1
|
Li L, He W, Fan X, Liu M, Luo B, Yang F, Jiang N, Wang L, Zhou B. Proteomic analysis of Taenia solium cysticercus and adult stages. Front Vet Sci 2023; 9:934197. [PMID: 36699330 PMCID: PMC9868161 DOI: 10.3389/fvets.2022.934197] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/07/2022] [Indexed: 01/10/2023] Open
Abstract
Taenia solium (T. solium) cysticercosis is a neglected parasitic zoonosis that occurs in developing countries. Since T. solium has a complex life cycle that includes eggs, oncospheres, cysticerci, and adults, presumably many proteins are produced that enable them to survive and establish an infection within the host. The objectives of this study were to perform a comparative proteomic analysis of two ontogenetic stages of T. solium (cysticerci and adult) and to analyze their differential expression of proteins. Methods proteins were separated by High Performance Liquid Chromatography (HPLC) fractionation, and protein samples were also digested in liquid and identified by liquid chromatography tandem mass spectrometry (LC-MS/MS); the differentially expressed proteins were then processed by a bioinformatics analysis and verified by parallel reaction monitoring (PRM). Results we identified 2,481 proteins by label-free quantitative proteomics. Then differentially expressed proteins were screened under P values < 0.05 and 2 fold change, we found that 293 proteins up-regulated and 265 proteins down-regulated. Discussion through the bioinformatics analysis, we analyzed the differences types and functions of proteins in the Taenia solium and cysticercus, the data will provide reference value for studying the pathogenic mechanism of the two stages and the interaction with the host, and also support for further experimental verification.
Collapse
|
2
|
Qin S, Yuan Y, Huang X, Tan Z, Hu X, Liu H, Pu Y, Ding YQ, Su Z, He C. Topoisomerase IIA in adult NSCs regulates SVZ neurogenesis by transcriptional activation of Usp37. Nucleic Acids Res 2022; 50:9319-9338. [PMID: 36029179 PMCID: PMC9458435 DOI: 10.1093/nar/gkac731] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/31/2022] [Accepted: 08/14/2022] [Indexed: 01/27/2023] Open
Abstract
Topoisomerase IIA (TOP2a) has traditionally been known as an important nuclear enzyme that resolves entanglements and relieves torsional stress of DNA double strands. However, its function in genomic transcriptional regulation remains largely unknown, especially during adult neurogenesis. Here, we show that TOP2a is preferentially expressed in neurogenic niches in the brain of adult mice, such as the subventricular zone (SVZ). Conditional knockout of Top2a in adult neural stem cells (NSCs) of the SVZ significantly inhibits their self-renewal and proliferation, and ultimately reduces neurogenesis. To gain insight into the molecular mechanisms by which TOP2a regulates adult NSCs, we perform RNA-sequencing (RNA-Seq) plus chromatin immunoprecipitation sequencing (ChIP-Seq) and identify ubiquitin-specific protease 37 (Usp37) as a direct TOP2a target gene. Importantly, overexpression of Usp37 is sufficient to rescue the impaired self-renewal ability of adult NSCs caused by Top2a knockdown. Taken together, this proof-of-principle study illustrates a TOP2a/Usp37-mediated novel molecular mechanism in adult neurogenesis, which will significantly expand our understanding of the function of topoisomerase in the adult brain.
Collapse
Affiliation(s)
- Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Xiao Huang
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Zijian Tan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Xin Hu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yingyan Pu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yu-qiang Ding
- Department of Laboratory Animal Science, and State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
3
|
Abstract
1,2-Naphthoquinone, a secondary metabolite of naphthalene, is an environmental pollutant found in diesel exhaust particles that displays cytotoxic and genotoxic properties. Because many quinones have been shown to act as topoisomerase II poisons, the effects of this compound on DNA cleavage mediated by human topoisomerase IIα and IIβ were examined. The compound increased the levels of double-stranded DNA breaks generated by both enzyme isoforms and did so better than a series of naphthoquinone derivatives. Furthermore, 1,2-naphthoquinone was a more efficacious poison against topoisomerase IIα than IIβ. Topoisomerase II poisons can be classified as interfacial (which interact noncovalently at the enzyme-DNA interface and increase DNA cleavage by blocking ligation) or covalent (which adduct the protein and increase DNA cleavage by closing the N-terminal gate of the enzyme). Therefore, experiments were performed to determine the mechanistic basis for the actions of 1,2-naphthoquinone. In contrast to results with etoposide (an interfacial poison), the activity of 1,2-naphthoquinone against topoisomerase IIα was abrogated in the presence of sulfhydryl and reducing agents. Moreover, the compound inhibited cleavage activity when incubated with the enzyme prior to the addition of DNA and induced virtually no cleavage with the catalytic core of the enzyme. It also induced stable covalent topoisomerase IIα-DNA cleavage complexes and was a partial inhibitor of DNA ligation. Findings were also consistent with 1,2-naphthoquinone acting as a covalent poison of topoisomerase IIβ; however, mechanistic studies with this isoform were less conclusive. Whereas the activity of 1,2-naphthoquinone was blocked in the presence of a sulfhydryl reagent, it was much less sensitive to the presence of a reducing agent. Furthermore, the reduced form of 1,2-naphthoquinone, 1,2-dihydroxynaphthalene, displayed high activity against the β isoform. Taken together, results suggest that 1,2-naphthoquinone increases topoisomerase II-mediated double-stranded DNA scission (at least in part) by acting as a covalent poison of the human type II enzymes.
Collapse
Affiliation(s)
- Jessica A. Collins
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| |
Collapse
|
4
|
Yeman KB, Isik S. Down regulation of DNA topoisomerase IIβ exerts neurodegeneration like effect through Rho GTPases in cellular model of Parkinson's disease by Down regulating tyrosine hydroxylase. Neurol Res 2021; 43:464-473. [PMID: 33402057 DOI: 10.1080/01616412.2020.1867949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Initiating the transcriptional activation of neuronal genes, DNA topoisomerase IIβ (topo IIβ) has a crucial role in neural differentiation and brain development. Inhibition of topo IIβ activity causes shorter axons and deteriorated neuronal connections common in neurodegenerative diseases. We previously reported that topo IIβ silencing could give rise to neurodegeneration through dysregulation of Rho GTPases and may contribute to pathogenesis of neurodegenerative diseases. Although there are several studies available proposing a link between Parkinson's Disease (PD) and Rho GTPases, there have been no reports analyzing the topo IIβ-dependent association of PD and Rho GTPases. Here, for the first time, we identified that topo IIβ has a regulatory role on Rho GTPases contributing to PD-like pathology. We analyzed the association between topo IIβ and PD by comparing topo IIβ expression levels of Retinoic Acid (RA) and Brain-derived neutrophic factor (BDNF) induced and MPP+-intoxicated SH-SY5Y cells used as an in vitro PD model. While both mRNA and protein levels of topo IIβ increase in neural differentiated cells, a significant decrease is detected in the PD model. Additionally, silencing of topo IIβ by specific siRNAs caused phenotypic alterations like deteriorated neural connections and transcriptional regulations such as upregulation of RhoA and downregulation of Cdc42, Rac1, and tyrosine hydroxylase gene expressions. Our results suggest that topo IIβ downregulation may cause neurodegeneration through dysregulation of Rho-GTPases leading to PD-like pathology.
Collapse
Affiliation(s)
- Kiyak Bercem Yeman
- Department of Molecular Medicine, Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Sevim Isik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, Turkey
| |
Collapse
|
5
|
Sun CH, Weng SC, Wu JH, Tung SY, Su LH, Lin MH, Lee GA. DNA topoisomerase IIIβ promotes cyst generation by inducing cyst wall protein gene expression in Giardia lamblia. Open Biol 2020; 10:190228. [PMID: 32019477 PMCID: PMC7058931 DOI: 10.1098/rsob.190228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Giardia lamblia causes waterborne diarrhoea by transmission of infective cysts. Three cyst wall proteins are highly expressed in a concerted manner during encystation of trophozoites into cysts. However, their gene regulatory mechanism is still largely unknown. DNA topoisomerases control topological homeostasis of genomic DNA during replication, transcription and chromosome segregation. They are involved in a variety of cellular processes including cell cycle, cell proliferation and differentiation, so they may be valuable drug targets. Giardia lamblia possesses a type IA DNA topoisomerase (TOP3β) with similarity to the mammalian topoisomerase IIIβ. We found that TOP3β was upregulated during encystation and it possessed DNA-binding and cleavage activity. TOP3β can bind to the cwp promoters in vivo using norfloxacin-mediated topoisomerase immunoprecipitation assays. We also found TOP3β can interact with MYB2, a transcription factor involved in the coordinate expression of cwp1-3 genes during encystation. Interestingly, overexpression of TOP3β increased expression of cwp1-3 and myb2 genes and cyst formation. Microarray analysis confirmed upregulation of cwp1-3 and myb2 genes by TOP3β. Mutation of the catalytically important Tyr residue, deletion of C-terminal zinc ribbon domain or further deletion of partial catalytic core domain reduced the levels of cleavage activity, cwp1-3 and myb2 gene expression, and cyst formation. Interestingly, some of these mutant proteins were mis-localized to cytoplasm. Using a CRISPR/Cas9 system for targeted disruption of top3β gene, we found a significant decrease in cwp1-3 and myb2 gene expression and cyst number. Our results suggest that TOP3β may be functionally conserved, and involved in inducing Giardia cyst formation.
Collapse
Affiliation(s)
- Chin-Hung Sun
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | - Shih-Che Weng
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | - Jui-Hsuan Wu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | - Szu-Yu Tung
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | - Li-Hsin Su
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | - Meng-Hsuan Lin
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China
| | - Gilbert Aaron Lee
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
6
|
Kuriappan JA, Osheroff N, De Vivo M. Smoothed Potential MD Simulations for Dissociation Kinetics of Etoposide To Unravel Isoform Specificity in Targeting Human Topoisomerase II. J Chem Inf Model 2019; 59:4007-4017. [PMID: 31449404 PMCID: PMC6800198 DOI: 10.1021/acs.jcim.9b00605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Human
type II topoisomerases (TopoII) are essential for controlling
DNA topology within the cell. For this reason, there are a number
of TopoII-targeted anticancer drugs that act by inducing DNA cleavage
mediated by both TopoII isoforms (TopoIIα and TopoIIβ)
in cells. However, recent studies suggest that specific poisoning
of TopoIIα may be a safer strategy for treating cancer. This
is because poisoning of TopoIIβ appears to be linked to the
generation of secondary leukemia in patients. We recently reported
that enzyme-mediated DNA cleavage complexes (in which TopoII is covalently
linked to the cleaved DNA during catalysis) formed in the presence
of the anticancer drug etoposide persisted approximately 3-fold longer
with TopoIIα than TopoIIβ. Notably, enhanced drug-target
residence time may reduce the adverse effects of specific TopoIIα
poisons. However, it is still not clear how to design drugs that are
specific for the α isoform. In this study, we report the results
of classical molecular dynamics (MD) simulations to comparatively
analyze the molecular interactions formed within the TopoII/DNA/etoposide
complex with both isoforms. We also used smoothed potential MD to
estimate etoposide dissociation kinetics from the two isoform complexes.
These extensive classical and enhanced sampling simulations revealed
stabilizing interactions of etoposide with two serine residues (Ser763
and Ser800) in TopoIIα. These interactions are missing in TopoIIβ,
where both amino acids are alanine residues. This may explain the
greater persistence of etoposide-stabilized cleavage complexes formed
with Topo TopoIIα. These findings could be useful for the rational
design of specific TopoIIα poisons.
Collapse
Affiliation(s)
- Jissy A Kuriappan
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Neil Osheroff
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Medicine (Hematology/Oncology) , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-6307 , United States.,VA Tennessee Valley Healthcare System , Nashville , Tennessee 37212 , United States
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| |
Collapse
|
7
|
Dalvie ED, Gopas J, Golan-Goldhirsh A, Osheroff N. 6,6'-Dihydroxythiobinupharidine as a poison of human type II topoisomerases. Bioorg Med Chem Lett 2019; 29:1881-1885. [PMID: 31182315 DOI: 10.1016/j.bmcl.2019.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 12/31/2022]
Abstract
A number of natural products with medicinal properties increase DNA cleavage mediated by type II topoisomerases. In an effort to identify additional natural compounds that affect the activity of human type II topoisomerases, a blind screen of a library of 341 Mediterranean plant extracts was conducted. Extracts from Nuphar lutea, the yellow water lily, were identified in this screen. N. lutea has been used in traditional medicine by a variety of indigenous populations. The active compound in N. lutea, 6,6'-dihydroxythiobinupharidine, was found to enhance DNA cleavage mediated by human topoisomerase IIα and IIβ ∼8-fold and ∼3-fold, respectively. Mechanistic studies with topoisomerase IIα indicate that 6,6'-dihydroxythiobinupharidine is a "covalent poison" that acts by adducting the enzyme outside of the DNA cleavage-ligation active site and requires the N-terminal domain of the protein for its activity. Results suggest that some of the medicinal properties of N. lutea may result from the interactions between 6,6'-dihydroxythiobinupharidine and the human type II enzymes.
Collapse
Affiliation(s)
- Esha D Dalvie
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | - Jacob Gopas
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; Department of Oncology, Soroka University Medical Center, Beer Sheva 84105, Israel
| | - Avi Golan-Goldhirsh
- The Jacob Blaustein Institutes for Desert Research, French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Sede Boqer Campus, Beer Sheva 84990, Israel
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA; Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232-6307, USA; VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA.
| |
Collapse
|
8
|
Wei M, Liu Y, Pi Z, Li S, Hu M, He Y, Yue K, Liu T, Liu Z, Song F, Liu Z. Systematically Characterize the Anti-Alzheimer's Disease Mechanism of Lignans from S. chinensis based on In-Vivo Ingredient Analysis and Target-Network Pharmacology Strategy by UHPLC⁻Q-TOF-MS. Molecules 2019; 24:molecules24071203. [PMID: 30934777 PMCID: PMC6480032 DOI: 10.3390/molecules24071203] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Lignans from Schisandra chinensis (Turcz.) Baill can ameliorate cognitive impairment in animals with Alzheimer’s disease (AD). However, the metabolism of absorbed ingredients and the potential targets of the lignans from S. chinensis in animals with AD have not been systematically investigated. Therefore, for the first time, we performed an in-vivo ingredient analysis and implemented a target-network pharmacology strategy to assess the effects of lignans from S. chinensis in rats with AD. Ten absorbed prototype constituents and 39 metabolites were identified or tentatively characterized in the plasma of dosed rats with AD using ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Based on the results of analysis of the effective constituents in vivo, the potential therapeutic mechanism of the effective constituents in the rats with AD was investigated using a target-network pharmacology approach and independent experimental validation. The results showed that the treatment effects of lignans from S. chinensis on cognitive impairment might involve the regulation of amyloid precursor protein metabolism, neurofibrillary tangles, neurotransmitter metabolism, inflammatory response, and antioxidant system. Overall, we identified the effective components of lignans in S. chinensis that can improve the cognitive impairment induced by AD and proposed potential therapeutic metabolic pathways. The results might serve as the basis for a fundamental strategy to explore effective therapeutic drugs to treat AD.
Collapse
Affiliation(s)
- Mengying Wei
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China.
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Yuanyuan Liu
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China.
| | - Zifeng Pi
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Shizhe Li
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Mingxin Hu
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China.
| | - Yang He
- Department of Pharmaceutical Analysis, School of Pharmacy and Food Science, Zhuhai College of Jilin University, 8 Anji East Road, Zhuhai 519041, China.
| | - Kexin Yue
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China.
| | - Tianshu Liu
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China.
| | - Zhiqiang Liu
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Fengrui Song
- National Center for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Zhongying Liu
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun 130021, China.
| |
Collapse
|
9
|
Shrestha A, Park S, Shin S, Man Kadayat T, Bist G, Katila P, Kwon Y, Lee ES. Design, synthesis, biological evaluation, structure-activity relationship study, and mode of action of 2-phenol-4,6-dichlorophenyl-pyridines. Bioorg Chem 2018; 79:1-18. [DOI: 10.1016/j.bioorg.2018.03.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/21/2018] [Accepted: 03/31/2018] [Indexed: 01/03/2023]
|
10
|
The Roles of DNA Topoisomerase IIβ in Transcription. Int J Mol Sci 2018; 19:ijms19071917. [PMID: 29966298 PMCID: PMC6073266 DOI: 10.3390/ijms19071917] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/22/2022] Open
Abstract
Type IIA topoisomerases allow DNA double helical strands to pass through each other by generating transient DNA double strand breaks βDSBs), and in so doing, resolve torsional strain that accumulates during transcription, DNA replication, chromosome condensation, chromosome segregation and recombination. Whereas most eukaryotes possess a single type IIA enzyme, vertebrates possess two distinct type IIA topoisomerases, Topo IIα and Topo IIβ. Although the roles of Topo IIα, especially in the context of chromosome condensation and segregation, have been well-studied, the roles of Topo IIβ are only beginning to be illuminated. This review begins with a summary of the initial studies surrounding the discovery and characterization of Topo IIβ and then focuses on the insights gained from more recent studies that have elaborated important functions for Topo IIβ in transcriptional regulation.
Collapse
|
11
|
Zaim M, Isik S. DNA topoisomerase IIβ stimulates neurite outgrowth in neural differentiated human mesenchymal stem cells through regulation of Rho-GTPases (RhoA/Rock2 pathway) and Nurr1 expression. Stem Cell Res Ther 2018; 9:114. [PMID: 29695291 PMCID: PMC5918966 DOI: 10.1186/s13287-018-0859-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 01/15/2023] Open
Abstract
Background DNA topoisomerase IIβ (topo IIβ) is known to regulate neural differentiation by inducing the neuronal genes responsible for critical neural differentiation events such as neurite outgrowth and axon guidance. However, the pathways of axon growth controlled by topo IIβ have not been clarified yet. Microarray results of our previous study have shown that topo IIβ silencing in neural differentiated primary human mesenchymal stem cells (hMSCs) significantly alters the expression pattern of genes involved in neural polarity, axonal growth, and guidance, including Rho-GTPases. This study aims to further analyze the regulatory role of topo IIβ on the process of axon growth via regulation of Rho-GTPases. Methods and results For this purpose, topo IIβ was silenced in neurally differentiated hMSCs. Cells lost their morphology because of topo IIβ deficiency, becoming enlarged and flattened. Additionally, a reduction in both neural differentiation efficiency and neurite length, upregulation in RhoA and Rock2, downregulation in Cdc42 gene expression were detected. On the other hand, cells were transfected with topo IIβ gene to elucidate the possible neuroprotective effect of topo IIβ overexpression on neural-induced hMSCs. Topo IIβ overexpression prompted all the cells to exhibit neural cell morphology as characterized by longer neurites. RhoA and Rock2 expressions were downregulated, whereas Cdc42 expression was upregulated. Nurr1 expression level correlated with topo IIβ in both topo IIβ-overexpressed and -silenced cells. Furthermore, differential translocation of Rho-GTPases was detected by immunostaining in response to topo IIβ. Conclusion Our results suggest that topo IIβ deficiency could give rise to neurodegeneration through dysregulation of Rho-GTPases. However, further in-vivo research is needed to demonstrate if re-regulation of Rho GTPases by topo IIβ overexpression could be a neuroprotective treatment in the case of neurodegenerative diseases. Electronic supplementary material The online version of this article (10.1186/s13287-018-0859-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Merve Zaim
- SANKARA Brain and Biotechnology Research Center, Entertech Technocity, Avcılar, 34320, Istanbul, Turkey
| | - Sevim Isik
- SANKARA Brain and Biotechnology Research Center, Entertech Technocity, Avcılar, 34320, Istanbul, Turkey.
| |
Collapse
|
12
|
Bollimpelli VS, Dholaniya PS, Kondapi AK. Topoisomerase IIβ and its role in different biological contexts. Arch Biochem Biophys 2017; 633:78-84. [PMID: 28669856 DOI: 10.1016/j.abb.2017.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 12/27/2022]
Abstract
Topoisomerase IIβ is a type II DNA topoisomerase that was reported to be expressed in all mammalian cells but abundantly expressed in cells that have undergone terminal differentiation to attain a post mitotic state. Enzymatically it catalyzes ATP-dependent topological changes of double stranded DNA, while as a protein it was reported to be associated with several factors in promoting cell growth, migration, DNA repair and transcription regulation. The cellular roles of topoisomerase IIβ are very less understood compared to its counterpart topoisomerase IIα. This review discusses origin of Topoisomerase II beta, its structure, activities reported in vitro and in vivo along with implications in cellular processes namely transcription, DNA repair, neuronal development, aging, HIV-infection and cancer.
Collapse
Affiliation(s)
- V Satish Bollimpelli
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Pankaj S Dholaniya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Anand K Kondapi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
13
|
Lam CW, Yeung WL, Law CY. Global developmental delay and intellectual disability associated with a de novo TOP2B mutation. Clin Chim Acta 2017; 469:63-68. [DOI: 10.1016/j.cca.2017.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/22/2017] [Indexed: 12/13/2022]
|
14
|
Huang C, Chi XS, Hu X, Chen N, Zhou Q, Zhou D, Li JM. Predictors and mechanisms of epilepsy occurrence in cerebral gliomas: What to look for in clinicopathology. Exp Mol Pathol 2017; 102:115-122. [PMID: 28087392 DOI: 10.1016/j.yexmp.2017.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/02/2017] [Accepted: 01/06/2017] [Indexed: 02/05/2023]
Abstract
Gliomas, especially low-grade gliomas, are highly epileptogenic brain tumors. Histopathological information is valuable in evaluating the diagnosis and/or biologic behavior of various gliomas. Here we explored the clinical data and histopathological predictors of the occurrence of epilepsy in patients with gliomas. A retrospective study examined 310 consecutive patients who had undergone surgical treatment for gliomas in our institution from January 2013 to January 2015. Clinical data and pathological examination results were analyzed. Literatures regarding the predictors and etiology of glioma associated epileptic seizures in the period of 1995-2015 were also reviewed. A total of 234 (75.5%) astrocytic tumors and 76 (24.5%) oligodendrial tumors were included. At diagnosis, 33.6% of patients had epileptic seizures. Multivariate analysis revealed cortex involvement (OR=7.991, 95%CI=1.599-39.926), lower World Health Organization grade (OR=3.584, 95%CI=1.032-12.346) and topoisomerase II (TopoII) positivity (OR=0.943, 95%CI=0.903-0.982) were strong predictors for preoperative epileptic seizures. Gender, disease course, tumor classification, location or volume did not significantly affect epileptic seizure occurrence. Forty-three publications involved glioma-associated epilepsy were found in PubMed online database and key data were extracted and summarized. The present studies on glioma-related epilepsy are relatively limited and inconsistent. Low-grade gliomas, cortex involvement and TopoII positivity were independent predictors of a history of epileptic seizures at diagnosis. Further studies to examine the underlying mechanism of topoisomerase II as well as other molecules in epilepsy occurrence in brain gliomas are needed in the future.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China; Rehabilitation Medicine Center, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiao-Sa Chi
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Xin Hu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Ni Chen
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Qiao Zhou
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Jin-Mei Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
15
|
Yan YX, Zhao JX, Han S, Zhou NJ, Jia ZQ, Yao SJ, Cao CL, Wang YL, Xu YN, Zhao J, Yan YL, Cui HX. Tetramethylpyrazine induces SH-SY5Y cell differentiation toward the neuronal phenotype through activation of the PI3K/Akt/Sp1/TopoIIβ pathway. Eur J Cell Biol 2015; 94:626-41. [PMID: 26518113 DOI: 10.1016/j.ejcb.2015.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 09/09/2015] [Accepted: 09/30/2015] [Indexed: 12/11/2022] Open
Abstract
Tetramethylpyrazine (TMP) is an active compound extracted from the traditional Chinese medicinal herb Chuanxiong. Previously, we have shown that TMP induces human SH-SY5Y neuroblastoma cell differentiation toward the neuronal phenotype by targeting topoisomeraseIIβ (TopoIIβ), a protein implicated in neural development. In the present study, we aimed to elucidate whether the transcriptional factors specificity protein 1 (Sp1) and nuclear factor Y (NF-Y), in addition to the upstream signaling pathways ERK1/2 and PI3K/Akt, are involved in modulating TopoIIβ expression in the neuronal differentiation process. We demonstrated that SH-SY5Y cells treated with TMP (80μM) terminally differentiated into neurons, characterized by increased neuronal markers, tubulin βIII and microtubule associated protein 2 (MAP2), and increased neurite outgrowth, with no negative effect on cell survival. TMP also increased the expression of TopoIIβ, which was accompanied by increased expression of Sp1 in the differentiated neuron-like cells, whereas NF-Y protein levels remained unchanged following the differentiation progression. We also found that the phosphorylation level of Akt, but not ERK1/2, was significantly increased as a result of TMP stimulation. Furthermore, as established by chromatin immunoprecipitation (ChIP) assay, activation of the PI3K/Akt pathway increased Sp1 binding to the promoter of the TopoIIβ gene. Blockage of PI3K/Akt was shown to lead to subsequent inhibition of TopoIIβ expression and neuronal differentiation. Collectively, the results indicate that the PI3K/Akt/Sp1/TopoIIβ signaling pathway is necessary for TMP-induced neuronal differentiation. Our findings offer mechanistic insights into understanding the upstream regulation of TopoIIβ in neuronal differentiation, and suggest potential applications of TMP both in neuroscience research and clinical practice to treat relevant diseases of the nervous system.
Collapse
Affiliation(s)
- Yong-Xin Yan
- Department of Cell Biology, Hebei Medical University, Hebei, PR China
| | - Jun-Xia Zhao
- Department of Cell Biology, Hebei Medical University, Hebei, PR China
| | - Shuo Han
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China
| | - Na-Jing Zhou
- Department of Cell Biology, Hebei Medical University, Hebei, PR China
| | - Zhi-Qiang Jia
- Department of Cell Biology, Hebei Medical University, Hebei, PR China
| | - Sheng-Jie Yao
- Department of Cell Biology, Hebei Medical University, Hebei, PR China
| | - Cui-Li Cao
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China
| | - Yan-Ling Wang
- Department of Cell Biology, Hebei Medical University, Hebei, PR China
| | - Yan-Nan Xu
- Department of Cell Biology, Hebei Medical University, Hebei, PR China
| | - Juan Zhao
- Department of Cell Biology, Hebei Medical University, Hebei, PR China
| | - Yun-Li Yan
- Department of Cell Biology, Hebei Medical University, Hebei, PR China.
| | - Hui-Xian Cui
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China; Hebei Key Laboratory for Brain Aging and Cognitive Neuroscience, Hebei, PR China
| |
Collapse
|
16
|
Topoisomerases interlink genetic network underlying autism. Int J Dev Neurosci 2015; 47:361-8. [PMID: 26456455 DOI: 10.1016/j.ijdevneu.2015.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/20/2015] [Accepted: 07/12/2015] [Indexed: 12/31/2022] Open
Abstract
DNA topoisomerases belong to the group of proteins that play an important role in the organizational dynamics of the human genome. Their enzymatic activity solves topological strain rising from DNA supercoiling occurring during transcription. DNA topoisomerases are especially important for transcription of genes involved in neurodevelopment. Disruption of topoisomerase activity in animal models resulted in impaired neurodevelopment and changed brain architecture. Recent research revealed that topoisomerases induced expression of the same group of genes as those associated with autism. Transcriptional inhibition of neuronal genes during critical stages of brain development may be responsible for pathology of neurodevelopmental disorders such as autism. In this review we aim to outline the role of topoisomerase in neurodevelopment and its possible linkage to neuropathology of autism.
Collapse
|
17
|
Tetramethylpyrazine promotes SH-SY5Y cell differentiation into neurons through epigenetic regulation of Topoisomerase IIβ. Neuroscience 2014; 278:179-93. [DOI: 10.1016/j.neuroscience.2014.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/04/2014] [Accepted: 08/13/2014] [Indexed: 12/12/2022]
|
18
|
Smith NA, Byl JAW, Mercer SL, Deweese JE, Osheroff N. Etoposide quinone is a covalent poison of human topoisomerase IIβ. Biochemistry 2014; 53:3229-36. [PMID: 24766193 PMCID: PMC4033626 DOI: 10.1021/bi500421q] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Etoposide is a topoisomerase II poison
that is utilized to treat
a broad spectrum of human cancers. Despite its wide clinical use,
2–3% of patients treated with etoposide eventually develop
treatment-related acute myeloid leukemias (t-AMLs) characterized by
rearrangements of the MLL gene. The molecular basis
underlying the development of these t-AMLs is not well understood;
however, previous studies have implicated etoposide metabolites (i.e.,
etoposide quinone) and topoisomerase IIβ in the leukemogenic
process. Although interactions between etoposide quinone and topoisomerase
IIα have been characterized, the effects of the drug metabolite
on the activity of human topoisomerase IIβ have not been reported.
Thus, we examined the ability of etoposide quinone to poison human
topoisomerase IIβ. The quinone induced ∼4 times more
enzyme-mediated DNA cleavage than did the parent drug. Furthermore,
the potency of etoposide quinone was ∼2 times greater against
topoisomerase IIβ than it was against topoisomerase IIα,
and the drug reacted ∼2–4 times faster with the β
isoform. Etoposide quinone induced a higher ratio of double- to single-stranded
breaks than etoposide, and its activity was less dependent on ATP.
Whereas etoposide acts as an interfacial topoisomerase II poison,
etoposide quinone displayed all of the hallmarks of a covalent poison:
the activity of the metabolite was abolished by reducing agents, and
the compound inactivated topoisomerase IIβ when it was incubated
with the enzyme prior to the addition of DNA. These results are consistent
with the hypothesis that etoposide quinone contributes to etoposide-related
leukemogenesis through an interaction with topoisomerase IIβ.
Collapse
Affiliation(s)
- Nicholas A Smith
- Departments of †Biochemistry, ‡Medicine (Hematology/Oncology), and §Pharmacology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | | | | | |
Collapse
|
19
|
Pendleton M, Lindsey RH, Felix CA, Grimwade D, Osheroff N. Topoisomerase II and leukemia. Ann N Y Acad Sci 2014; 1310:98-110. [PMID: 24495080 DOI: 10.1111/nyas.12358] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type II topoisomerases are essential enzymes that modulate DNA under- and overwinding, knotting, and tangling. Beyond their critical physiological functions, these enzymes are the targets for some of the most widely prescribed anticancer drugs (topoisomerase II poisons) in clinical use. Topoisomerase II poisons kill cells by increasing levels of covalent enzyme-cleaved DNA complexes that are normal reaction intermediates. Drugs such as etoposide, doxorubicin, and mitoxantrone are frontline therapies for a variety of solid tumors and hematological malignancies. Unfortunately, their use also is associated with the development of specific leukemias. Regimens that include etoposide or doxorubicin are linked to the occurrence of acute myeloid leukemias that feature rearrangements at chromosomal band 11q23. Similar rearrangements are seen in infant leukemias and are associated with gestational diets that are high in naturally occurring topoisomerase II-active compounds. Finally, regimens that include mitoxantrone and epirubicin are linked to acute promyelocytic leukemias that feature t(15;17) rearrangements. The first part of this article will focus on type II topoisomerases and describe the mechanism of enzyme and drug action. The second part will discuss how topoisomerase II poisons trigger chromosomal breaks that lead to leukemia and potential approaches for dissociating the actions of drugs from their leukemogenic potential.
Collapse
Affiliation(s)
- Maryjean Pendleton
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | | | | |
Collapse
|
20
|
DNA topoisomerase II is involved in regulation of cyst wall protein genes and differentiation in Giardia lamblia. PLoS Negl Trop Dis 2013; 7:e2218. [PMID: 23696909 PMCID: PMC3656124 DOI: 10.1371/journal.pntd.0002218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 04/04/2013] [Indexed: 12/16/2022] Open
Abstract
The protozoan Giardia lamblia differentiates into infectious cysts within the human intestinal tract for disease transmission. Expression of the cyst wall protein (cwp) genes increases with similar kinetics during encystation. However, little is known how their gene regulation shares common mechanisms. DNA topoisomerases maintain normal topology of genomic DNA. They are necessary for cell proliferation and tissue development as they are involved in transcription, DNA replication, and chromosome condensation. A putative topoisomerase II (topo II) gene has been identified in the G. lamblia genome. We asked whether Topo II could regulate Giardia encystation. We found that Topo II was present in cell nuclei and its gene was up-regulated during encystation. Topo II has typical ATPase and DNA cleavage activity of type II topoisomerases. Mutation analysis revealed that the catalytic important Tyr residue and cleavage domain are important for Topo II function. We used etoposide-mediated topoisomerase immunoprecipitation assays to confirm the binding of Topo II to the cwp promoters in vivo. Interestingly, Topo II overexpression increased the levels of cwp gene expression and cyst formation. Microarray analysis identified up-regulation of cwp and specific vsp genes by Topo II. We also found that the type II topoisomerase inhibitor etoposide has growth inhibition effect on Giardia. Addition of etoposide significantly decreased the levels of cwp gene expression and cyst formation. Our results suggest that Topo II has been functionally conserved during evolution and that Topo II plays important roles in induction of the cwp genes, which is key to Giardia differentiation into cysts. Giardia lamblia becomes infective by differentiation into water-resistant cysts. During encystation, cyst wall proteins (CWPs) are highly synthesized and are targeted to the cyst wall. However, little is known about the regulation mechanisms of these genes. DNA topoisomerases can resolve the topological problems and are needed for a variety of key cellular functions, including cell proliferation, cell differentiation and organ development in higher eukaryotes. We found that giardial Topo II was highly expressed during encystation. Topo II is present in Giardia nuclei and is associated with the encystation-induced cwp gene promoters. Topo II has typical DNA cleavage activity of type II topoisomerases. Interestingly, overexpression of Topo II can induce cwp gene expression and cyst formation. Addition of a type II topoisomerase inhibitor, etoposide, significantly decreased the levels of cwp gene expression and cyst formation. Etoposide also has growth inhibition effect on Giardia. Our results suggest that Topo II plays an important role in induction of encystation by up-regulation of the cwp gene expression. Our results provide insights into the function of Topo II in parasite differentiation into cysts and help develop ways to interrupt the parasite life cycle.
Collapse
|
21
|
Cha DS, Hollis SE, Datla US, Lee S, Ryu J, Jung HR, Kim E, Kim K, Lee M, Li C, Lee MH. Differential subcellular localization of DNA topoisomerase-1 isoforms and their roles during Caenorhabditis elegans development. Gene Expr Patterns 2012; 12:189-95. [PMID: 22452997 DOI: 10.1016/j.gep.2012.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/03/2012] [Accepted: 03/11/2012] [Indexed: 10/28/2022]
Abstract
DNA topoisomerase-1 (TOP-1) resolves the topological problems associated with DNA replication, transcription and recombination by introducing temporary single-strand breaks in the DNA. Caenorhabditis elegans TOP-1 has two isoforms, TOP-1α and TOP-1β. TOP-1β is broadly localized to the nuclei of many cells at all developmental stages and concentrated in nucleoli in embryo gut and oogenic cells. However, TOP-1α is specifically localized to centrosomes, neuronal cells, excretory cells and chromosomes of germ cells in embryonic and larval stages. Reporter gene analysis also shows that top-1 transcription is highly activated in several sensory neurons, speculating the possible role of TOP-1α in neuronal development. From RNA interference (RNAi) experiments, we demonstrated that C. elegans TOP-1 is required for chromosomal segregation, germline proliferation and gonadal migration, which are all correlated with the expression and activity of TOP-1. Therefore, our findings may provide an insight into a new role of TOP-1 in development of multicellular organisms.
Collapse
Affiliation(s)
- Dong Seok Cha
- Division of Hematology/Oncology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|