical results of these physiological functions were translated into clinical trials gaining global attention. This review will discuss in detail the evidence in human studies to date in terms of efficacy, population, disease state and bioavailability. The review will serve as a platform to pave the future direction for tocotrienols in clinical settings.
Collapse
Affiliation(s)
- Puvaneswari Meganathan
- Nutrition Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.
| | - Ju-Yen Fu
- Nutrition Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.
| |
Collapse
|
23
|
Zhao L, Yagiz Y, Xu C, Lu J, Chung S, Marshall MR. Muscadine grape seed oil as a novel source of tocotrienols to reduce adipogenesis and adipocyte inflammation. Food Funct 2016; 6:2293-302. [PMID: 26073057 DOI: 10.1039/c5fo00261c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tocotrienols are unsaturated forms of vitamin E previously shown to reduce adipogenesis and adipose inflammation. In this study, muscadine grape seed oil (MGSO) was identified as a novel source of tocotrienols containing significant amounts of α- and γ-tocotrienol (T3) with minor seasonal changes. The aim of this study was to assess the anti-adipogenic and anti-inflammatory potential of MGSO by using primary human adipose-derived stem cells (hASCs). Differentiating hASCs were treated with MGSO and compared with rice bran and olive oil. Accumulation of triglyceride was significantly lower in MGSO-treated hASCs than rice bran and olive oils. A tocotrienol rich fraction (TRF) from MGSO was prepared by solid phase extraction and eluted with 15% 1,4-dioxane in hexane. The MGSO-derived TRF treatment significantly reduced mRNA and protein expression that are crucial to adipogenesis (e.g., PPARγ and aP2) in hASCs. Furthermore, TRF from MGSO markedly reduced LPS-induced proinflammatory gene expression in human adipocytes and cytokine secretion to the medium (IL-6 and IL-8). Collectively, our work suggests that MGSO is a stable and reliable natural source of T3 and MGSO may constitute a new dietary strategy to attenuate obesity and its associated adipose inflammation.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Food Science and Human Nutrition, University of Florida, Gainesville 32611, Florida, USA.
| | | | | | | | | | | |
Collapse
|
24
|
De Silva L, Chuah LH, Meganathan P, Fu JY. Tocotrienol and cancer metastasis. Biofactors 2016; 42:149-62. [PMID: 26948691 DOI: 10.1002/biof.1259] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/30/2015] [Accepted: 12/02/2015] [Indexed: 01/03/2023]
Abstract
Tumor metastasis involves some of the most complex and dynamic processes in cancer, often leading to poor quality of life and inevitable death. The search for therapeutic compounds and treatment strategies to prevent and/or manage metastasis is the ultimate challenge to fight cancer. In the past two decades, research focus on vitamin E has had a shift from saturated tocopherols to unsaturated tocotrienols (T3). Despite sharing structural similarities with tocopherols, T3 strive to gain scientific prominence due to their anti-cancer effects. Recent studies have shed some light on the anti-metastatic properties of T3. In this review, the roles of T3 in each step of the metastatic process are discussed. During the invasion process, signaling pathways that regulate the extracellular matrix and tumor cell motility have been reported to be modulated by T3. Although studies on T3 and tumor cell migration are fairly limited, they were shown to play a vital role in the suppression of angiogenesis. Furthermore, the anti-inflammatory effect of T3 could be highly promising in the regulation of tumor microenvironment, which is crucial in supporting tumor growth in distant organs.
Collapse
Affiliation(s)
- Leanne De Silva
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Lay Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | | | - Ju-Yen Fu
- Nutrition Unit, Malaysian Palm Oil Board, Bandar Baru Bangi, Selangor, Malaysia
| |
Collapse
|
25
|
Chin KY, Pang KL, Soelaiman IN. Tocotrienol and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 928:97-130. [DOI: 10.1007/978-3-319-41334-1_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Wang C, Husain K, Zhang A, Centeno BA, Chen DT, Tong Z, Sebti SM, Malafa MP. EGR-1/Bax pathway plays a role in vitamin E δ-tocotrienol-induced apoptosis in pancreatic cancer cells. J Nutr Biochem 2015; 26:797-807. [PMID: 25997867 DOI: 10.1016/j.jnutbio.2015.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/13/2022]
Abstract
The anticancer activity of δ-tocotrienol, a bioactive vitamin E present in whole grain cereals, annatto beans and palm fruit, is strongly dependent on its effect on the induction of apoptosis. δ-Tocotrienol-induced apoptosis is associated with consistent induction in the expression of the proapoptotic protein Bcl-2-associated X protein (Bax). The molecular mechanism by which δ-tocotrienol regulates Bax expression is unknown. We carried out a DNA microarray study that identified δ-tocotrienol induction of the zinc finger transcription factor EGR-1 in pancreatic cancer cells. Here, we provide evidence linking δ-tocotrienol-induced apoptosis in pancreatic cancer cells to EGR-1 regulation of Bax expression. Forced expression of EGR-1 induces Bax expression and apoptosis in pancreatic cancer cells. In contrast, knockdown of δ-tocotrienol-induced EGR-1 by small interfering RNA attenuated δ-tocotrienol-induced Bax expression and reduced δ-tocotrienol-induced apoptosis. Further analyses showed that de novo protein synthesis was not required for δ-tocotrienol-induced EGR-1 expression, suggesting a direct effect of δ-tocotrienol on EGR-1 expression. Furthermore, a chromatin immunoprecipitation assay demonstrated that EGR-1 binds to the Bax gene promoter. Finally, δ-tocotrienol treatment induced Bax expression and activated EGR-1 in the pancreatic neoplastic cells of the PDX-Cre Kras genetically engineered model of pancreatic cancer. Our study provides the first evidence for EGR-1 as a direct target of vitamin E δ-tocotrienol, suggesting that EGR-1 may act as a proapoptotic factor in pancreatic cancer cells via induction of Bax.
Collapse
Affiliation(s)
- Chen Wang
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL; Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Kazim Husain
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL
| | - Anying Zhang
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL; Department of School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Barbara A Centeno
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL
| | - Dung-Tsa Chen
- Department of Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL
| | - Zhongsheng Tong
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Säid M Sebti
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL
| | - Mokenge P Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL; Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL.
| |
Collapse
|
27
|
Ahsan H, Ahad A, Iqbal J, Siddiqui WA. Pharmacological potential of tocotrienols: a review. Nutr Metab (Lond) 2014; 11:52. [PMID: 25435896 PMCID: PMC4247006 DOI: 10.1186/1743-7075-11-52] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
Tocotrienols, members of the vitamin E family, are natural compounds found in a number of vegetable oils, wheat germ, barley, and certain types of nuts and grains. Like tocopherols, tocotrienols are also of four types viz. alpha, beta, gamma and delta. Unlike tocopherols, tocotrienols are unsaturated and possess an isoprenoid side chain. Tocopherols are lipophilic in nature and are found in association with lipoproteins, fat deposits and cellular membranes and protect the polyunsaturated fatty acids from peroxidation reactions. The unsaturated chain of tocotrienol allows an efficient penetration into tissues that have saturated fatty layers such as the brain and liver. Recent mechanistic studies indicate that other forms of vitamin E, such as γ-tocopherol, δ-tocopherol, and γ-tocotrienol, have unique antioxidant and anti-inflammatory properties that are superior to those of α-tocopherol against chronic diseases. These forms scavenge reactive nitrogen species, inhibit cyclooxygenase- and 5-lipoxygenase-catalyzed eicosanoids and suppress proinflammatory signalling, such as NF-κB and STAT. The animal and human studies show tocotrienols may be useful against inflammation-associated diseases. Many of the functions of tocotrienols are related to its antioxidant properties and its varied effects are due to it behaving as a signalling molecule. Tocotrienols exhibit biological activities that are also exhibited by tocopherols, such as neuroprotective, anti-cancer, anti-inflammatory and cholesterol lowering properties. Hence, effort has been made to compile the different functions and properties of tocotrienols in experimental model systems and humans. This article constitutes an in-depth review of the pharmacology, metabolism, toxicology and biosafety aspects of tocotrienols. Tocotrienols are detectable at appreciable levels in the plasma after supplementations. However, there is inadequate data on the plasma concentrations of tocotrienols that are sufficient to demonstrate significant physiological effect and biodistribution studies show their accumulation in vital organs of the body. Considering the wide range of benefits that tocotrienols possesses against some common human ailments and having a promising potential, the experimental analysis accounts for about a small fraction of all vitamin E research. The current state of knowledge deserves further investigation into this lesser known form of vitamin E.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025 India
| | - Amjid Ahad
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| | - Jahangir Iqbal
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203 USA
| | - Waseem A Siddiqui
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| |
Collapse
|
28
|
Autophagy inhibitor 3-methyladenine potentiates apoptosis induced by dietary tocotrienols in breast cancer cells. Eur J Nutr 2014; 54:265-72. [PMID: 24830781 DOI: 10.1007/s00394-014-0707-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/24/2014] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Tocomin® represents commercially available mixture of naturally occurring tocotrienols (T3s) and tocopherols extracted from palm oil/palm fruits that possess powerful antioxidant, anticancer, neuro/cardioprotective and cholesterol-lowering properties. Cellular autophagy represents a defense mechanism against oxidative stress and several anticancer compounds. Recently, we reported that T3s induce apoptosis and endoplasmic reticulum stress in breast cancer cells. METHODOLOGY We studied the effects of Tocomin® on MCF-7 and MDA-MB 231 breast cancer cells and non-tumor MCF-10A cells. RESULTS Tocomin® inhibited cell proliferation and induced apoptosis in both MCF-7 and MDA-MB 231 breast cancer cell lines without affecting the viability of MCF-10A cells. We also showed that Tocomin® negatively modulates phosphoinositide 3-kinase and mTOR pathways and induces cytoprotective autophagic response in triple negative MDA-MB 231 cells. Lastly, we demonstrate that autophagy inhibitor 3-methyladenine (3-MA) potentiated the apoptosis induced by Tocomin® in MDA-MB 231 cells. CONCLUSION Together, our data indicate anticancer effects of Tocomin® in breast cancer cells, which is potentiated by the autophagy inhibitor 3-MA.
Collapse
|
29
|
Neophytou CM, Constantinou C, Papageorgis P, Constantinou AI. D-alpha-tocopheryl polyethylene glycol succinate (TPGS) induces cell cycle arrest and apoptosis selectively in Survivin-overexpressing breast cancer cells. Biochem Pharmacol 2014; 89:31-42. [PMID: 24560876 DOI: 10.1016/j.bcp.2014.02.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/04/2014] [Accepted: 02/07/2014] [Indexed: 12/28/2022]
Abstract
D-alpha-tocopheryl polyethylene glycol succinate (TPGS) is a vitamin E derivative that has been intensively applied as a vehicle for drug delivery systems to enhance drug solubility and increase the oral bioavailability of anti-cancer drugs. Recently, it has been reported that TPGS acts as an anti-cancer agent alone or synergistically with chemotherapeutic drugs and increases the efficacy of nanoparticle formulations. In this study, we investigated the antitumor efficacy and the molecular mechanism of action of TPGS in breast cancer cell lines. Our results show that TPGS can induce G1/S cell cycle arrest and apoptosis in breast cancer cell lines (MCF-7 and MDA-MB-231) but not in "normal" (non-tumorigenic) immortalized cells (MCF-10A and MCF-12F). An investigation of the molecular mechanism of action of TPGS reveals that induction of G1/S phase cell cycle arrest is associated with upregulation of P21 and P27Kip1 proteins. Induction of apoptosis by TPGS involves the inhibition of phospho-AKT and the downregulation of the anti-apoptotic proteins Survivin and Bcl-2. Interestingly, our results also suggest that TPGS induces both caspase -dependent and -independent apoptotic signaling pathways and that this vitamin E derivative is selectively cytotoxic in breast cancer cell lines. When compared to the Survivin inhibitor YM155, TPGS was shown to be more selective for cancer cell growth inhibition. Overall our results suggest that TPGS may not only be useful as a carrier molecule for drug delivery, but may also exert intrinsic therapeutic effects suggesting that it may promote a synergistic interaction with formulated chemotherapeutic drugs.
Collapse
Affiliation(s)
- Christiana M Neophytou
- Department of Biological Sciences, Faculty of Pure and Applied Sciences, University of Cyprus, 1678, Nicosia, Cyprus.
| | - Constantina Constantinou
- St. George's University of London Medical School at the University of Nicosia, 46 Makedonitissas Ave., 1700 Nicosia, Cyprus.
| | - Panagiotis Papageorgis
- Department of Biological Sciences, Faculty of Pure and Applied Sciences, University of Cyprus, 1678, Nicosia, Cyprus.
| | - Andreas I Constantinou
- Department of Biological Sciences, Faculty of Pure and Applied Sciences, University of Cyprus, 1678, Nicosia, Cyprus.
| |
Collapse
|
30
|
Bioavailability of tocotrienols: evidence in human studies. Nutr Metab (Lond) 2014; 11:5. [PMID: 24410975 PMCID: PMC3895660 DOI: 10.1186/1743-7075-11-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/08/2014] [Indexed: 01/07/2023] Open
Abstract
As a minor component of vitamin E, tocotrienols were evident in exhibiting biological activities such as neuroprotection, radio-protection, anti-cancer, anti-inflammatory and lipid lowering properties which are not shared by tocopherols. However, available data on the therapeutic window of tocotrienols remains controversial. It is important to understand the absorption and bioavailability mechanisms before conducting in-depth investigations into the therapeutic efficacy of tocotrienols in humans. In this review, we updated current evidence on the bioavailability of tocotrienols from human studies. Available data from five studies suggested that tocotrienols may reach its target destination through an alternative pathway despite its low affinity for α-tocopherol transfer protein. This was evident when studies reported considerable amount of tocotrienols detected in HDL particles and adipose tissues after oral consumption. Besides, plasma concentrations of tocotrienols were shown to be higher when administered with food while self-emulsifying preparation of tocotrienols was shown to enhance the absorption of tocotrienols. Nevertheless, mixed results were observed based on the outcome from 24 clinical studies, focusing on the dosages, study populations and formulations used. This may be due to the variation of compositions and dosages of tocotrienols used, suggesting a need to understand the formulation of tocotrienols in the study design. Essentially, implementation of a control diet such as AHA Step 1 diet may influence the study outcomes, especially in hypercholesterolemic subjects when lipid profile might be modified due to synergistic interaction between tocotrienols and control diet. We also found that the bioavailability of tocotrienols were inconsistent in different target populations, from healthy subjects to smokers and diseased patients. In this review, the effect of dosage, composition and formulation of tocotrienols as well as study populations on the bioavailability of tocotrienols will be discussed.
Collapse
|
31
|
Ahsan H, Ahad A, Iqbal J, Siddiqui WA. Pharmacological potential of tocotrienols: a review. Nutr Metab (Lond) 2014. [PMID: 25435896 DOI: 10.1186/743-7075-11-52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Tocotrienols, members of the vitamin E family, are natural compounds found in a number of vegetable oils, wheat germ, barley, and certain types of nuts and grains. Like tocopherols, tocotrienols are also of four types viz. alpha, beta, gamma and delta. Unlike tocopherols, tocotrienols are unsaturated and possess an isoprenoid side chain. Tocopherols are lipophilic in nature and are found in association with lipoproteins, fat deposits and cellular membranes and protect the polyunsaturated fatty acids from peroxidation reactions. The unsaturated chain of tocotrienol allows an efficient penetration into tissues that have saturated fatty layers such as the brain and liver. Recent mechanistic studies indicate that other forms of vitamin E, such as γ-tocopherol, δ-tocopherol, and γ-tocotrienol, have unique antioxidant and anti-inflammatory properties that are superior to those of α-tocopherol against chronic diseases. These forms scavenge reactive nitrogen species, inhibit cyclooxygenase- and 5-lipoxygenase-catalyzed eicosanoids and suppress proinflammatory signalling, such as NF-κB and STAT. The animal and human studies show tocotrienols may be useful against inflammation-associated diseases. Many of the functions of tocotrienols are related to its antioxidant properties and its varied effects are due to it behaving as a signalling molecule. Tocotrienols exhibit biological activities that are also exhibited by tocopherols, such as neuroprotective, anti-cancer, anti-inflammatory and cholesterol lowering properties. Hence, effort has been made to compile the different functions and properties of tocotrienols in experimental model systems and humans. This article constitutes an in-depth review of the pharmacology, metabolism, toxicology and biosafety aspects of tocotrienols. Tocotrienols are detectable at appreciable levels in the plasma after supplementations. However, there is inadequate data on the plasma concentrations of tocotrienols that are sufficient to demonstrate significant physiological effect and biodistribution studies show their accumulation in vital organs of the body. Considering the wide range of benefits that tocotrienols possesses against some common human ailments and having a promising potential, the experimental analysis accounts for about a small fraction of all vitamin E research. The current state of knowledge deserves further investigation into this lesser known form of vitamin E.
Collapse
Affiliation(s)
- Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, 110025 India
| | - Amjid Ahad
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| | - Jahangir Iqbal
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203 USA
| | - Waseem A Siddiqui
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, 110062 India
| |
Collapse
|
32
|
Zhao L, Ha JH, Okla M, Chung S. Activation of autophagy and AMPK by gamma-tocotrienol suppresses the adipogenesis in human adipose derived stem cells. Mol Nutr Food Res 2013; 58:569-79. [DOI: 10.1002/mnfr.201300157] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/24/2013] [Accepted: 08/03/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Lu Zhao
- Department of Food Science and Human Nutrition; University of Florida; Gainesville FL USA
| | - Jung-Heun Ha
- Department of Food Science and Human Nutrition; University of Florida; Gainesville FL USA
| | - Meshail Okla
- Department of Food Science and Human Nutrition; University of Florida; Gainesville FL USA
| | - Soonkyu Chung
- Department of Food Science and Human Nutrition; University of Florida; Gainesville FL USA
| |
Collapse
|
33
|
Alayoubi A, Alqahtani S, Kaddoumi A, Nazzal S. Effect of PEG surface conformation on anticancer activity and blood circulation of nanoemulsions loaded with tocotrienol-rich fraction of palm oil. AAPS J 2013; 15:1168-79. [PMID: 23990503 PMCID: PMC3787212 DOI: 10.1208/s12248-013-9525-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/07/2013] [Indexed: 12/15/2022] Open
Abstract
Tocotrienol-rich fraction of palm oil, which contains the isomers of vitamin E, was shown to possess potent anticancer activity against mammary adenocarcinoma cell lines. Its clinical use, however, is limited by poor oral bioavailability and short half-life. Previously, we developed tocotrienol-rich lipid nanoemulsions for intravenous administration. The objective of this study was to investigate the effect of surface grafted polyethylene glycol (PEG) on the properties of the nanoemulsions. PEGylation was achieved by the addition of equimolar PEG groups using poloxamer or 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)2000] (PEG2000-DSPE). The effect of PEG surface topography on the antiproliferative activity of nanoemulsions against mammary adenocarcinoma cells, their susceptibility to protein adsorption, and its effect on blood hemolysis and circulation time was investigated. Nanoemulsions PEGylated with poloxamer or PEG2000-DSPE were stable under physical stress. Poloxamer nanoemulsion, however, displayed higher uptake and potency against MCF-7 tumor cells in 2D and 3D culture and increased hemolytic effect and susceptibility to IgG adsorption, which was reflected in its rapid clearance and short circulation half-life (1.7 h). Conversely, PEGylation with PEG2000-DSPE led to a 7-fold increase in mean residence time (12.3 h) after IV injection in rats. Reduced activity in vitro and improved circulation time suggested strong shielding of plasma proteins from the droplets. Differences between the nanoemulsions were attributed to polymer imbibitions and the differences in PEG conformation and density on the surface of the droplets.
Collapse
Affiliation(s)
- Alaadin Alayoubi
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Dr., Monroe, Louisiana 71201 USA
| | - Saeed Alqahtani
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Dr., Monroe, Louisiana 71201 USA
| | - Amal Kaddoumi
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Dr., Monroe, Louisiana 71201 USA
| | - Sami Nazzal
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Dr., Monroe, Louisiana 71201 USA
| |
Collapse
|
34
|
Fattore E, Fanelli R. Palm oil and palmitic acid: a review on cardiovascular effects and carcinogenicity. Int J Food Sci Nutr 2013; 64:648-59. [DOI: 10.3109/09637486.2013.768213] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
35
|
Xiong A, Yu W, Tiwary R, Sanders BG, Kline K. Distinct roles of different forms of vitamin E in DHA-induced apoptosis in triple-negative breast cancer cells. Mol Nutr Food Res 2012; 56:923-34. [DOI: 10.1002/mnfr.201200027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ailian Xiong
- Department of Nutritional Sciences/A2703, University of Texas at Austin; Austin; TX; USA
| | - Weiping Yu
- School of Biological Sciences/C0900; University of Texas at Austin; Austin; TX; USA
| | - Richa Tiwary
- School of Biological Sciences/C0900; University of Texas at Austin; Austin; TX; USA
| | - Bob G. Sanders
- School of Biological Sciences/C0900; University of Texas at Austin; Austin; TX; USA
| | - Kimberly Kline
- Department of Nutritional Sciences/A2703, University of Texas at Austin; Austin; TX; USA
| |
Collapse
|