1
|
Li H, Li D, Zhao G, Gao Y, Ke J. Effects of Danggui-Shaoyao-San on depression- and anxiety-like behaviors of rats induced by experimental tooth movement. J Orofac Orthop 2021; 83:23-33. [PMID: 34309701 DOI: 10.1007/s00056-021-00323-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/12/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate the effects of Danggui-Shaoyao-San (DSS) on depression- and anxiety-like behavior induced by experimental tooth movement (ETM) in rats. MATERIALS AND METHODS Thirty-six rats were randomly divided into a sham group (n = 12; rats underwent all operation procedures, except placement of orthodontic forces, and received saline treatment), ETM group (n = 12; rats received saline treatment and ETM), and DETM group (n = 12; rats received DSS [dose: 150 mg/kg twice daily from preoperative day 5 to postoperative day 7] treatment and ETM). The vacuous chewing movement (VCM) test, open-field test, and elevated plus maze test were performed to assess the depression- and anxiety-like behaviors of the rats. RESULTS DSS pretreatment significantly decreased the ETM-induced VCM time (P < 0.05, DETM vs. ETM), increased the ETM-induced time to the central area of experimental device during the 5 min open-field test (P < 0.05, DETM vs. ETM), and increased the ratio of time spent in the open arms of the 5 min elevated plus maze test induced by ETM (P < 0.01, DETM vs. ETM). CONCLUSIONS DSS pretreatment can restore the impaired abilities of rats caused by ETM-induced depression- and anxiety-like behavior.
Collapse
Affiliation(s)
- Hongshi Li
- Institute of Stomatology, The Medical Center of Air Force of PLA, Beijing 100142, China
| | - Dongxia Li
- Institute of Stomatology, The Medical Center of Air Force of PLA, Beijing 100142, China
| | - Guizhi Zhao
- Institute of Stomatology, The Medical Center of Air Force of PLA, Beijing 100142, China
| | - Yuan Gao
- Institute of Stomatology, The Medical Center of Air Force of PLA, Beijing 100142, China
| | - Jie Ke
- Institute of Stomatology, The Medical Center of Air Force of PLA, Beijing 100142, China.
| |
Collapse
|
2
|
Wei X, Sun Y, Luo F. Impaired Spinal Glucocorticoid Receptor Signaling Contributes to the Attenuating Effect of Depression on Mechanical Allodynia and Thermal Hyperalgesia in Rats with Neuropathic Pain. Front Cell Neurosci 2017; 11:145. [PMID: 28579944 PMCID: PMC5437111 DOI: 10.3389/fncel.2017.00145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/03/2017] [Indexed: 11/13/2022] Open
Abstract
Although depression-induced altered pain perception has been described in several laboratory and clinical studies, its neurobiological mechanism in the central nervous system (CNS), particularly in the spinal dorsal horn, remains unclear. Therefore, in this study, we aimed to clarify whether nociceptive sensitivity of neuropathic pain is altered in the olfactory bulbectomy (OB) model of depression and whether glucocorticoid receptor (GR), which is involved in the etio-pathologic mechanisms of both major depression and neuropathic pain, contributes to these processes in the spinal dorsal horn of male Sprague-Dawley rats. The results showed that mechanical allodynia and thermal hyperalgesia induced by spinal nerve ligation (SNL) were attenuated in OB-SNL rats with decreased spinal GR expression and nuclear translocation, whereas non-olfactory bulbectomy (NOB)-SNL rats showed increased spinal GR nuclear translocation. In addition, decreased GR nuclear translocation with normal mechanical nociception and hypoalgesia of thermal nociception were observed in OB-Sham rats. Intrathecal injection (i.t.) of GR agonist dexamethasone (Dex; 4 μg/rat/day for 1 week) eliminated the attenuating effect of depression on nociceptive hypersensitivity in OB-SNL rats and aggravated neuropathic pain in NOB-SNL rats, which was associated with the up-regulation of brain-derived neurotrophic factor (BDNF), TrkB and NR2B expression in the spinal dorsal horn. The present study shows that depression attenuates the mechanical allodynia and thermal hyperalgesia of neuropathic pain and suggests that altered spinal GR-BDNF-TrkB signaling may be one of the reasons for depression-induced hypoalgesia.
Collapse
Affiliation(s)
- Xiao Wei
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China
| | - Yuqi Sun
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China.,Department of Psychology, University of Chinese Academy of SciencesBeijing, China
| | - Fei Luo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China.,Department of Psychology, University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|
3
|
Wang N, Li SG, Lin XX, Su YL, Qi WJ, Wang JY, Luo F. Increasing Pain Sensation Eliminates the Inhibitory Effect of Depression on Evoked Pain in Rats. Front Behav Neurosci 2016; 10:183. [PMID: 27733820 PMCID: PMC5039174 DOI: 10.3389/fnbeh.2016.00183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/14/2016] [Indexed: 11/17/2022] Open
Abstract
Although previous studies have suggested that depression may be associated with inhibition of evoked pain but facilitation of spontaneous pain, the mechanisms underlying these relationships are unclear. The present study investigated whether the difference between evoked and spontaneous pain on sensory (descending inhibition) and affective (avoidance motivation) components contributes to the divergent effects of depression on them. Depressive-like behavior was produced in male Wistar rats by unpredictable chronic mild stress (UCMS). Tone-laser conditioning and formalin-induced conditioned place avoidance (F-CPA) were used to explore avoidance motivation in evoked and spontaneous pain, respectively. Behavioral pharmacology experiments were conducted to examine descending inhibition of both evoked (thermal stimulation) and spontaneous pain behavior (formalin pain). The results revealed that the inhibitory effect of depression on evoked pain was eliminated following repeated thermal stimuli. Avoidance behavior in the tone-laser conditioning task was reduced in UCMS rats, relative to controls. However, avoidance motivation for formalin pain in the UCMS group was similar to controls. 5-HT1A receptor antagonism interfered with inhibition of pain responses over time. The present study demonstrated that the inhibitory effect of depression on evoked pain dissipates with increased nociception and that the sensory-discriminative and affective-motivational components of pain are jointly involved in the divergent effects of depression on pain.
Collapse
Affiliation(s)
- Ning Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Sheng-Guang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Xiao-Xiao Lin
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| | - Yuan-Lin Su
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Wei-Jing Qi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Jin-Yan Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| | - Fei Luo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|
4
|
New Mechanism of Bone Cancer Pain: Tumor Tissue-Derived Endogenous Formaldehyde Induced Bone Cancer Pain via TRPV1 Activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 904:41-58. [DOI: 10.1007/978-94-017-7537-3_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Burke NN, Finn DP, Roche M. Chronic administration of amitriptyline differentially alters neuropathic pain-related behaviour in the presence and absence of a depressive-like phenotype. Behav Brain Res 2014; 278:193-201. [PMID: 25300472 DOI: 10.1016/j.bbr.2014.09.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/04/2014] [Accepted: 09/27/2014] [Indexed: 01/11/2023]
Abstract
Chronic pain and depression share a complex, reciprocal relationship. Furthermore, in addition to treating depression, antidepressants such as amitriptyline are a first-line treatment for chronic pain conditions, indicating possible common neural substrates underlying both depression and pain. However, there is a paucity of studies examining the effect of antidepressant treatment on nociceptive and neuropathic pain responding in the presence of a depressive phenotype. The current study aimed to examine the effect of chronic amitriptyline administration on neuropathic pain-related behaviour and associated neuroinflammatory processes in the olfactory bulbectomised (OB) rat model of depression. Nociceptive responding to mechanical, innocuous cold or noxious heat stimuli in sham or OB rats was not altered by chronic amitriptyline administration. The induction of neuropathic pain following L5-L6 spinal nerve ligation (SNL) resulted in robust mechanical and cold allodynia and heat hyperalgesia in both sham and OB vehicle-treated animals. Chronic amitriptyline administration attenuated SNL-induced mechanical allodynia in both sham and OB rats at day 7 post-SNL, an effect which was enhanced and prolonged in OB rats. In comparison, chronic amitriptyline administration attenuated SNL-induced cold allodynia and heat hyperalgesia in sham, but not OB, rats. Evaluating the affective/motivational aspect of pain using the place escape avoidance paradigm revealed that OB-SNL rats exhibit reduced noxious avoidance behaviour when compared with sham counterparts, an effect not altered by chronic amitriptyline administration. Chronic amitriptyline administration prevented the increased expression of GFAP, IL-10 and CCL5, and enhanced the expression of TNFα, in the prefrontal cortex of OB-SNL rats. In conclusion, these data demonstrate that chronic amitriptyline differentially alters somatic nociceptive responding following peripheral nerve-injury, depending on stimulus modality and the presence or absence of a depressive-like phenotype, an effect which may involve modulation of neuroinflammatory processes.
Collapse
Affiliation(s)
- Nikita N Burke
- Physiology, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; NCBES Galway Neuroscience Centre and Centre for Pain Research, National University of Ireland Galway, University Road, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; NCBES Galway Neuroscience Centre and Centre for Pain Research, National University of Ireland Galway, University Road, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; NCBES Galway Neuroscience Centre and Centre for Pain Research, National University of Ireland Galway, University Road, Galway, Ireland.
| |
Collapse
|
6
|
Li JX. Pain and depression comorbidity: a preclinical perspective. Behav Brain Res 2014; 276:92-8. [PMID: 24797835 DOI: 10.1016/j.bbr.2014.04.042] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/06/2014] [Accepted: 04/22/2014] [Indexed: 02/06/2023]
Abstract
Pain and depression are two highly prevalent and deleterious disorders with significant socioeconomic impact to society. Clinical observations have long recognized the co-existence and interactions of pain and depression. However, the underlying mechanisms of pain-depression comorbidity and their dynamic interactions remain largely unknown. Preclinical animal studies may provide critical information for the understanding of this important comorbidity. This review analyzed the current preclinical evidence of interactions between pain and depression, which generally supports the causative relationship of the two conditions. In addition, the analysis proposed to apply domain interplay concept in future model development of pain-depression comorbidity and mechanism studies. The application of spectrum-centered animal models will better the understanding of pain-depression dyad and foster the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Jun-Xu Li
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
7
|
Chopra K, Arora V. An intricate relationship between pain and depression: clinical correlates, coactivation factors and therapeutic targets. Expert Opin Ther Targets 2013; 18:159-76. [PMID: 24295272 DOI: 10.1517/14728222.2014.855720] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION An apparent clinical relationship between pain and depression has long been recognized, which makes an enormous impact on the individual health care. At present, the practical implication of such overlapping symptomatology between pain and depression is not clear, but the prevalence estimates for depression are substantially inflated among patients with chronic pain and vice versa. This interaction has been labeled as the depression-pain syndrome or depression-pain dyad. AREAS COVERED This article discusses the neurobiological substrates and neuroanatomical pathways involved in pain-depression dyad along with newer therapeutic targets. EXPERT OPINION Several key themes emerged from our review of the relationship between depression and pain. First, the diagnosis of depression in pain or vice versa is particularly challenging, and the development of better diagnostic framework that involves both pain and depression is particularly required. Secondly, the entwined relationship between pain and depression supports the possibility of common coactivating factors that results in their neurophysiological overlap. A broad understanding of the role played by the central nervous system (CNS) in the processing of pain and depression may eventually lead to the introduction of triple reuptake inhibitors, agomelatine, vilazodone and ketamine with novel mechanism of action, hence appear to be of promising potential for pain with depression.
Collapse
Affiliation(s)
- Kanwaljit Chopra
- Panjab University, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Pharmacology Research Laboratory , Chandigarh-160 014 , India +91 172 2534105 ; +91 172 2541142 ;
| | | |
Collapse
|
8
|
Sun YH, Dong YL, Wang YT, Zhao GL, Lu GJ, Yang J, Wu SX, Gu ZX, Wang W. Synergistic analgesia of duloxetine and celecoxib in the mouse formalin test: a combination analysis. PLoS One 2013; 8:e76603. [PMID: 24116126 PMCID: PMC3792058 DOI: 10.1371/journal.pone.0076603] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 08/25/2013] [Indexed: 11/18/2022] Open
Abstract
Duloxetine, a serotonin and noradrenaline reuptake inhibitor, and celecoxib, a non-steroidal anti-inflammatory drug, are commonly used analgesics for persistent pain, however with moderate gastrointestinal side effects or analgesia tolerance. One promising analgesic strategy is to give a combined prescription, allowing the maximal or equal efficacy with fewer side effects. In the current study, the efficacy and side effects of combined administration of duloxetine and celecoxib were tested in the mouse formalin pain model. The subcutaneous (s.c.) injection of formalin into the left hindpaw induced significant somatic and emotional pain evaluated by the biphasic spontaneous flinching of the injected hindpaw and interphase ultrasonic vocalizations (USVs) during the 1 h after formalin injection, respectively. Pretreatment with intraperitoneal (i.p.) injection of duloxetine or celecoxib at 1 h before formalin injection induced the dose-dependent inhibition on the second but not first phase pain responses. Combined administration of duloxetine and celecoxib showed significant analgesia for the second phase pain responses. Combination analgesia on the first phase was observed only with higher dose combination. A statistical difference between the theoretical and experimental ED50 for the second phase pain responses was observed, which indicated synergistic interaction of the two drugs. Concerning the emotional pain responses revealed with USVs, we assumed that the antinociceptive effects were almost completely derived from duloxetine, since celecoxib was ineffective when administered alone or reduced the dosage of duloxetine when given in combination. Based on the above findings, acute concomitant administration of duloxetine and celecoxib showed synergism on the somatic pain behavior but not emotional pain behaviors.
Collapse
Affiliation(s)
- Yong-Hai Sun
- Anesthesia and Operation Center, Department of Anesthesiology, Chinese PLA General Hospital, Beijing, P. R. China
| | - Yu-Lin Dong
- Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi’an, P. R. China
| | - Yu-Tong Wang
- Department of Emergency, Xi’jing Hospital, Fourth Military Medical University, Xi’an, P. R. China
| | - Guo-Li Zhao
- Anesthesia and Operation Center, Department of Anesthesiology, Chinese PLA General Hospital, Beijing, P. R. China
| | - Gui-Jun Lu
- Anesthesia and Operation Center, Department of Anesthesiology, Chinese PLA General Hospital, Beijing, P. R. China
| | - Jing Yang
- Anesthesia and Operation Center, Department of Anesthesiology, Chinese PLA General Hospital, Beijing, P. R. China
| | - Sheng-Xi Wu
- Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi’an, P. R. China
| | - Ze-Xu Gu
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, P. R. China
- * E-mail: (WW); (ZXG)
| | - Wen Wang
- Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi’an, P. R. China
- * E-mail: (WW); (ZXG)
| |
Collapse
|
9
|
Wang N, Shi M, Wang JY, Luo F. Brain-network mechanisms underlying the divergent effects of depression on spontaneous versus evoked pain in rats: a multiple single-unit study. Exp Neurol 2013; 250:165-75. [PMID: 24100021 DOI: 10.1016/j.expneurol.2013.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/18/2013] [Accepted: 09/24/2013] [Indexed: 12/23/2022]
Abstract
Studies have reported divergent behavioral effects of depression on spontaneous vs. stimulus-evoked pain. However, the underlying neurobiological mechanisms are still unclear. The present study used a depression model of unpredictable chronic mild stress (UCMS) and pain models for spontaneous pain (i.e., the formalin test) and acute evoked pain (i.e., noxious thermal stimulation) in rats. The activity of neurons within thalamo-cortical circuits in the lateral and medial pain pathways was recorded by a multiple-channel recording technique, and behaviors were observed simultaneously. The results confirmed our previous findings that rats exposed to UCMS tended to exhibit decreased pain sensitivity to experimental stimuli but increased behavioral responses to ongoing pain. Based on the analysis of single-unit responses, the results demonstrated that the processing of spontaneous vs. evoked pain in a depressive-like state was altered in the opposite direction (activation vs. inhibition). The ensemble encoding analysis revealed that exposure to UCMS gave rise to enhanced inter-regional functional connectivity in spontaneous pain processing, but did not influence that of evoked pain. In addition, different brain activation patterns underlying the processing of spontaneous vs. evoked pain were observed. These findings revealed that the distinct response patterns of neurons within the pain-related brain circuits, especially in the affective pain pathway, mediate the divergent effects of depression on spontaneous vs. evoked pain. This is also the first report on the electrophysiology of depression models that provides direct evidence that the effect of depression on spontaneous and evoked pain may involve different brain mechanisms.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
10
|
Burke NN, Geoghegan E, Kerr DM, Moriarty O, Finn DP, Roche M. Altered neuropathic pain behaviour in a rat model of depression is associated with changes in inflammatory gene expression in the amygdala. GENES BRAIN AND BEHAVIOR 2013; 12:705-13. [PMID: 23957449 DOI: 10.1111/gbb.12080] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/30/2013] [Accepted: 08/15/2013] [Indexed: 12/22/2022]
Abstract
The association between chronic pain and depression is widely recognized, the comorbidity of which leads to a heavier disease burden, increased disability and poor treatment response. This study examined nociceptive responding to mechanical and thermal stimuli prior to and following L5-L6 spinal nerve ligation (SNL), a model of neuropathic pain, in the olfactory bulbectomized (OB) rat model of depression. Associated changes in the expression of genes encoding for markers of glial activation and cytokines were subsequently examined in the amygdala, a key brain region for the modulation of emotion and pain. The OB rats exhibited mechanical and cold allodynia, but not heat hyperalgesia, when compared with sham-operated counterparts. Spinal nerve ligation induced characteristic mechanical and cold allodynia in the ipsilateral hindpaw of both sham and OB rats. The OB rats exhibited a reduced latency and number of responses to an innocuous cold stimulus following SNL, an effect positively correlated with interleukin (IL)-6 and IL-10 mRNA expression in the amygdala, respectively. Spinal nerve ligation reduced IL-6 and increased IL-10 expression in the amygdala of sham rats. The expression of CD11b (cluster of differentiation molecule 11b) and GFAP (glial fibrillary acidic protein), indicative of microglial and astrocyte activation, and IL-1β in the amygdala was enhanced in OB animals when compared with sham counterparts, an effect not observed following SNL. This study shows that neuropathic pain-related responding to an innocuous cold stimulus is altered in an animal model of depression, effects accompanied by changes in the expression of neuroinflammatory genes in the amygdala.
Collapse
|
11
|
Liu J, Liu FY, Tong ZQ, Li ZH, Chen W, Luo WH, Li H, Luo HJ, Tang Y, Tang JM, Cai J, Liao FF, Wan Y. Lysine-specific demethylase 1 in breast cancer cells contributes to the production of endogenous formaldehyde in the metastatic bone cancer pain model of rats. PLoS One 2013; 8:e58957. [PMID: 23516587 PMCID: PMC3597561 DOI: 10.1371/journal.pone.0058957] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/08/2013] [Indexed: 11/26/2022] Open
Abstract
Background Bone cancer pain seriously affects the quality of life of cancer patients. Our previous study found that endogenous formaldehyde was produced by cancer cells metastasized into bone marrows and played an important role in bone cancer pain. However, the mechanism of production of this endogenous formaldehyde by metastatic cancer cells was unknown in bone cancer pain rats. Lysine-specific demethylase 1 (LSD1) is one of the major enzymes catalyzing the production of formaldehyde. The expression of LSD1 and the concentration of formaldehyde were up-regulated in many high-risk tumors. Objective This study aimed to investigate whether LSD1 in metastasized MRMT-1 breast cancer cells in bone marrows participated in the production of endogenous formaldehyde in bone cancer pain rats. Methodology/Principal Findings Concentration of the endogenous formaldehyde was measured by high performance liquid chromatography (HPLC). Endogenous formaldehyde dramatically increased in cultured MRMT-1 breast cancer cells in vitro, in bone marrows and sera of bone cancer pain rats, in tumor tissues and sera of MRMT-1 subcutaneous vaccination model rats in vivo. Formaldehyde at a concentration as low as the above measured (3 mM) induced pain behaviors in normal rats. The expression of LSD1 which mainly located in nuclei of cancer cells significantly increased in bone marrows of bone cancer pain rats from 14 d to 21 d after inoculation. Furthermore, inhibition of LSD1 decreased the production of formaldehyde in MRMT-1 cells in vitro. Intraperitoneal injection of LSD1 inhibitor pargyline from 3 d to 14 d after inoculation of MRMT-1 cancer cells reduced bone cancer pain behaviors. Conclusion Our data in the present study, combing our previous report, suggested that in the endogenous formaldehyde-induced pain in bone cancer pain rats, LSD1 in metastasized cancer cells contributed to the production of the endogenous formaldehyde.
Collapse
Affiliation(s)
- Jia Liu
- Neuroscience Research Institute and Department of Neurobiology, Peking University, Beijing, People's Republic of China
| | - Feng-Yu Liu
- Neuroscience Research Institute and Department of Neurobiology, Peking University, Beijing, People's Republic of China
| | - Zhi-Qian Tong
- Neuroscience Research Institute and Department of Neurobiology, Peking University, Beijing, People's Republic of China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhi-Hua Li
- Neuroscience Research Institute and Department of Neurobiology, Peking University, Beijing, People's Republic of China
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Wen Chen
- Neuroscience Research Institute and Department of Neurobiology, Peking University, Beijing, People's Republic of China
| | - Wen-Hong Luo
- Central Laboratory, Shantou University Medical College, Shantou, People's Republic of China
| | - Hui Li
- Central Laboratory, Shantou University Medical College, Shantou, People's Republic of China
| | - Hong-Jun Luo
- Central Laboratory, Shantou University Medical College, Shantou, People's Republic of China
| | - Yan Tang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, People's Republic of China
| | - Jun-Min Tang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, People's Republic of China
| | - Jie Cai
- Neuroscience Research Institute and Department of Neurobiology, Peking University, Beijing, People's Republic of China
| | - Fei-Fei Liao
- Neuroscience Research Institute and Department of Neurobiology, Peking University, Beijing, People's Republic of China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, Peking University, Beijing, People's Republic of China
- Key Laboratory for Neuroscience, Ministry of Education/Ministry of Health, Beijing, People's Republic of China
- * E-mail: .
| |
Collapse
|