1
|
Rocchetti MT, Russo P, De Simone N, Capozzi V, Spano G, Fiocco D. Immunomodulatory Activity on Human Macrophages by Cell-Free Supernatants to Explore the Probiotic and Postbiotic Potential of Lactiplantibacillus plantarum Strains of Plant Origin. Probiotics Antimicrob Proteins 2024; 16:911-926. [PMID: 37202651 PMCID: PMC11126452 DOI: 10.1007/s12602-023-10084-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Upon dietary administration, probiotic microorganisms can reach as live cells the human gut, where they interact with the microbiota and host cells, thereby exerting a beneficial impact on host functions, mainly through immune-modulatory activities. Recently, attention has been drawn by postbiotics, i.e. non-viable probiotic microbes, including their metabolic products, which possess biological activities that benefit the host. Lactiplantibacillus plantarum is a bacterial species that comprises recognised probiotic strains. In this study, we investigated in vitro the probiotic (and postbiotic) potential of seven L. plantarum strains, including five newly isolated from plant-related niches. The strains were shown to possess some basic probiotic attributes, including tolerance to the gastrointestinal environment, adhesion to the intestinal epithelium and safety. Besides, their cell-free culture supernatants modulated cytokine patterns in human macrophages in vitro, promoting TNF-α gene transcription and secretion, while attenuating the transcriptional activation and secretion of both TNF-α and IL-8 in response to a pro-inflammatory signal, and enhancing the production of IL-10. Some strains induced a high IL-10/IL-12 ratio that may correlate to an anti-inflammatory capacity in vivo. Overall, the investigated strains are good probiotic candidates, whose postbiotic fraction exhibits immunomodulatory properties that need further in vivo studies. The main novelty of this work consists in the polyphasic characterisation of candidate beneficial L. plantarum strains obtained from relatively atypical plant-associated niches, by an approach that explores both probiotic and postbiotic potentials, in particular studying the effect of microbial culture-conditioned media on cytokine pattern, analysed at both transcriptional and secretion level in human macrophages.
Collapse
Affiliation(s)
| | - Pasquale Russo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Nicola De Simone
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, C/O CS-DAT, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
2
|
Van Holm W, Zayed N, Lauwens K, Saghi M, Axelsson J, Aktan MK, Braem A, Simoens K, Vanbrabant L, Proost P, Van Holm B, Maes P, Boon N, Bernaerts K, Teughels W. Oral Biofilm Composition, Dissemination to Keratinocytes, and Inflammatory Attenuation Depend on Probiotic and Synbiotic Strain Specificity. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10253-z. [PMID: 38619794 DOI: 10.1007/s12602-024-10253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
Several inflammatory diseases are characterized by a disruption in the equilibrium between the host and its microbiome. Due to the increase in resistance, the use of antibiotics for the widespread, nonspecific killing of microorganisms is at risk. Pro-microbial approaches focused on stimulating or introducing beneficial species antagonistic toward pathobionts may be a viable alternative for restoring the host-microbiome equilibrium. Unfortunately, not all potential probiotic or synbiotic species and even subspecies (to strain level) are equally effective for the designated pathology, leading to conflicting accounts of their efficacy. To assess the extent of these species- and strain-specific effects, 13 probiotic candidates were evaluated for their probiotic and synbiotic potential with glycerol on in vitro oral biofilms, dissemination from biofilms to keratinocytes, and anti-inflammatory activity. Species- and strain-specific effects and efficacies were observed in how they functioned as probiotics or synbiotics by influencing oral pathobionts and commensals within biofilms and affected the dissemination of pathobionts to keratinocytes, ranging from ineffective strains to strains that reduced pathobionts by 3 + log. In addition, a minority of the candidates exhibited the ability to mitigate the inflammatory response of LPS-stimulated monocytes. For a comprehensive assessment of probiotic therapy for oral health, a judicious selection of fully characterized probiotic strains that are specifically tailored to the designated pathology is required. This approach aims to challenge the prevailing perception of probiotics, shifting the focus away from "form over function." Rather than using unproven, hypothetical probiotic strains from known genera or species, one should choose strains that are actually functional in resolving the desired pathology before labelling them probiotics.
Collapse
Affiliation(s)
- Wannes Van Holm
- KU Leuven, Department of Oral Health Sciences, Periodontology and Oral Microbiology, B-3000, Leuven, Belgium
- Ghent University (UGent), Centre for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Naiera Zayed
- KU Leuven, Department of Oral Health Sciences, Periodontology and Oral Microbiology, B-3000, Leuven, Belgium
- Ghent University (UGent), Centre for Microbial Ecology and Technology (CMET), Ghent, Belgium
- Faculty of Pharmacy, Menoufia University, Shebeen El-Kom, Egypt
| | - Katalina Lauwens
- KU Leuven, Department of Oral Health Sciences, Periodontology and Oral Microbiology, B-3000, Leuven, Belgium
| | - Mehraveh Saghi
- KU Leuven, Department of Oral Health Sciences, Periodontology and Oral Microbiology, B-3000, Leuven, Belgium
| | | | - Merve Kübra Aktan
- KU Leuven, Department of Materials Engineering (MTM), Biomaterials and Tissue Engineering, B-3000, Leuven, Belgium
| | - Annabel Braem
- KU Leuven, Department of Materials Engineering (MTM), Biomaterials and Tissue Engineering, B-3000, Leuven, Belgium
| | - Kenneth Simoens
- KU Leuven, Department of Chemical Engineering, Bio- and Chemical Systems Technology, B-3000, Leuven, Belgium
| | - Lotte Vanbrabant
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Research Group Immunity and Inflammation, B-3000, Leuven, Belgium
| | - Paul Proost
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Research Group Immunity and Inflammation, B-3000, Leuven, Belgium
| | - Bram Van Holm
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, B-3000, Leuven, Belgium
| | - Piet Maes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, B-3000, Leuven, Belgium
| | - Nico Boon
- Ghent University (UGent), Centre for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Kristel Bernaerts
- KU Leuven, Department of Chemical Engineering, Bio- and Chemical Systems Technology, B-3000, Leuven, Belgium
| | - Wim Teughels
- KU Leuven, Department of Oral Health Sciences, Periodontology and Oral Microbiology, B-3000, Leuven, Belgium.
| |
Collapse
|
3
|
Nataraj BH, Jeevan K, Dang AK, Nagpal R, Ali SA, Behare PV. Pre-clinical safety and toxicity assessment of Limosilactobacillus fermentum NCDC 400 in murine model. Microb Pathog 2024; 189:106589. [PMID: 38382627 DOI: 10.1016/j.micpath.2024.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Comprehensive safety assessment of potential probiotic strains is crucial in the selection of risk-free strains for clinical translation. This study aimed to evaluate the biosafety of Limosilactobacillus fermentum NCDC 400, a potential probiotic strain, using oral toxicity tests in a Swiss albino mouse model. Mice were orally gavaged with low (108 CFU/mouse/day) and high (1010 CFU/mouse/day) doses of NCDC 400 for 14 (acute), 28 (subacute), and 90 (subchronic) days to assess behavioral, hematological, biochemical, immunological, and histological effects. The administration of NCDC 400 did not result in any observable adverse effects on general health parameters, including body weight, feed and water intake, and organ indices. Hematological and biochemical parameters, such as glucose, serum enzymes, urea, creatinine, serum minerals, total serum proteins, and lipid profile, remained largely unaffected by the test strain. Notably, NCDC 400 administration led to a significant reduction in harmful intestinal enzymes and improvement in gut health indices, as indicated by fecal pH, lactate, ammonia, and short-chain fatty acids. There were no instances of bacterial translocation of NCDC 400 to blood or extra-intestinal organs. Immune homeostasis was not adversely affected by repeated exposure to NCDC 400 in all three oral toxicity studies. Histopathological examination revealed no strain-related changes in various tissues. Based on these findings, a dose of 1010 CFU/mouse/day was considered as the No Observable Effect Level (NOEL) in healthy mice. In conclusion, this study demonstrates the safe and non-toxic behavior of L. fermentum NCDC 400. The results support and ensure the safety and suitability for clinical trials and eventual translation into clinical practice as potential probiotic.
Collapse
Affiliation(s)
- Basavaprabhu Haranahalli Nataraj
- Techno-functional Starter Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India; Dairy Chemistry and Bacteriology Section, Southern Regional Station (SRS), ICAR-National Dairy Research Institute, Adugodi, Bengaluru, 560030, Karnataka, India.
| | - K Jeevan
- Regional Ayurveda Research Institute, Central Council for Research in Ayurvedic Sciences, Aamkho, Gwalior, 474009, Madhya Pradesh, India.
| | - Ajay Kumar Dang
- Animal Physiology Division, ICAR-NDRI, Karnal, 132001, Haryana, India.
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, 32306, USA
| | - Syed Azmal Ali
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, 69121, Germany.
| | - Pradip V Behare
- Techno-functional Starter Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
4
|
Rastogi S, Singh A. Gut microbiome and human health: Exploring how the probiotic genus Lactobacillus modulate immune responses. Front Pharmacol 2022; 13:1042189. [PMID: 36353491 PMCID: PMC9638459 DOI: 10.3389/fphar.2022.1042189] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
The highest density of microbes resides in human gastrointestinal tract, known as “Gut microbiome”. Of note, the members of the genus Lactobacillus that belong to phyla Firmicutes are the most important probiotic bacteria of the gut microbiome. These gut-residing Lactobacillus species not only communicate with each other but also with the gut epithelial lining to balance the gut barrier integrity, mucosal barrier defence and ameliorate the host immune responses. The human body suffers from several inflammatory diseases affecting the gut, lungs, heart, bone or neural tissues. Mounting evidence supports the significant role of Lactobacillus spp. and their components (such as metabolites, peptidoglycans, and/or surface proteins) in modulatingimmune responses, primarily through exchange of immunological signals between gastrointestinal tract and distant organs. This bidirectional crosstalk which is mediated by Lactobacillus spp. promotes anti-inflammatory response, thereby supporting the improvement of symptoms pertaining to asthma, chronic obstructive pulmonary disease (COPD), neuroinflammatory diseases (such as multiple sclerosis, alzheimer’s disease, parkinson’s disease), cardiovascular diseases, inflammatory bowel disease (IBD) and chronic infections in patients. The metabolic disorders, obesity and diabetes are characterized by a low-grade inflammation. Genus Lactobacillus alleviates metabolic disorders by regulating the oxidative stress response and inflammatory pathways. Osteoporosis is also associated with bone inflammation and resorption. The Lactobacillus spp. and their metabolites act as powerful immune cell controllers and exhibit a regulatory role in bone resorption and formation, supporting bone health. Thus, this review demonstrated the mechanisms and summarized the evidence of the benefit of Lactobacillus spp. in alleviating inflammatory diseases pertaining to different organs from animal and clinical trials. The present narrative review explores in detail the complex interactions between the gut-dwelling Lactobacillus spp. and the immune components in distant organs to promote host’s health.
Collapse
|
5
|
Kostelac D, Gerić M, Gajski G, Frece J. Probiotic and paraprobiotic derivates exhibit anti-inflammatory and genoprotective effects in induced stress. J Appl Microbiol 2022; 133:819-829. [PMID: 35476890 DOI: 10.1111/jam.15595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/02/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022]
Abstract
AIMS The literature highlights the pathology of inflammation and its role in carcinogenesis, aging, and related diseases. Inflammatory processes induce oxidative stress and reduce antioxidant capacity. This study investigated the antioxidant and anti-inflammatory potential of probiotic bacteria isolated from fermented whey under conditions of induced stress. METHODS AND RESULTS Functional antioxidant characterization of potential probiotic bacteria Lactiplantibacillus plantarum S1 was performed under different growth conditions (aerobic, respiratory, and anaerobic) and under stress to find the conditions that yield the most effective cells. Since aerobic growth yielded the most potent cells, the free radical scavenging ability of live and heat-killed cells was measured before and after exposure to gastrointestinal conditions. For heat-killed cells and extracted probiotic metabolites, the reduction of DNA damage to immune cells was determined in the hydrogen peroxide exposure comet assay. The combination of inactivated cells and metabolites showed the best reduction in DNA damage. Finally, in the LPS inflammation model, the aforementioned probiotic metabolites significantly reduced TNF-α levels in immune cells. CONCLUSIONS Whey-derived potential probiotic bacteria exert antioxidant and anti-inflammatory effects, and based on this study, we propose a model combining inactivated cells and metabolites to reduce inflammatory and oxidative stress-related adverse effects. SIGNIFICANCE AND IMPACT OF STUDY In this study, a new probiotic model is proposed for continuous use to reduce oxidative and inflammatory stress in the gut.
Collapse
Affiliation(s)
- Deni Kostelac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| | - Marko Gerić
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Jadranka Frece
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| |
Collapse
|
6
|
Ahmad T, Eapen MS, Ishaq M, Park AY, Karpiniec SS, Stringer DN, Sohal SS, Fitton JH, Guven N, Caruso V, Eri R. Anti-Inflammatory Activity of Fucoidan Extracts In Vitro. Mar Drugs 2021; 19:702. [PMID: 34940701 PMCID: PMC8704339 DOI: 10.3390/md19120702] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Fucoidans are sulfated, complex, fucose-rich polymers found in brown seaweeds. Fucoidans have been shown to have multiple bioactivities, including anti-inflammatory effects, and are known to inhibit inflammatory processes via a number of pathways such as selectin blockade and enzyme inhibition, and have demonstrated inhibition of inflammatory pathologies in vivo. In this current investigation, fucoidan extracts from Undaria pinnatifida, Fucus vesiculosus, Macrocystis pyrifera, Ascophyllum nodosum, and Laminaria japonica were assessed for modulation of pro-inflammatory cytokine production (TNF-α, IL-1β, and IL-6) by human peripheral blood mononuclear cells (PBMCs) and in a human macrophage line (THP-1). Fucoidan extracts exhibited no signs of cytotoxicity in THP-1 cells after incubation of 48 h. Additionally, all fucoidan extracts reduced cytokine production in LPS stimulated PBMCs and human THP-1 cells in a dose-dependent fashion. Notably, the 5-30 kDa subfraction from Macrocystis pyrifera was a highly effective inhibitor at lower concentrations. Fucoidan extracts from all species had significant anti-inflammatory effects, but the lowest molecular weight subfractions had maximal effects at low concentrations. These observations on various fucoidan extracts offer insight into strategies that improve their efficacy against inflammation-related pathology. Further studies should be conducted to elucidate the mechanism of action of these extracts.
Collapse
Affiliation(s)
- Tauseef Ahmad
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia; (M.S.E.); (S.S.S.)
| | - Muhammad Ishaq
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (M.I.); (N.G.); (V.C.)
| | - Ah Young Park
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (A.Y.P.); (S.S.K.); (D.N.S.)
| | - Samuel S. Karpiniec
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (A.Y.P.); (S.S.K.); (D.N.S.)
| | - Damien N. Stringer
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (A.Y.P.); (S.S.K.); (D.N.S.)
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia; (M.S.E.); (S.S.S.)
| | - J. Helen Fitton
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia; (A.Y.P.); (S.S.K.); (D.N.S.)
- RDadvisor, Hobart, TAS 7006, Australia
| | - Nuri Guven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (M.I.); (N.G.); (V.C.)
| | - Vanni Caruso
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia; (M.I.); (N.G.); (V.C.)
- ISAL Foundation, Research on Pain, Torre Pedrera, 204-47922 Rimini, Italy
| | - Rajaraman Eri
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| |
Collapse
|
7
|
Chandhni PR, Pradhan D, Sowmya K, Gupta S, Kadyan S, Choudhary R, Gupta A, Gulati G, Mallappa RH, Kaushik JK, Grover S. Ameliorative Effect of Surface Proteins of Probiotic Lactobacilli in Colitis Mouse Models. Front Microbiol 2021; 12:679773. [PMID: 34539597 PMCID: PMC8447872 DOI: 10.3389/fmicb.2021.679773] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022] Open
Abstract
The increase in concern from viable cells of probiotics specifically in acute inflammatory conditions has led to the emergence of the concept of postbiotics as a safer alternative therapy in the field of health and wellness. The aim of the present study was to evaluate the efficacy of surface proteins from three probiotic strains in dextran sodium sulfate and trinitrobenzenesulphonic acid = induced colitis mouse models. The molecular weight of total surface proteins extracted from the three probiotic strains ranged from ∼25 to ∼250 kDa with the presence of negligible levels of endotoxins. Surface layer proteins (SLPs) (∼45 kDa) were found to be present only in the Lactobacillus acidophilus NCFM strain. In the in vivo study, significant differences were not observed in the weight loss and general appetite, however, the decrease in colon length was apparent in TNBS colitis control mice. Further, the administration of these surface proteins significantly reversed the histopathological damages induced by the colitogens and improved the overall histological score. The oral ingestion of these surface proteins also led to a decrease in myeloperoxidase activity and TNF-α expression while the IL-10 levels significantly increased for the strain NCFM followed by MTCC 5690 and MTCC 5689. Overall, the present study signifies the ameliorative role of probiotic surface proteins in colitis mice, thereby, offering a potential and safer alternative for the management of inflammatory bowel disorders.
Collapse
Affiliation(s)
- P R Chandhni
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Diwas Pradhan
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Kandukuri Sowmya
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Sunny Gupta
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Saurabh Kadyan
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Ritu Choudhary
- Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, India
| | - Archita Gupta
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Ganga Gulati
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | | | - Jai K Kaushik
- Animal Biotechnology Center, ICAR-National Dairy Research Institute, Karnal, India
| | - Sunita Grover
- Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
8
|
Zhao X, Zhong X, Liu X, Wang X, Gao X. Therapeutic and Improving Function of Lactobacilli in the Prevention and Treatment of Cardiovascular-Related Diseases: A Novel Perspective From Gut Microbiota. Front Nutr 2021; 8:693412. [PMID: 34164427 PMCID: PMC8215129 DOI: 10.3389/fnut.2021.693412] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and development of cardiovascular-related diseases are associated with structural and functional changes in gut microbiota (GM). The accumulation of beneficial gut commensals contributes to the improvement of cardiovascular-related diseases. The cardiovascular-related diseases that can be relieved by Lactobacillus supplementation, including hypercholesterolemia, atherosclerosis, myocardial infarction, heart failure, type 2 diabetes mellitus, and obesity, have expanded. As probiotics, lactobacilli occupy a substantial part of the GM and play important functional roles through various GM-derived metabolites. Lactobacilli ultimately have a beneficial impact on lipid metabolism, inflammatory factors, and oxidative stress to relieve the symptoms of cardiovascular-related diseases. However, the axis and cellular process of gut commensal Lactobacillus in improving cardiovascular-related diseases have not been fully elucidated. Additionally, Lactobacillus strains produce diverse antimicrobial peptides, which help maintain intestinal homeostasis and ameliorate cardiovascular-related diseases. These strains are a field that needs to be further investigated immediately. Thus, this review demonstrated the mechanisms and summarized the evidence of the benefit of Lactobacillus strain supplementation from animal studies and human clinical trials. We also highlighted a broad range of lactobacilli candidates with therapeutic capability by mining their metabolites. Our study provides instruction in the development of lactobacilli as a functional food to improve cardiovascular-related diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoying Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
9
|
Kaur J, Singh BP, Chaudhary V, Elshaghabee FMF, Singh J, Singh A, Rokana N, Panwar H. Probiotics as Live Bio-therapeutics: Prospects and Perspectives. MICROORGANISMS FOR SUSTAINABILITY 2021:83-120. [DOI: 10.1007/978-981-15-6795-7_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Effect of Lactobacillus rhamnosus NCDC 298 with FOS in Combination on Viability and Toxin Production of Enterotoxigenic Escherichia coli. Probiotics Antimicrob Proteins 2019; 11:23-29. [PMID: 28948579 DOI: 10.1007/s12602-017-9327-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present study was to investigate the utilization of prebiotics by Lactobacillus rhamnosus NCDC 298 and its synergistic adversary effect on both population and production of heat-labile (LT) toxin in enterotoxigenic Escherichia coli (ETEC). To select suitable prebiotic in order to enhance functionality, its utilization and the prebiotic activity score was examined. Antivirulence effect on ETEC was inspected by its inactivation rate and heat-labile toxin production in presence of different synbiotic combination. L. rhamnosus NCDC 298 strain grown well on media supplemented with fructooligosaccharides (FOS) and galactooligosaccharides (GOS), whereas significant inactivation of ETEC was observed when FOS was added to the co-culture medium. Significant decrease in LT enterotoxin was seen through GM1 ganglioside enzyme linked immunoassay (GM1 ELISA), when ETEC has grown with L. rhamnosus NCDC 298 and FOS. Short-chain FOS proved to be the most effective substrate, improving antagonistic activity for L. rhamnosus NCDC 298. Both L. rhamnosus NCDC 298 with FOS can be used as an effective synbiotic combination for secretory antidiarrheal fermented dairy formulations.
Collapse
|
11
|
Rezazadeh L, Gargari BP, Jafarabadi MA, Alipour B. Effects of probiotic yogurt on glycemic indexes and endothelial dysfunction markers in patients with metabolic syndrome. Nutrition 2019; 62:162-168. [PMID: 30921552 DOI: 10.1016/j.nut.2018.12.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/06/2018] [Accepted: 12/29/2018] [Indexed: 12/13/2022]
|
12
|
Salmosan, a β-galactomannan-rich product, in combination with Lactobacillus plantarum contributes to restore intestinal epithelial barrier function by modulation of cytokine production. J Nutr Biochem 2017; 41:20-24. [DOI: 10.1016/j.jnutbio.2016.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/25/2016] [Accepted: 11/14/2016] [Indexed: 01/24/2023]
|
13
|
Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice. Eur J Nutr 2016; 57:279-295. [DOI: 10.1007/s00394-016-1317-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/28/2016] [Indexed: 12/28/2022]
|
14
|
Rokana N, Singh R, Mallappa RH, Batish VK, Grover S. Modulation of intestinal barrier function to ameliorate Salmonella infection in mice by oral administration of fermented milks produced with Lactobacillus plantarum MTCC 5690 - a probiotic strain of Indian gut origin. J Med Microbiol 2016; 65:1482-1493. [PMID: 27902414 DOI: 10.1099/jmm.0.000366] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Probiotic Lactobacillus plantarum MTCC 5690, a probiotic strain of Indian gut origin, and milk formulations produced with the same were explored in this study as biotherapeutics by evaluating their functional efficacy against Salmonella infection in mice. The efficacy of milk formulations (fermented/unfermented) of MTCC 5690 for enhancement of intestinal barrier function was determined by monitoring the permeability and histopathology of the intestine. Infected mice fed with probiotic Dahi, fermented probiotic drink and sweetened fermented probiotic drink maintained the health and integrity of the intestinal epithelium as compared to those fed with PBS, milk, unfermented probiotic milk and Dahi. Our relative expression data revealed that the changes caused by MTCC 5690 in intestinal barrier function components were established through modulation of the key regulatory receptors Toll-like receptor 2 and Toll-like receptor 4. The results suggest that fermented milks of MTCC 5690 could enhance the defences of the intestinal barrier in enteric infection condition and, therefore, can be explored as a dietary-based strategy to reduce Salmonella infection in the human gut.
Collapse
Affiliation(s)
- Namita Rokana
- Molecular Biology Unit, Indian Council of Agricultural Research (ICAR) - National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
| | - Rajbir Singh
- Molecular Biology Unit, Indian Council of Agricultural Research (ICAR) - National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
| | - Rashmi Hogarehalli Mallappa
- Molecular Biology Unit, Indian Council of Agricultural Research (ICAR) - National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
| | - Virender Kumar Batish
- Molecular Biology Unit, Indian Council of Agricultural Research (ICAR) - National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
| | - Sunita Grover
- Molecular Biology Unit, Indian Council of Agricultural Research (ICAR) - National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
| |
Collapse
|
15
|
Combinations of cereal β-glucans and probiotics can enhance the anti-inflammatory activity on host cells by a synergistic effect. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.02.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
16
|
Gheith IM, Ozbak HA, Hemeg HA, El-Mahmoudy AM. Modulation of acute phase parameters of inflammation by probiotics in albino rats. EUR J INFLAMM 2015. [DOI: 10.1177/1721727x15590937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We investigated the effect of the probiotic Lactobacillus acidophilus on acute phase parameters in infected animals and to evaluate its possible use as alternative to replace the classical anti-inflammatory drugs as a trial to avoid the side effect of these drugs and its disadvantages. Forty albino rats were divided into four groups, group A was given saline orally and kept as normal-control rats, group B was orally given Lactobacillus acidophilus at a dose regimen of 108 CFU/day and kept as normal-treated rats for 6 weeks, group C was experimentally infected with Salmonella typhimurium (0.2 mL of 1.5 × 108 CFU/mL) and received saline orally to be kept as diseased-control rats, while group D was orally given Lactobacillus acidophilus (108 CFU/day) for 6 weeks and experimentally infected with Salmonella typhimurium and kept as diseased-treated rats. Results of group D revealed significant decrease in ESR, fibrinogen, TIBC, UIBC, and ceruloplasmin, especially on the 34th day post infection. On the other hand, significant increase in total proteins, albumin, total iron, and transferrin saturation percentage was revealed, when compared with group C. These data indicate that the probiotic Lactobacillus acidophilus may alter acute phase proteins after infection and significantly reduce the degree of inflammation.
Collapse
Affiliation(s)
- Ibtsam M Gheith
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Taibah University, Medinah, KSA; and Department of Biotechnology, Animal Health Research Institute, Dokki, Egypt, 11843
| | - Hani A Ozbak
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Taibah University, Medinah, KSA
| | - Hassan A Hemeg
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Taibah University, Medinah, KSA
| | - AbuBakr M El-Mahmoudy
- Department of Pharmacology, Benha University Faculty of Veterinary Medicine, 13736 Moshtohor, Qalioubeya, Egypt
| |
Collapse
|
17
|
Amelioration of colitis in mouse model by exploring antioxidative potentials of an indigenous probiotic strain of Lactobacillus fermentum Lf1. BIOMED RESEARCH INTERNATIONAL 2014; 2014:206732. [PMID: 25061603 PMCID: PMC4100452 DOI: 10.1155/2014/206732] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 12/17/2022]
Abstract
Based on the preliminary screening of eight indigenous putative probiotic Lactobacilli, Lactobacillus fermentum Lf1 was selected for assessing its antioxidative efficacy in DSS colitis mouse model based on its ability to enhance the expression of “Nrf2” by 6.43-fold and malondialdehyde (MDA) inhibition by 78.1 ± 0.24% in HT-29 cells under H2O2 stress. The Disease Activity Index and histological scores of Lf1-treated mice were lower than the control group. However, expression of “Nrf2” was not observed in Lf1-treated mice. A significant increase in the expression of antioxidative enzymes such as SOD2 and TrxR-1 was recorded in both of the groups. The expression of SOD2 was significantly downregulated in colitis-induced mice by −100.00-fold relative to control group, and the downregulation was considerably reduced to −37.04-fold in colitis Lf1 treatment group. Almost, a similar trend was recorded in case of “thioredoxin” expression, though “CAT” was refractile to expression. The Lf1-treated group had decreased malondialdehyde level as compared to colitis control (37.92 ± 6.31 versus 91.13 ± 5.76 μM/g). These results point towards Lf1-induced activation of the antioxidant enzyme system in the mouse model and its prospects to be explored as a new strategy for IBD management.
Collapse
|
18
|
Duary RK, Batish VK, Grover S. Immunomodulatory activity of two potential probiotic strains in LPS-stimulated HT-29 cells. GENES AND NUTRITION 2014; 9:398. [PMID: 24682881 DOI: 10.1007/s12263-014-0398-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/17/2014] [Indexed: 12/22/2022]
Abstract
The relative expression of mucin, pro- and anti-inflammatory genes besides other signaling molecules in HT-29 cells by two test probiotic strains of Lactobacillus plantarum Lp9 and Lp91 and the reference strain L. plantarum 5276 was evaluated by RT-qPCR using Relative Expression Software Tool qBase-Plus under in vitro simulated gut conditions. Ten house keeping genes were evaluated by using geNorm 3.4 excel based application. The most stable genes were RPL27, ACTB and B2M which were subsequently used for calculating the normalization factor. Under pretreatment conditions (4 h probiotic treatment, followed by lipopolysaccharide challenge for 3 h), all the three strains evoked downregulation of IL-8 expression by ~100 %, while in case of TNF-α, the downregulation of the relative gene expression was at the rate of 98.2, 93.8 and 98.0 % with Lp5276, Lp9 and Lp91, respectively, under the same set of conditions. Lp91 evoked maximum downregulation of IL12p35 and IFN-γ with corresponding fold reduction in relative expression of the two genes by 96.5 and 96.7 % during pre-treatment conditions. However, IL-10 and IFN-α were significantly upregulated to the extent of 8.13 ± 0.36 and 2.62 ± 0.14 fold by Lp91 under the same conditions. Lp9 and Lp91 were also quite effective in inducing the expression of Cox-1 and Cox-2 in HT-29 cells as can be reflected from their ratios, i.e., 5.90 and 6.50 (under pretreatment conditions); 3.79 and 4.36 (under co-culture conditions). Thus, the two putative indigenous L. plantarum strains Lp9 and Lp91 demonstrated immunomodulating functions in HT-29 cells at significant levels under different experimental conditions.
Collapse
Affiliation(s)
- Raj Kumar Duary
- Department of Food Engineering and Technology, Tezpur University, Napaam, 784028, Assam, India
| | | | | |
Collapse
|
19
|
Draft Genome Sequence of Lactobacillus plantarum Strain Lp91, a Promising Indian Probiotic Isolate of Human Gut Origin. GENOME ANNOUNCEMENTS 2013; 1:1/6/e00976-13. [PMID: 24265501 PMCID: PMC3837182 DOI: 10.1128/genomea.00976-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lactobacillus plantarum is a highly versatile species among lactic acid bacteria that has been widely isolated from highly diversified ecological niches, including the gastrointestinal tract. Here, we report the first draft genome sequence of an Indian isolate of the probiotic strain L. plantarum Lp91, isolated from human gut.
Collapse
|