1
|
Chen B, Wang Y, Tang W, Chen Y, Liu C, Kang M, Xie J. Association between PPARγ, PPARGC1A, and PPARGC1B genetic variants and susceptibility of gastric cancer in an Eastern Chinese population. BMC Med Genomics 2022; 15:274. [PMID: 36587194 PMCID: PMC9805199 DOI: 10.1186/s12920-022-01428-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Previous studies showed that peroxisome proliferator-activated receptor gamma (PPARγ) and PPARγ coactivator1 family (PPARGC1A and PPARGC1B) gene single nucleotide variants (SNVs)were strongly associated with cancer susceptibility. The purpose of this study was to investigate the association of PPARγ, PPARGC1A, and PPARGC1B variants with the risk of gastric cancer (GC). PATIENTS AND METHODS We performed a case-control study of 490 GC cases and 1,476 healthy controls from eastern China. PPARγ rs1801282 C > G, rs3856806 C > T, PPARGC1A rs2970847 C > T, rs8192678 C > T and PPARGC1B rs7732671 G > C, rs17572019 G > A SNVs were selected to investigate the association between these SNVs and GC susceptibility. Genotypes of the SNVs were assessed by multiplex fluorescent PCR using a custom-by-design 48-Plex SNPscantm Kit. RESULTS The PPARγ rs1801282 SNV was associated with a decreased risk for GC (GC vs. CC: odds ratio (OR) = 0.62, 95% confidence interval (95%CI) = 0.42-0.93, adjusted P = 0.019; GC + GG vs. GG: OR = 0.63 95%CI = 0.42-0.93, adjusted P = 0.019; respectively). In addition, stratified analysis revealed that the PPARγ rs1801282 SNV was correlated with the risk of GC in subgroups of age ≥ 61, no smoking, and no alcohol consuming. We also confirmed that the PPARγ rs3856806 C > T SNV promoted the risk of GC in women. The PPARGC1A rs8192678 TT genotype decreased the susceptibility of GC in men. The PPARGC1A rs2970847 C > T SNV decreased the susceptibility of GC in the subgroup of BMI ≥ 24 kg/m2. The PPARGC1B rs7732671 G > C and rs17572019 G > A SNVs promoted the risk of GC in the subgroup of BMI ≥ 24 kg/m2. CONCLUSION This study indicates that the PPARγ, PPARGC1A, and PPARGC1B SNVs may be associated with the susceptibility of GC in eastern Chinese population. Future studies with larger populations, detailed H. pylori infection status for subgroup analysis, and functional study are needed to further clarify the relationship between these SNVs and GC risk.
Collapse
Affiliation(s)
- Boyang Chen
- grid.440618.f0000 0004 1757 7156Department of Cardiothoracic Surgery, The Affiliated Hospital of Putian University, Putian, 351100 Fujian Province China
| | - Yafeng Wang
- Department of Cardiology, The People’s Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan Province China
| | - Weifeng Tang
- grid.428392.60000 0004 1800 1685Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province China
| | - Yu Chen
- grid.415110.00000 0004 0605 1140Department of Medical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province China
| | - Chao Liu
- grid.452247.2Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu Province China
| | - Mingqiang Kang
- grid.440618.f0000 0004 1757 7156Department of Cardiothoracic Surgery, The Affiliated Hospital of Putian University, Putian, 351100 Fujian Province China ,grid.411176.40000 0004 1758 0478Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian Province China
| | - Jinbiao Xie
- grid.440618.f0000 0004 1757 7156Department of Cardiothoracic Surgery, The Affiliated Hospital of Putian University, Putian, 351100 Fujian Province China
| |
Collapse
|
2
|
Song Y, Li S, He C. PPARγ Gene Polymorphisms, Metabolic Disorders, and Coronary Artery Disease. Front Cardiovasc Med 2022; 9:808929. [PMID: 35402540 PMCID: PMC8984027 DOI: 10.3389/fcvm.2022.808929] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/22/2022] [Indexed: 01/14/2023] Open
Abstract
Being activated by endogenous and exogenous ligands, nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) enhances insulin sensitivity, promotes adipocyte differentiation, stimulates adipogenesis, and has the properties of anti-atherosclerosis, anti-inflammation, and anti-oxidation. The Human PPARγ gene (PPARG) contains thousands of polymorphic loci, among them two polymorphisms (rs10865710 and rs7649970) in the promoter region and two polymorphisms (rs1801282 and rs3856806) in the exonic region were widely reported to be significantly associated with coronary artery disease (CAD). Mechanistically, PPARG polymorphisms lead to abnormal expression of PPARG gene and/or dysfunction of PPARγ protein, causing metabolic disorders such as hypercholesterolemia and hypertriglyceridemia, and thereby increasing susceptibility to CAD.
Collapse
Affiliation(s)
- Yongyan Song
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Shujin Li
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Chuan He
- Department of Cardiology, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
- *Correspondence: Chuan He,
| |
Collapse
|
3
|
Li S, He C, Nie H, Pang Q, Wang R, Zeng Z, Song Y. G Allele of the rs1801282 Polymorphism in PPARγ Gene Confers an Increased Risk of Obesity and Hypercholesterolemia, While T Allele of the rs3856806 Polymorphism Displays a Protective Role Against Dyslipidemia: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2022; 13:919087. [PMID: 35846293 PMCID: PMC9276935 DOI: 10.3389/fendo.2022.919087] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The relationships between the rs1801282 and rs3856806 polymorphisms in nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) gene and obesity indexes as well as serum lipid levels have been extensively investigated in various studies, but the results were inconsistent and even contradictory. METHODS PubMed, Google Scholar, Embase, Cochrane Library, Web of Science, Wanfang, CNKI and VIP databases were searched for eligible studies. The random-effTPDEects model was used, and standardized mean difference (SMD) with 95% confidence interval (CI) was calculated to estimate the differences in obesity indexes and serum lipid levels between the subjects with different genotypes in a dominant model. Heterogeneity among studies was assessed by Cochran's x2-based Q-statistic test. Publication bias was identified by using Begg's test. RESULTS One hundred and twenty studies (70,317 subjects) and 33 studies (18,353 subjects) were identified in the analyses for the rs1801282 and rs3856806 polymorphisms, respectively. The G allele carriers of the rs1801282 polymorphism had higher levels of body mass index (SMD = 0.08 kg/m2, 95% CI = 0.04 to 0.12 kg/m2, p < 0.001), waist circumference (SMD = 0.12 cm, 95% CI = 0.06 to 0.18 cm, p < 0.001) and total cholesterol (SMD = 0.07 mmol/L, 95% CI = 0.02 to 0.11 mmol/L, p < 0.01) than the CC homozygotes. The T allele carriers of the rs3856806 polymorphism had lower levels of low-density lipoprotein cholesterol (SMD = -0.09 mmol/L, 95% CI = -0.15 to -0.03 mmol/L, p < 0.01) and higher levels of high-density lipoprotein cholesterol (SMD = 0.06 mmol/L, 95% CI = 0.02 to 0.10 mmol/L, p < 0.01) than the CC homozygotes. CONCLUSIONS The meta-analysis suggests that the G allele of the rs1801282 polymorphism confers an increased risk of obesity and hypercholesterolemia, while the T allele of the rs3856806 polymorphism displays a protective role against dyslipidemia, which can partly explain the associations between these polymorphisms and cardiovascular disease. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier [CRD42022319347].
Collapse
Affiliation(s)
- Shujin Li
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Chuan He
- Department of Cardiology, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Haiyan Nie
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Qianyin Pang
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Ruixia Wang
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Zhifu Zeng
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Yongyan Song
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
- *Correspondence: Yongyan Song,
| |
Collapse
|
4
|
PPARG Pro12Ala Polymorphism with CKD in Asians: A Meta-Analysis Combined with a Case-Control Study-A Key for Reaching Null Association. Genes (Basel) 2020; 11:genes11060705. [PMID: 32604723 PMCID: PMC7349649 DOI: 10.3390/genes11060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND So far, numerous meta-analyses have been published regarding the correlation between peroxisome proliferator-activated receptor gamma (PPARG) proline 12 alanine (Pro12Ala) gene polymorphism and chronic kidney disease (CKD); however, the results appear to be contradictory. Hence, this study is formulated with the objective of using existing meta-analysis data together with our research population to study the correlation between PPARG Pro12Ala gene polymorphism and CKD and evaluate whether an accurate result can be obtained. METHODS First, literature related to CKD and PPARG Pro12Ala available on the PubMed and EMBASE databases up to December 2016 was gathered from 20 publications. Then, the gathered results were combined with our case-control study of 1693 enrolled subjects and a trial sequential analysis (TSA) was performed to verify existing evidence and determine whether a firm conclusion can be drawn. RESULTS The TSA results showed that the cumulative sample size for the Asian sample was 6078 and was sufficient to support a definite result. The results of this study confirmed that there is no obvious correlation between PPARG Pro12Ala and CKD for Asians (OR = 0.82 (95% CI = 0.66-1.02), I2 = 63.1%), but this was not confirmed for Caucasians. Furthermore, the case-control sample in our study was shown to be the key for reaching this conclusion. CONCLUSIONS The meta-analysis results of this study suggest no significant correlation between PPARG Pro12Ala gene polymorphism and CKD for Asians after adding our samples, but not for Caucasian.
Collapse
|
5
|
Wan R, Ding Z, Xia S, Zheng L, Lu J. Effects Of PPARγ2 Pro12Ala Variant On Adipocyte Phenotype Dependent Of DHA. Diabetes Metab Syndr Obes 2019; 12:2273-2279. [PMID: 31802926 PMCID: PMC6830383 DOI: 10.2147/dmso.s214526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/03/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor γ2 (PPARγ2) plays a critical role in the regulation of adipocyte differentiation and adipocytokine production. The Pro12Ala variant is the most common mutation in the PPARγ2 gene. Its effect appears to be sensitive to dietary factors, such as docosahexaenoic acid (DHA) level. The purpose of this study was to investigate the interaction effect between PPARγ2 Pro12Ala variant and DHA on the phenotypes of adipocytes. METHODS We generated stable 3T3-L1 cell lines expressing wild-type PPARγ2 or PPARγ2 Pro12Ala variant. These two cell lines were cultured with different concentrations of DHA (0, 50, 200 umol/L). Then Oil red O staining was used to observe cell differentiation and the degree of lipid accumulation, TUNNEL assay was used to detect cell apoptosis, and ELISA assays were used to detect the changes of TNF-α, resistin and adiponectin levels in cell culture supernatant. RESULTS PPARγ2 Pro12Ala variant reduced lipid droplet accumulation in 3T3-L1 preadipocytes treated with or without 50 μmol/L DHA, but not with 200 μmol/L DHA, compared to that of wild-type PPARγ2. PPARγ2 reduced resistin production and increased adiponectin production in 3T3-L1 adipocytes, whereas PPARγ2 Pro12Ala variant diminished these effects. However, the absence of DHA blocked PPARγ2 Ala12 variant-induced effects on adiponectin production. There was no significant difference in TNF-α secretion between wild-type PPARγ2 and PPARγ2 Pro12Ala cells whether with or without DHA. CONCLUSION These results indicated that the effects of PPARγ2 Pro12Ala variant were dependent on DHA concentration.
Collapse
Affiliation(s)
- Renhui Wan
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
| | - Zhengping Ding
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
| | - Sheng Xia
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
| | - Longyi Zheng
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
| | - Jin Lu
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai200433, People’s Republic of China
- Correspondence: Jin Lu; Longyi Zheng Department of Endocrinology, Changhai Hospital, Second Military Medical University, No.168, Changhai Road, Shanghai200433, People’s Republic of China Email ;
| |
Collapse
|
6
|
Lankinen M, Uusitupa M, Schwab U. Genes and Dietary Fatty Acids in Regulation of Fatty Acid Composition of Plasma and Erythrocyte Membranes. Nutrients 2018; 10:nu10111785. [PMID: 30453550 PMCID: PMC6265745 DOI: 10.3390/nu10111785] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/01/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
The fatty acid compositions of plasma lipids and cell membranes of certain tissues are modified by dietary fatty acid composition. Furthermore, many other factors (age, sex, ethnicity, health status, genes, and gene × diet interactions) affect the fatty acid composition of cell membranes or plasma lipid compartments. Therefore, it is of great importance to understand the complexity of mechanisms that may modify fatty acid compositions of plasma or tissues. We carried out an extensive literature survey of gene × diet interaction in the regulation of fatty acid compositions. Most of the related studies have been observational studies, but there are also a few intervention trials that tend to confirm that true interactions exist. Most of the studies deal with the desaturase enzyme cluster (FADS1, FADS2) in chromosome 11 and elongase enzymes. We expect that new genetic variants are being found that are linked with the genetic regulation of plasma or tissue fatty acid composition. This information is of great help to understanding the contribution of dietary fatty acids and their endogenic metabolism to the development of some chronic diseases.
Collapse
Affiliation(s)
- Maria Lankinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland.
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland.
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70210 Kuopio, Finland.
| |
Collapse
|
7
|
Kamble PG, Pereira MJ, Gustafsson S, Lundkvist P, Castillejo-López C, Fall T, Ingelsson E, Eriksson JW. Role of peroxisome proliferator-activated receptor gamma Pro12Ala polymorphism in human adipose tissue: assessment of adipogenesis and adipocyte glucose and lipid turnover. Adipocyte 2018; 7:285-296. [PMID: 30064293 PMCID: PMC6768277 DOI: 10.1080/21623945.2018.1503030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The protective mechanisms of peroxisome proliferator-activated receptor gamma (PPARγ) Pro12Ala polymorphism in type 2 diabetes (T2D) are unclear. We obtained subcutaneous adipose tissue (AT) before and 3 h after oral glucose (OGTT) in carriers and non-carriers of the Ala allele (12 Pro/Pro, 15 Pro/Ala, and 13 Ala/Ala). Adipogenesis, adipocyte glucose uptake and lipolysis as well as PPARγ target gene expression were investigated and compared between the genotype groups. During fasting and post-OGTT, neither basal nor insulin-stimulated adipocyte glucose uptake differed between genotypes. Compared to fasting, a decreased hormone-sensitive lipase gene expression in Pro/Pro (p < 0.05) was accompanied with a higher antilipolytic effect of insulin post-OGTT (p < 0.01). The adipocyte size was similar across groups. Preadipocyte differentiation rates between Pro/Pro and Ala/Ala were unchanged. In conclusion, no major differences in AT differentiation, glucose uptake, lipolysis or expression of PPARγ target genes were observed between different PPARγ Pro12Ala genotypes. Albeit small, our study may suggest that other pathways in AT or effects exerted in other tissues might contribute to the Pro12Ala-mediated protection against T2D.
Collapse
Affiliation(s)
- Prasad G. Kamble
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria J. Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per Lundkvist
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Casimiro Castillejo-López
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jan W. Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Franks PW, Timpson NJ. Genotype-Based Recall Studies in Complex Cardiometabolic Traits. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2018; 11:e001947. [PMID: 30354344 PMCID: PMC6813040 DOI: 10.1161/circgen.118.001947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In genotype-based recall (GBR) studies, people (or their biological samples) who carry genotypes of special interest for a given hypothesis test are recalled from a larger cohort (or biobank) for more detailed investigations. There are several GBR study designs that offer a range of powerful options to elucidate (1) genotype-phenotype associations (by increasing the efficiency of genetic association studies, thereby allowing bespoke phenotyping in relatively small cohorts), (2) the effects of environmental exposures (within the Mendelian randomization framework), and (3) gene-treatment interactions (within the setting of GBR interventional trials). In this review, we overview the literature on GBR studies as applied to cardiometabolic health outcomes. We also review the GBR approaches used to date and outline new methods and study designs that might enhance the utility of GBR-focused studies. Specifically, we highlight how GBR methods have the potential to augment randomized controlled trials, providing an alternative application for the now increasingly accepted Mendelian randomization methods usually applied to large-scale population-based data sets. Further to this, we consider how functional and basic science approaches alongside GBR designs offer intellectually intriguing and potentially powerful ways to explore the implications of alterations to specific (and potentially druggable) biological pathways.
Collapse
Affiliation(s)
- Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Skåne University Hospital, SE-21741, Malmö, Sweden
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, Avon Longitudinal Study of Parents and Children, Population Health Science, Bristol Medical School, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| |
Collapse
|
9
|
Replication of a Gene-Diet Interaction at CD36, NOS3 and PPARG in Response to Omega-3 Fatty Acid Supplements on Blood Lipids: A Double-Blind Randomized Controlled Trial. EBioMedicine 2018; 31:150-156. [PMID: 29703528 PMCID: PMC6013782 DOI: 10.1016/j.ebiom.2018.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Modulation of genetic variants on the effect of omega-3 fatty acid supplements on blood lipids is still unclear. METHODS In a double-blind randomized controlled trial, 150 patients with type 2 diabetes (T2D) were randomized into omega-3 fatty acid group (n = 56 for fish oil and 44 for flaxseed oil) and control group (n = 50) for 180 days. All patients were genotyped for genetic variants at CD36 (rs1527483), NOS3 (rs1799983) and PPARG (rs1801282). Linear regression was used to examine the interaction between omega-3 fatty acid intervention and CD36, NOS3 or PPARG variants for blood lipids. FINDINGS Significant interaction with omega-3 fatty acid supplements was observed for CD36 on triglycerides (p-interaction = 0.042) and PPAGR on low-density lipoprotein-cholesterol (p-interaction = 0.02). We also found a significant interaction between change in erythrocyte phospholipid omega-3 fatty acid composition and NOS3 genotype on triglycerides (p-interaction = 0.042), total cholesterol (p-interaction = 0.013) and ratio of total cholesterol to high-density lipoprotein cholesterol (p-interaction = 0.015). The T2D patients of CD36-G allele, PPARG-G allele and NOS3-A allele tended to respond better to omega-3 fatty acids in improving lipid profiles. The interaction results of the omega-3 fatty acid group were mainly attributed to the fish oil supplements. INTERPRETATION This study suggests that T2D patients with different genotypes at CD36, NOS3 and PPARG respond differentially to intervention of omega-3 supplements in blood lipid profiles.
Collapse
|
10
|
Grygiel-Górniak B, Ziółkowska-Suchanek I, Kaczmarek E, Mosor M, Nowak J, Puszczewicz M. PPARgamma-2 and ADRB3 polymorphisms in connective tissue diseases and lipid disorders. Clin Interv Aging 2018; 13:463-472. [PMID: 29606859 PMCID: PMC5868601 DOI: 10.2147/cia.s157186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background The aim of the research genetic study was to investigate the association between variants (C1431T and Pro12Ala) of the peroxisome proliferator-activated receptor (PPARgamma-2) gene, Trp64Arg polymorphism of the beta-3-adrenergic receptor gene and lipid profile in Polish population including group of 103 patients with connective tissue disease (CTD) and 103 sex-and age-matched controls in context of statin use. Methods Anthropometric and biochemical parameters were measured by routine methods, followed by genotyping (TagMan® Genotyping Assays, PCR-restriction fragment length polymorphism analysis). Nearly 30% of CTD patients used statins and 10% of the control group. Results Although there were no differences between alleles and genotypes prevalence between CTD vs control groups, interesting lipid-gene associations were noted in this study. A higher level of triglycerides (TAG) and TAG/high-density lipoprotein (HDL) ratios was observed in CTD patients compared to controls. Similar differences were noted in CTD and control groups without statin treatment. Atherogenic markers: the atherogenic index of plasma, TAG/HDL and low-density lipoprotein/HDL ratio were low in the analyzed groups. Of the six analyzed polymorphisms, the Pro12Pro or C14131C or Trp64Trp genotypes were related to higher TAG and TAG/HDL ratios in patients with CTD; however, the highest TAG values were observed in the presence of the Trp64Trp genotype. Conclusion Lipid disorders were present in both groups independent of statin treatment (mixed dyslipidemia and hypercholesterolemia were observed in the CTD and control groups, respectively). The risk of dyslipidemia increases with age. The presence of Pro12Pro, C14131C and Trp64Trp genotypes is related to higher TAG level in CTDs, and of these the Trp64Trp variant most reliably predicts hypertriglyceridemia.
Collapse
Affiliation(s)
- Bogna Grygiel-Górniak
- Department of Rheumatology and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Elżbieta Kaczmarek
- Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Maria Mosor
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Jerzy Nowak
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Mariusz Puszczewicz
- Department of Rheumatology and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
11
|
Kamble PG, Gustafsson S, Pereira MJ, Lundkvist P, Cook N, Lind L, Franks PW, Fall T, Eriksson JW, Ingelsson E. Genotype-based recall to study metabolic effects of genetic variation: a pilot study of PPARG Pro12Ala carriers. Ups J Med Sci 2017; 122:234-242. [PMID: 29303622 PMCID: PMC5810227 DOI: 10.1080/03009734.2017.1405127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM To assess practical implications of genotype-based recall (GBR) studies, an increasingly popular approach for in-depth characterization of genotype-phenotype relationships. METHODS We genotyped 2500 participants from the Swedish EpiHealth cohort and considered loss-of-function and missense variants in genes with relation to cardiometabolic traits as the basis for our GBR study. Therefore, we focused on carriers and non-carriers of the PPARG Pro12Ala (rs1801282) variant, as it is a relatively common variant with a minor allele frequency (MAF) of 0.14. It has also been shown to affect ligand binding and transcription, and carriage of the minor allele (Ala12) is associated with a reduced risk of type 2 diabetes. We re-invited 39 Pro12Pro, 34 Pro12Ala, and 30 Ala12Ala carriers and performed detailed anthropometric and serological assessments. RESULTS The participation rates in the GBR study were 31%, 44%, and 40%, and accordingly we included 12, 15, and 13 individuals with Pro12Pro, Pro12Ala, and Ala12Ala variants, respectively. There were no differences in anthropometric or metabolic variables among the different genotype groups. CONCLUSIONS Our report highlights that from a practical perspective, GBR can be used to study genotype-phenotype relationships. This approach can prove to be a valuable tool for follow-up findings from large-scale genetic discovery studies by undertaking detailed phenotyping procedures that might not be feasible in large studies. However, our study also illustrates the need for a larger pool of genotyped or sequenced individuals to allow for selection of rare variants with larger effects that can be examined in a GBR study of the present size.
Collapse
Affiliation(s)
- Prasad G. Kamble
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Sweden
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Sweden
| | - Maria J. Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Sweden
| | - Per Lundkvist
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Sweden
| | - Naomi Cook
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Sweden
| | - Lars Lind
- Department of Medical Sciences, Molecular Epidemiology, EpiHealth, Uppsala University, Sweden
| | - Paul W. Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Malmö, Sweden
| | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Sweden
| | - Jan W. Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Sweden
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Sweden
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, USA
- CONTACT Erik Ingelsson Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Rodríguez-Cruz M, Serna DS. Nutrigenomics of ω-3 fatty acids: Regulators of the master transcription factors. Nutrition 2017; 41:90-96. [PMID: 28760435 DOI: 10.1016/j.nut.2017.04.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/27/2017] [Accepted: 04/24/2017] [Indexed: 11/19/2022]
Abstract
It is well known that ω-3 long-chain polyunsaturated fatty acids (LC-PUFAs) control some key molecular cell mechanisms, resulting in a beneficial role in inflammatory diseases. Such mechanisms are complex and reflect the diversity of their functions, mainly as modulators of the dynamic properties of membranes, regulators of gene expression, and precursors of active mediators. The aim of this review is to summarize the state of the art of the effects and mechanisms by which ω-3 LC-PUFAs such as eicosapentaenoic acid (EPA, C22:5 ω-3) and docosahexaenoic acid (DHA, C22:6 ω-3) regulate different metabolic processes to maintain homeostasis. Thus, we describe some aspects of these fatty acids-from their structural function in cell membranes to their role as regulators of gene expression, mainly in lipid metabolism. However, further studies are required to elucidate these actions and to have a better understanding in regard to the beneficial effects of ω-3 LC-PUFAs in the pathogenesis of several diseases as well as their functions as nutrients with protective action to avoid or delay development of these diseases. Furthermore, it is necessary to highlight the lack of comprehensive studies including nutritional, biochemical, genetic, and immune aspects to identify specific molecular mechanisms involved in the beneficial effects of consumption of DHA (C22:6 ω-3) and EPA (C22:5 ω-3) and their metabolic derivatives on health promotion.
Collapse
Affiliation(s)
- Maricela Rodríguez-Cruz
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, México City, México.
| | - Donovan Solís Serna
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, México City, México
| |
Collapse
|
13
|
Nutrigenomic Functions of PPARs in Obesogenic Environments. PPAR Res 2016; 2016:4794576. [PMID: 28042289 PMCID: PMC5155092 DOI: 10.1155/2016/4794576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/03/2016] [Indexed: 12/26/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that mediate the effects of several nutrients or drugs through transcriptional regulation of their target genes in obesogenic environments. This review consists of three parts. First, we summarize current knowledge regarding the role of PPARs in governing the development of white and brown/beige adipocytes from uncommitted progenitor cells. Next, we discuss the interactions of dietary bioactive molecules, such as fatty acids and phytochemicals, with PPARs for the modulation of PPAR-dependent transcriptional activities and metabolic consequences. Lastly, the effects of PPAR polymorphism on obesity and metabolic outcomes are discussed. In this review, we aim to highlight the critical role of PPARs in the modulation of adiposity and subsequent metabolic adaptation in response to dietary challenges and genetic modifications. Understanding the changes in obesogenic environments as a consequence of PPARs/nutrient interactions may help expand the field of individualized nutrition to prevent obesity and obesity-associated metabolic comorbidities.
Collapse
|