1
|
Casalin I, Ceneri E, Ratti S, Manzoli L, Cocco L, Follo MY. Nuclear Phospholipids and Signaling: An Update of the Story. Cells 2024; 13:713. [PMID: 38667329 PMCID: PMC11048846 DOI: 10.3390/cells13080713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
In the last three decades, the presence of phospholipids in the nucleus has been shown and thoroughly investigated. A considerable amount of interest has been raised about nuclear inositol lipids, mainly because of their role in signaling acting. Here, we review the main issues of nuclear phospholipid localization and the role of nuclear inositol lipids and their related enzymes in cellular signaling, both in physiological and pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | - Lucio Cocco
- Cellular Signaling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (I.C.); (E.C.); (S.R.); (L.M.); (M.Y.F.)
| | | |
Collapse
|
2
|
Ratti S, Marvi MV, Mongiorgi S, Obeng EO, Rusciano I, Ramazzotti G, Morandi L, Asioli S, Zoli M, Mazzatenta D, Suh PG, Manzoli L, Cocco L. Impact of phospholipase C β1 in glioblastoma: a study on the main mechanisms of tumor aggressiveness. Cell Mol Life Sci 2022; 79:195. [PMID: 35303162 PMCID: PMC8933313 DOI: 10.1007/s00018-022-04198-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/21/2022] [Accepted: 02/06/2022] [Indexed: 12/19/2022]
Abstract
Glioblastoma represents the most lethal brain tumor in adults. Several studies have shown the key role of phospholipase C β1 (PLCβ1) in the regulation of many mechanisms within the central nervous system suggesting PLCβ1 as a novel signature gene in the molecular classification of high-grade gliomas. This study aims to determine the pathological impact of PLCβ1 in glioblastoma, confirming that PLCβ1 gene expression correlates with glioma's grade, and it is lower in 50 glioblastoma samples compared to 20 healthy individuals. PLCβ1 silencing in cell lines and primary astrocytes, leads to increased cell migration and invasion, with the increment of mesenchymal transcription factors and markers, as Slug and N-Cadherin and metalloproteinases. Cell proliferation, through increased Ki-67 expression, and the main survival pathways, as β-catenin, ERK1/2 and Stat3 pathways, are also affected by PLCβ1 silencing. These data suggest a potential role of PLCβ1 in maintaining a normal or less aggressive glioma phenotype.
Collapse
Affiliation(s)
- Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Maria Vittoria Marvi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Eric Owusu Obeng
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Isabella Rusciano
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Luca Morandi
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, 40139, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy.,Anatomic Pathology Unit, Azienda USL Di Bologna, 40124, Bologna, Italy.,Pituitary Unit, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, 40139, Bologna, Italy
| | - Matteo Zoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy.,Pituitary Unit, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, 40139, Bologna, Italy
| | - Diego Mazzatenta
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy.,Pituitary Unit, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, 40139, Bologna, Italy
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, Korea.,School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, Korea
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy.
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy.
| |
Collapse
|
3
|
Marvi MV, Mongiorgi S, Ramazzotti G, Follo MY, Billi AM, Zoli M, Mazzatenta D, Morandi L, Asioli S, Papa V, McCubrey JA, Suh PG, Manzoli L, Cocco L, Ratti S. Role of PLCγ1 in the modulation of cell migration and cell invasion in glioblastoma. Adv Biol Regul 2022; 83:100838. [PMID: 34819252 DOI: 10.1016/j.jbior.2021.100838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Phosphoinositide-specific phospholipases C (PLCs) are a class of enzymes involved in several cell activities, such as cell cycle regulation, proliferation, differentiation and cytoskeletal dynamics. Among these enzymes, PLCγ1 is one of the most expressed PLCs in the brain, contributing to a complex network in the developing nervous system. Several studies have shown that PLCγ1 signaling imbalance is linked to several brain disorders, including glioblastoma, the most aggressive brain tumor in adults. Indeed, it has been demonstrated a link between PLCγ1 inhibition and the arrest of glioma cell motility of fetal rat brain aggregates and the impairment of cell invasion abilities following its down-regulation. This study aims to determine the pathological influence of PLCγ1 in glioblastoma, through a translational study which combines in silico data, data from glioblastoma patients' samples and data on engineered cell lines. We found out that PLCγ1 gene expression correlates with the pathological grade of gliomas, and it is higher in fifty patients' glioblastoma tissue samples compared to twenty healthy controls. Moreover, it was demonstrated that PLCγ1 silencing in U87-MG leads to a reduction in cell migration and invasion abilities. The opposite trend was observed following PLCγ1 overexpression, suggesting an interesting possible involvement of PLCγ1 in gliomas' aggressiveness.
Collapse
Affiliation(s)
- Maria Vittoria Marvi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Anna Maria Billi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Matteo Zoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Diego Mazzatenta
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Luca Morandi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Anatomic Pathology Unit, Azienda USL di Bologna, Bologna, Italy
| | - Veronica Papa
- Department of Motor Sciences and Wellness (DiSMeB), Università Degli Studi di Napoli "Parthenope,", 80133, Napoli, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, South Korea; School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, South Korea
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| |
Collapse
|
4
|
Liu CC, Shih TC, Pai TW, Hu CH, Tzou WS. Enhanced Over-Representation Analysis for the Differential Regulation of Birc5a and HIF2α-Knockdown Approaches. J Comput Biol 2021; 28:674-686. [PMID: 33512268 DOI: 10.1089/cmb.2020.0556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) and survivin (Birc5) genes are often considered important cancer drug targets for molecularly targeted therapy, as both genes play important roles in the cellular differentiation and development of neuronal cells. Pathway enrichment analysis is predominantly applied when interpreting the correlated behaviors of activated gene clusters. Traditional enrichment analysis is evaluated via p-values only, regardless of gene expression fold-change levels, gene locations, and possible hidden interactions within a pathway. Here, we combined these factors to retrieve significant pathways, as compared with traditional approaches. We performed RNA-seq analyses on Birc5a and HIF2α knocked down in zebrafish during the embryogenesis stage. Regarding Birc5a, two additional biological pathways, sphingolipid metabolism and herpes simplex infection, were identified; whereas for HIF2α, four biological pathways were re-identified, including ribosome biogenesis in eukaryotes, proteasome, purine metabolism, and complement and coagulation cascades. Our proposed approaches identified additional significant pathways directly related to cell differentiation or cancer, also providing comprehensive mechanisms for designing further biological experiments.
Collapse
Affiliation(s)
- Chun-Cheng Liu
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Tao-Chuan Shih
- Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Tun-Wen Pai
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan.,Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Chin-Hwa Hu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Wen-Shyong Tzou
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
5
|
Rusciano I, Marvi MV, Owusu Obeng E, Mongiorgi S, Ramazzotti G, Follo MY, Zoli M, Morandi L, Asioli S, Fabbri VP, McCubrey JA, Suh PG, Manzoli L, Cocco L, Ratti S. Location-dependent role of phospholipase C signaling in the brain: Physiology and pathology. Adv Biol Regul 2020; 79:100771. [PMID: 33303387 DOI: 10.1016/j.jbior.2020.100771] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
Phosphoinositide-specific phospholipases C (PI-PLCs) are a class of enzymes involved in the phosphatidylinositol metabolism, which is implicated in the activation of several signaling pathways and which controls several cellular processes. The scientific community has long accepted the existence of a nuclear phosphoinositide (PI) metabolism, independent from the cytoplasmic one, critical in nuclear function control. Indeed, nuclear PIs are involved in many activities, such as cell cycle regulation, cell proliferation, cell differentiation, membrane transport, gene expression and cytoskeletal dynamics. There are several types of PIs and enzymes implicated in brain activities and among these enzymes, PI-PLCs contribute to a specific and complex network in the developing nervous system. Moreover, considering the abundant presence of PI-PLCβ1, PI-PLCγ1 and PI-PLCβ4 in the brain, a specific role for each PLC subtype has been suggested in the control of neuronal activity, which is important for synapse function, development and other mechanisms. The focus of this review is to describe the latest research about the involvement of PI-PLC signaling in the nervous system, both physiologically and in pathological conditions. Indeed, PI-PLC signaling imbalance seems to be also linked to several brain disorders including epilepsy, movement and behavior disorders, neurodegenerative diseases and, in addition, some PI-PLC subtypes could become potential novel signature genes for high-grade gliomas.
Collapse
Affiliation(s)
- Isabella Rusciano
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Vittoria Marvi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Eric Owusu Obeng
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Zoli
- Center for the Diagnosis and Treatment of Hypothalamic-Pituitary Diseases - Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna (Institute of Neurological Sciences of Bologna), Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Italy
| | - Luca Morandi
- Functional MR Unit, Bellaria Hospital, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139, Bologna, Italy
| | - Sofia Asioli
- Dipartimento di Scienze Biomediche e Neuromotorie, U.O.C. Anatomia Patologica, AUSL, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma Neurochirurgia Ipofisi, Bologna, Italy
| | - Viscardo Paolo Fabbri
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, Republic of Korea; School of Life Sciences, UNIST, Ulsan, Republic of Korea
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
6
|
León M, Ferreira CR, Eberlin LS, Jarmusch AK, Pirro V, Rodrigues ACB, Favaron PO, Miglino MA, Cooks RG. Metabolites and Lipids Associated with Fetal Swine Anatomy via Desorption Electrospray Ionization - Mass Spectrometry Imaging. Sci Rep 2019; 9:7247. [PMID: 31076607 PMCID: PMC6510765 DOI: 10.1038/s41598-019-43698-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/27/2019] [Indexed: 12/11/2022] Open
Abstract
Chemical imaging by mass spectrometry (MS) has been largely used to study diseases in animals and humans, especially cancer; however, this technology has been minimally explored to study the complex chemical changes associated with fetal development. In this work, we report the histologically-compatible chemical imaging of small molecules by desorption electrospray ionization (DESI) - MS of a complete swine fetus at 50 days of gestation. Tissue morphology was unperturbed by morphologically-friendly DESI-MS analysis while allowing detection of a wide range of small molecules. We observed organ-dependent localization of lipids, e.g. a large diversity of phosphatidylserine lipids in brain compared to other organs, as well as metabolites such as N-acetyl-aspartic acid in the developing nervous system and N-acetyl-L-glutamine in the heart. Some lipids abundant in the lungs, such as PC(32:0) and PS(40:6), were similar to surfactant composition reported previously. Sulfatides were highly concentrated in the fetus liver, while hexoses were barely detected at this organ but were abundant in lung and heart. The chemical information on small molecules recorded via DESI-MS imaging coupled with traditional anatomical evaluation is a powerful source of bioanalytical information which reveals the chemical changes associated with embryonic and fetal development that, when disturbed, causes congenital diseases such as spina bifida and cleft palate.
Collapse
Affiliation(s)
- Marisol León
- Surgery Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Christina R Ferreira
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN, 47907, United States
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Alan K Jarmusch
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, United States
| | - Valentina Pirro
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN, 47907, United States
| | - Ana Clara Bastos Rodrigues
- Surgery Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Maria Angelica Miglino
- Surgery Department, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - R Graham Cooks
- Department of Chemistry and Center for Analytical Instrumentation Development, Purdue University, West Lafayette, IN, 47907, United States.
| |
Collapse
|
7
|
Fais P, Leopizzi M, Di Maio V, Longo L, Della Rocca C, Tagliaro F, Bortolotti F, Lo Vasco VR. Phosphoinositide-specific phospholipase C in normal human liver and in alcohol abuse. J Cell Biochem 2019; 120:7907-7917. [PMID: 30426534 DOI: 10.1002/jcb.28067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
The phosphoinositide (PI) signal transduction pathway participates in liver metabolism. Abnormal activity or expression of PI-specific phospholipase C (PLC) enzymes has been described in different liver diseases. We resume the role of the PI metabolism in liver and PLC abnormalities in different liver diseases. Moreover, we present the results of PLC analyses in a normal human liver and an alcohol-damaged liver. PLC enzymes and the expression of the corresponding genes in liver biopsies from individuals deceased for complications of the alcoholic liver disease (ALD) at different stages compared with normal controls (deceased individuals with histologically normal livers without alcohol addiction anamnesis) were analyzed by using immunohistochemistry and molecular biology techniques. The expression panel of PLCs was described in normal and alcohol abuse liver. Our observations suggest that the regulation of PLC expression might be due to posttranscriptional events and that alcohol affects the epigenetic control of PLC expression belonging to PI signaling. We also describe the alternate expression of PLCB1 and PLCH1 genes in liver. Our results corroborate literature data suggesting that PLC enzymes are differently expressed in normal versus pathological liver, playing a role in the histopathogenesis of liver tissue damage. The expression and/or localization of selected PLC isoforms is especially affected in alcohol-related liver tissue histopathology. Our present observations confirm that the modulation of protein synthesis plays a role in the regulation of PLC enzymes. We also suggest that this modulation might act at the transcription level. Further studies are required to investigate related epigenetic mechanisms.
Collapse
Affiliation(s)
- Paolo Fais
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy
| | - Martina Leopizzi
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy
| | - Valeria Di Maio
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy
| | - Lucia Longo
- Department of Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Carlo Della Rocca
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy
| | - Franco Tagliaro
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy.,Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy.,Department of Sensory Organs, Sapienza University of Rome, Rome, Italy.,Department of Diagnostics and Public Health, Unit of Forensic Medicine, University of Verona, Verona, Italy
| | - Federica Bortolotti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy.,Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University, Latina, Italy.,Department of Sensory Organs, Sapienza University of Rome, Rome, Italy.,Department of Diagnostics and Public Health, Unit of Forensic Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
8
|
Olsvik PA, Whatmore P, Penglase SJ, Skjærven KH, Anglès d'Auriac M, Ellingsen S. Associations Between Behavioral Effects of Bisphenol A and DNA Methylation in Zebrafish Embryos. Front Genet 2019; 10:184. [PMID: 30906313 PMCID: PMC6418038 DOI: 10.3389/fgene.2019.00184] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
Endocrine-disrupting contaminants have been associated with aberrant changes in epigenetic pathways in animals. In this study, zebrafish embryos were exposed bisphenol A (BPA) to search for associations between behavior and epigenetic mechanisms in fish. For concentration-dependent responses, embryos were exposed to a range of BPA concentrations (0.1 nM to 30 μM). Embryos were analyzed for locomotor activity at 3-, 4-, and 5-days post fertilization (dpf) in response to changing light conditions. Based on concentration-dependent effects on behavior and gene expression, 10 μM BPA [from 24 to 96 hours post fertilization (hpf)] was used for a whole-genome bisulfite sequencing (WGBS) study searching for genome-wide impacts on DNA methylation. Over the examined concentration ranges, hyperactivity was demonstrated for exposures to 0.001 μM BPA in comparison to embryos exposed to lower or higher BPA concentrations. Transcriptional analysis showed significant effects at >0.01 μM BPA for two genes related to DNA methylation (dnmt1, cbs). BPA exposure did not significantly affect global DNA methylation, but 20,474 differentially methylated (DM) sites in 4,873 genes were identified by WGBS analysis. Most DM sites were identified within gene bodies. The genes with the most DM sites were all protocadherin 2 gamma subfamily genes, related to axon targeting, synaptic development and neuronal survival. KEGG pathways most significantly affected by BPA exposure were phosphatidylinositol signaling system, followed by VEGF and MAPK signaling pathways. This study shows that BPA can affect zebrafish embryo swimming activity at very low concentrations as well as affecting numerous methylated sites in genes which are overrepresented in functionally relevant metabolic pathways. In conclusion, altered methylation patterns of genes associated with nervous system development might lead to abnormal swimming activity.
Collapse
|
9
|
Olsvik PA, Whatmore P, Penglase SJ, Skjærven KH, Anglès d'Auriac M, Ellingsen S. Associations Between Behavioral Effects of Bisphenol A and DNA Methylation in Zebrafish Embryos. Front Genet 2019. [PMID: 30906313 DOI: 10.3389/fgene.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Endocrine-disrupting contaminants have been associated with aberrant changes in epigenetic pathways in animals. In this study, zebrafish embryos were exposed bisphenol A (BPA) to search for associations between behavior and epigenetic mechanisms in fish. For concentration-dependent responses, embryos were exposed to a range of BPA concentrations (0.1 nM to 30 μM). Embryos were analyzed for locomotor activity at 3-, 4-, and 5-days post fertilization (dpf) in response to changing light conditions. Based on concentration-dependent effects on behavior and gene expression, 10 μM BPA [from 24 to 96 hours post fertilization (hpf)] was used for a whole-genome bisulfite sequencing (WGBS) study searching for genome-wide impacts on DNA methylation. Over the examined concentration ranges, hyperactivity was demonstrated for exposures to 0.001 μM BPA in comparison to embryos exposed to lower or higher BPA concentrations. Transcriptional analysis showed significant effects at >0.01 μM BPA for two genes related to DNA methylation (dnmt1, cbs). BPA exposure did not significantly affect global DNA methylation, but 20,474 differentially methylated (DM) sites in 4,873 genes were identified by WGBS analysis. Most DM sites were identified within gene bodies. The genes with the most DM sites were all protocadherin 2 gamma subfamily genes, related to axon targeting, synaptic development and neuronal survival. KEGG pathways most significantly affected by BPA exposure were phosphatidylinositol signaling system, followed by VEGF and MAPK signaling pathways. This study shows that BPA can affect zebrafish embryo swimming activity at very low concentrations as well as affecting numerous methylated sites in genes which are overrepresented in functionally relevant metabolic pathways. In conclusion, altered methylation patterns of genes associated with nervous system development might lead to abnormal swimming activity.
Collapse
|
10
|
Hung KS, Hsiao CC, Pai TW, Hu CH, Tzou WS, Wang WD, Chen YR. Functional enrichment analysis based on long noncoding RNA associations. BMC SYSTEMS BIOLOGY 2018; 12:45. [PMID: 29745842 PMCID: PMC5998891 DOI: 10.1186/s12918-018-0571-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Differential gene expression analysis using RNA-seq data is a popular approach for discovering specific regulation mechanisms under certain environmental settings. Both gene ontology (GO) and KEGG pathway enrichment analysis are major processes for investigating gene groups that participate in common biological responses or possess related functions. However, traditional approaches based on differentially expressed genes only detect a few significant GO terms and pathways, which are frequently insufficient to explain all-inclusive gene regulation mechanisms. Methods Transcriptomes of survivin (birc5) gene knock-down experimental and wild-type control zebrafish embryos were sequenced and assembled, and a differential expression (DE) gene list was obtained for traditional functional enrichment analysis. In addition to including DE genes with significant fold-change levels, we considered additional associated genes near or overlapped with differentially expressed long noncoding RNAs (DE lncRNAs), which may directly or indirectly activate or inhibit target genes and play important roles in regulation networks. Both the original DE gene list and the additional DE lncRNA-associated genes were combined to perform a comprehensive overrepresentation analysis. Results In this study, a total of 638 DE genes and 616 DE lncRNA-associated genes (lncGenes) were leveraged simultaneously in searching for significant GO terms and KEGG pathways. Compared to the traditional approach of only using a differential expression gene list, the proposed method of employing DE lncRNA-associated genes identified several additional important GO terms and KEGG pathways. In GO enrichment analysis, 60% more GO terms were obtained, and several neuron development functional terms were retrieved as complete annotations. We also observed that additional important pathways such as the FoxO and MAPK signaling pathways were retrieved, which were shown in previous reports to play important roles in apoptosis and neuron development functions regulated by the survivin gene. Conclusions We demonstrated that incorporating genes near or overlapped with DE lncRNAs into the DE gene list outperformed the traditional enrichment analysis method for effective biological functional interpretations. These hidden interactions between lncRNAs and target genes could facilitate more comprehensive analyses.
Collapse
Affiliation(s)
- Kuo-Sheng Hung
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Chung-Chi Hsiao
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Tun-Wen Pai
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan.
| | - Chin-Hwa Hu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Wen-Shyong Tzou
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Wen-Der Wang
- Department of Bioagricultural Science, National Chiayi University, Chiayi, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
11
|
Asgharzade S, Rabiei Z, Rafieian-Kopaei M. Effects of Matricaria chamomilla extract on motor coordination impairment induced by scopolamine in rats. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/j.apjtb.2015.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
12
|
Lo Vasco VR, Leopizzi M, Della Rocca C, Fais P, Montisci M, Cecchetto G. Impairment and reorganization of the phosphoinositide-specific phospholipase C enzymes in suicide brains. J Affect Disord 2015; 174:324-8. [PMID: 25532079 DOI: 10.1016/j.jad.2014.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 11/25/2022]
Abstract
A number of studies suggested that suicide may be associated with specific neurobiological abnormalities. Neurobiology studies focused upon abnormalities of signalling mechanisms with special regard to the serotonin system and the related Phosphoinositide (PI) signalling system. Previous data suggested the involvement of the PI-specific phospholipase C (PLC) family in neuropsychiatric disorders. By using PCR and morphological microscopy observation we examined the whole panel of expression of PLC isoforms in the brains of 28 individuals who committed suicide and in normal controls in order to evaluate the involvement of specific PLC isoforms. The overall PLC expression was reduced and a complex reorganization of the isoforms was observed. The knowledge of the complex network of neurobiological molecules and interconnected signal transduction pathways in the brain of suicide victims might be helpful to understand the natural history and the pathogenesis of the suicidal behavior. That might lead to obtain prognostic suggestions in order to prevent suicide and to new therapeutic agents targeting specific sites in this signalling cascade.
Collapse
Affiliation(s)
- Vincenza Rita Lo Vasco
- Sense Organs Department, Policlinico Umberto I, Faculty of Medicine and Dentistry, Sapienza University of Rome, viale del Policlinico 155, 00185 Rome, Italy.
| | - M Leopizzi
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University- Polo Pontino, Rome, Italy
| | - C Della Rocca
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University- Polo Pontino, Rome, Italy
| | - P Fais
- Unit of Forensic Medicine, Department of Public Health and Community, Policlinico G.B. Rossi, Verona University, Verona, Italy
| | - M Montisci
- Department of Cardiological, Thoracic and Vascular Sciences, Institute of Legal Medicine, Padova University, Padova, Italy
| | - G Cecchetto
- Department of Cardiological, Thoracic and Vascular Sciences, Institute of Legal Medicine, Padova University, Padova, Italy
| |
Collapse
|
13
|
Rahnama S, Rabiei Z, Alibabaei Z, Mokhtari S, Rafieian-Kopaei M, Deris F. Anti-amnesic activity of Citrus aurantium flowers extract against scopolamine-induced memory impairments in rats. Neurol Sci 2014; 36:553-60. [PMID: 25367404 DOI: 10.1007/s10072-014-1991-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/24/2014] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder that mostly affects the elderly population. Learning and memory impairment as the most characteristic manifestation of dementia could be induced chemically by scopolamine, a cholinergic antagonist. Cholinergic neurotransmission mediated brain oxidative stress. Citrus aurantium (CA) has traditionally been used for the treatment of insomnia, anxiety and epilepsy. The present study was designed to investigate the effect of Citrus aurantium on scopolamine-induced learning and memory deficit in rats. Forty-two Wistar rats were divided into six equal groups. (1) Control (received saline), (2) SCOP (scopolamine at a dose of 1 mg/kg for 15 days), (3) and (4) SCOP + CA (scopolamine and CA extract at doses of 300 and 600 mg/kg per day for 15 days), (5) and (6) intact groups (CA extract at 300 and 600 mg/kg per day for 15 days, respectively). Administration of CA flower extract significantly restored memory and learning impairments induced by scopolamine in the passive avoidance test and also reduced escape latency during trial sessions in the Morris water maze test. Citrus aurantium flower extract significantly decreased the serum malondialdehyde (MDA) levels. Citrus aurantium flower extract has repairing effects on memory and behavioral disorders produced by scopolamine and may have beneficial effects in the treatment of AD.
Collapse
Affiliation(s)
- Samira Rahnama
- Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | | | | | | | | |
Collapse
|
14
|
Ezrin silencing remodulates the expression of Phosphoinositide-specific Phospholipase C enzymes in human osteosarcoma cell lines. J Cell Commun Signal 2014; 8:219-29. [PMID: 25073508 DOI: 10.1007/s12079-014-0235-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/04/2014] [Indexed: 12/22/2022] Open
Abstract
Ezrin, a protein belonging to the Ezrin, radixin and moesin (ERM) family, was engaged in the metastatic spread of osteosarcoma. The Protein 4.1, Ezrin, radixin, moesin (FERM) domain of Ezrin binds the membrane Phosphatydil inositol (4,5) bisphosphate (PIP2), a crucial molecule belonging to the Phosphoinositide (PI) signal transduction pathway. The cytoskeleton cross-linker function of Ezrin largely depends on membrane PIP2 levels, and thus upon the activity of related enzymes belonging to the PI-specific phospholipase C (PI-PLC) family. Based on the role of Ezrin in tumour progression and metastasis, we silenced the expression of Vil2 (OMIM *123900), the gene which codifies for Ezrin, in cultured human osteosarcoma 143B and Hs888 cell lines. After Ezrin silencing, the growth rate of both cell lines was significantly reduced and morphogical changes were observed. We also observed moderate variations both of selected PI-PLC enzymes within the cell and of expression of the corresponding PLC genes. In 143B cell line the transcription of PLCB1 decreased, of PLCG2 increased and of PLCE differed in a time-dependent manner. In Hs888, the expression of PLCB1 and of PLCD4 significantly increased, of PLCE moderately increased in a time dependent manner; the expression of PLCG2 was up-regulated. These observations indicate that Ezrin silencing affects the transcription of selected PLC genes, suggesting that Ezrin might influence the expression regulation of PI-PLC enzymes.
Collapse
|
15
|
Lo Vasco VR, Leopizzi M, Puggioni C, Della Rocca C, Businaro R. Neuropeptide Y reduces the expression of PLCB2, PLCD1 and selected PLC genes in cultured human endothelial cells. Mol Cell Biochem 2014; 394:43-52. [PMID: 24903829 DOI: 10.1007/s11010-014-2079-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/03/2014] [Indexed: 12/11/2022]
Abstract
Endothelial cells (EC) are the first elements exposed to mediators circulating in the bloodstream, and react to stimulation with finely tuned responses mediated by different signal transduction pathways, leading the endothelium to adapt. Neuropeptide Y (NPY), the most abundant peptide in heart and brain, is mainly involved in the neuroendocrine regulation of the stress response. The regulatory roles of NPY depend on many factors, including its enzymatic processing, receptor subtypes and related signal transduction systems, including the phosphoinositide (PI) pathway and related phospholipase C (PI-PLC) family of enzymes. The panel of expression of PI-PLC enzymes differs comparing quiescent versus differently stimulated human EC. Growing evidences indicate that the regulation of the expression of PLC genes, which codify for PI-PLC enzymes, might act as an additional mechanism of control of the PI signal transduction pathway. NPY was described to potentiate the activation of PI-PLC enzymes in different cell types, including EC. In the present experiments, we stimulated human umbilical vein EC using different doses of NPY in order to investigate a possible role upon the expression PLC genes. NPY reduced the overall transcription of PLC genes, excepting for PLCE. The most significant effects were observed for PLCB2 and PLCD1, both isoforms recruited by means of G-proteins and G-protein-coupled receptors. NPY behavior was comparable with other PI-PLC interacting molecules that, beside the stimulation of phospholipase activity, also affect the upcoming enzymes' production acting upon gene expression. That might represent a mode to regulate the activity of PI-PLC enzymes after activation.
Collapse
Affiliation(s)
- V R Lo Vasco
- Department Organi di Senso, Policlinico Umberto I, Faculty of Medicina e Odontoiatria, Sapienza University of Rome, viale del Policlinico 155, 00185, Rome, Italy,
| | | | | | | | | |
Collapse
|
16
|
Lypopolysaccharide downregulates the expression of selected phospholipase C genes in cultured endothelial cells. Inflammation 2014; 36:862-8. [PMID: 23420070 DOI: 10.1007/s10753-013-9613-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The signaling system of phosphoinositides (PI) is involved in a variety of cell and tissue functions, including membrane trafficking, ion channel activity, cell cycle, apoptosis, differentiation, and cell and tissue polarity. Recently, PI and related molecules, such as the phosphoinositide-specific phospholipases C (PI-PLCs), main players in PI signaling were supposed to be involved in inflammation. Besides the control of calcium levels, PI-PLCs contribute to the regulation of phosphatydil-inositol bisphosphate metabolism, crucial in cytoskeletal organization. The expression of PI-PLCs is strictly tissue specific and evidences suggest that it varies under different conditions, such as tumor progression or cell activation. In a previous study, we obtained a complete panel of expression of PI-PLC isoforms in human umbilical vein endothelial cells (HUVEC), a widely used experimental model for endothelial cells. In the present study, we analyzed the mRNA concentration of PI-PLCs in lipopolysaccharide (LPS)-treated HUVEC by using the multiliquid bioanalyzer methodology after 3, 6, 24, 48, and 72 h from LPS administration. Marked differences in the expression of most PI-PLC codifying genes were evident.
Collapse
|
17
|
Lo Vasco VR, Longo L, Polonia P. Phosphoinositide-specific Phospholipase C β1 gene deletion in bipolar disorder affected patient. J Cell Commun Signal 2012; 7:25-9. [PMID: 23161413 DOI: 10.1007/s12079-012-0182-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/01/2012] [Indexed: 11/24/2022] Open
Abstract
The involvement of phosphoinositides (PI) signal transduction pathway and related molecules, such as the Phosphoinositide-specific Phospholipase C (PI-PLC) enzymes, in the pathophysiology of mood disorders is corroborated by a number of recent evidences. Our previous works identified the deletion of PLCB1 gene, which codifies for the PI-PLC β1 enzyme, in 4 out 15 patients affected with schizophrenia, and no deletion both in major depression affected patients and in normal controls. By using interphase fluorescent in situ hybridization methodology, we analyzed PLCB1 in paraffin embedded samples of orbito-frontal cortex of 15 patients affected with bipolar disorder. Deletion of PLCB1 was identified in one female patient.
Collapse
|