1
|
Chaudron Y, Boyer C, Marmonier C, Plourde M, Vachon A, Delplanque B, Taouis M, Pifferi F. A vegetable fat-based diet delays psychomotor and cognitive development compared with maternal dairy fat intake in infant gray mouse lemurs. Commun Biol 2024; 7:609. [PMID: 38769408 PMCID: PMC11106064 DOI: 10.1038/s42003-024-06255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Dairy fat has a unique lipid profile; it is rich in short- and medium-chain saturated fatty acids that induce ketone production and has a balanced ω6/ω3 ratio that promotes cognitive development in early life. Moreover, the high consumption of vegetable oils in pregnant and lactating women raises concerns regarding the quality of lipids provided to offspring. Here, we investigate maternal dairy fat intake during gestation and lactation in a highly valuable primate model for infant nutritional studies, the gray mouse lemur (Microcebus murinus). Two experimental diets are provided to gestant mouse lemurs: a dairy fat-based (DF) or vegetable fat-based diet (VF). The psychomotor performance of neonates is tested during their first 30 days. Across all tasks, we observe more successful neonates born to mothers fed a DF diet. A greater rate of falls is observed in 8-day-old VF neonates, which is associated with delayed psychomotor development. Our findings suggest the potential benefits of lipids originating from a lactovegetarian diet compared with those originating from a vegan diet for the psychomotor development of neonates.
Collapse
Affiliation(s)
- Yohann Chaudron
- UMR CNRS MNHN 7179, 1 avenue du Petit Château, 91800, Brunoy, France.
| | - Constance Boyer
- Centre national interprofessionnel de l'économie laitière, 42 rue de Châteaudun, 75314, Paris cedex 09, France
| | - Corinne Marmonier
- Centre national interprofessionnel de l'économie laitière, 42 rue de Châteaudun, 75314, Paris cedex 09, France
| | - Mélanie Plourde
- Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie - CHUS, 1036 Belvédère sud, Sherbrooke, J1H 4C4, Canada
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| | - Annick Vachon
- Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie - CHUS, 1036 Belvédère sud, Sherbrooke, J1H 4C4, Canada
| | - Bernadette Delplanque
- UMR 9197, Paris-Saclay Institute of Neurosciences (NeuroPSI), University of Paris-Saclay, CNRS, 151 route de la Rotonde, F-91400, Saclay, France
| | - Mohammed Taouis
- UMR 9197, Paris-Saclay Institute of Neurosciences (NeuroPSI), University of Paris-Saclay, CNRS, 151 route de la Rotonde, F-91400, Saclay, France
| | - Fabien Pifferi
- UMR CNRS MNHN 7179, 1 avenue du Petit Château, 91800, Brunoy, France.
| |
Collapse
|
2
|
An R, Lu C, Wang C, Chang L, Huang J, Jiang F, Xu TL, Gong N. Developmental Patterns and Gender Differences of Vocal Production in Marmoset Monkeys. Neurosci Bull 2024; 40:133-138. [PMID: 37914957 PMCID: PMC10774232 DOI: 10.1007/s12264-023-01137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/28/2023] [Indexed: 11/03/2023] Open
Affiliation(s)
- Ruixin An
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chaocheng Lu
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, China
| | - Chen Wang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Liangtang Chang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Junfeng Huang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Fan Jiang
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tian-Le Xu
- Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China.
| | - Neng Gong
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China.
| |
Collapse
|
3
|
Abreu F, Pika S. Turn-taking skills in mammals: A systematic review into development and acquisition. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.987253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
How human language evolved remains one of the most intriguing questions in science, and different approaches have been used to tackle this question. A recent hypothesis, the Interaction Engine Hypothesis, postulates that language was made possible through the special capacity for social interaction involving different social cognitive skills (e.g., joint attention, common ground) and specific characteristics such as face-to-face interaction, mutual gaze and turn-taking, the exchange of rapid communicative turns. Recently, it has been argued that this turn-taking infrastructure may be a foundational and ancient mechanism of the layered system of language because communicative turn-taking has been found in human infants and across several non-human primate species. Moreover, there is some evidence for turn-taking in different mammalian taxa, especially those capable of vocal learning. Surprisingly, however, the existing studies have mainly focused on turn-taking production of adult individuals, while little is known about its emergence and development in young individuals. Hence, the aim of the current paper was 2-fold: First, we carried out a systematic review of turn-taking development and acquisition in mammals to evaluate possible research bias and existing gaps. Second, we highlight research avenues to spur more research into this domain and investigate if distinct turn-taking elements can be found in other non-human animal species. Since mammals exhibit an extended development period, including learning and strong parental care, they represent an excellent model group in which to investigate the acquisition and development of turn-taking abilities. We performed a systematic review including a wide range of terms and found 21 studies presenting findings on turn-taking abilities in infants and juveniles. Most of these studies were from the last decade, showing an increased interest in this field over the years. Overall, we found a considerable variation in the terminologies and methodological approaches used. In addition, studies investigating turn-taking abilities across different development periods and in relation to different social partners were very rare, thereby hampering direct, systematic comparisons within and across species. Nonetheless, the results of some studies suggested that specific turn-taking elements are innate, while others are acquired during development (e.g., flexibility). Finally, we pinpoint fruitful research avenues and hypotheses to move the field of turn-taking development forward and improve our understanding of the impact of turn-taking on language evolution.
Collapse
|
4
|
Malta A, Caselli C, Souto A, De la Fuente MF, Schiel N. Number of adult females in a group affects infant motor development of a cooperative breeding primate (Callithrix jacchus). Primates 2022; 63:683-689. [DOI: 10.1007/s10329-022-01016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
|
5
|
Varella TT, Ghazanfar AA. Cooperative care and the evolution of the prelinguistic vocal learning. Dev Psychobiol 2021; 63:1583-1588. [PMID: 33826142 PMCID: PMC8355020 DOI: 10.1002/dev.22108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 11/06/2022]
Abstract
The development of the earliest vocalizations of human infants is influenced by social feedback from caregivers. As these vocalizations change, they increasingly elicit such feedback. This pattern of development is in stark contrast to that of our close phylogenetic relatives, Old World monkeys and apes, who produce mature-sounding vocalizations at birth. We put forth a scenario to account for this difference: Humans have a cooperative breeding strategy, which pressures infants to compete for the attention from caregivers. Humans use this strategy because large brained human infants are energetically costly and born altricial. An altricial brain accommodates vocal learning. To test this hypothetical scenario, we present findings from New World marmoset monkeys indicating that, through convergent evolution, this species adopted a largely identical developmental system-one that includes vocal learning and cooperative breeding.
Collapse
Affiliation(s)
- Thiago T. Varella
- Department of Psychology, Princeton University, Princeton NJ 08544, USA
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544, USA
| | - Asif A. Ghazanfar
- Department of Psychology, Princeton University, Princeton NJ 08544, USA
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544, USA
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton NJ 08544, USA
| |
Collapse
|
6
|
Gultekin YB, Hildebrand DGC, Hammerschmidt K, Hage SR. High plasticity in marmoset monkey vocal development from infancy to adulthood. SCIENCE ADVANCES 2021; 7:7/27/eabf2938. [PMID: 34193413 PMCID: PMC8245035 DOI: 10.1126/sciadv.abf2938] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/17/2021] [Indexed: 05/21/2023]
Abstract
The vocal behavior of human infants undergoes marked changes across their first year while becoming increasingly speech-like. Conversely, vocal development in nonhuman primates has been assumed to be largely predetermined and completed within the first postnatal months. Contradicting this assumption, we found a dichotomy between the development of call features and vocal sequences in marmoset monkeys, suggestive of a role for experience. While changes in call features were related to physical maturation, sequences of and transitions between calls remained flexible until adulthood. As in humans, marmoset vocal behavior developed in stages correlated with motor and social development stages. These findings are evidence for a prolonged phase of plasticity during marmoset vocal development, a crucial primate evolutionary preadaptation for the emergence of vocal learning and speech.
Collapse
Affiliation(s)
- Yasemin B Gultekin
- Neurobiology of Social Communication, Department of Otolaryngology - Head and Neck Surgery, Medical Center, University of Tübingen, 72076 Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - David G C Hildebrand
- Laboratory of Neural Systems, The Rockefeller University, New York, NY 10065, USA
| | - Kurt Hammerschmidt
- Cognitive Ethology Laboratory, German Primate Center, 37077 Göttingen, Germany
| | - Steffen R Hage
- Neurobiology of Social Communication, Department of Otolaryngology - Head and Neck Surgery, Medical Center, University of Tübingen, 72076 Tübingen, Germany.
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Koizumi M, Nogami N, Owari K, Kawanobe A, Nakatani T, Seki K. Motility Profile of Captive-Bred Marmosets Revealed by a Long-Term In-Cage Monitoring System. Front Syst Neurosci 2021; 15:645308. [PMID: 33935661 PMCID: PMC8081884 DOI: 10.3389/fnsys.2021.645308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/26/2021] [Indexed: 11/13/2022] Open
Abstract
A quantitative evaluation of motility is crucial for studies employing experimental animals. Here, we describe the development of an in-cage motility monitoring method for new world monkeys using off-the-shelf components, and demonstrate its capability for long-term operation (e.g., a year). Based on this novel system, we characterized the motility of the common marmoset over different time scales (seconds, hours, days, and weeks). Monitoring of seven young animals belonging to two different age groups (sub-adult and young-adult) over a 231-day period revealed: (1) strictly diurnal activity (97.3% of movement during daytime), (2) short-cycle (∼20 s) transition in activity, and (3) bimodal diurnal activity including a "siesta" break. Additionally, while the mean duration of short-cycle activity, net daily activity, and diurnal activity changed over the course of development, 24-h periodicity remained constant. Finally, the method allowed for detection of progressive motility deterioration in a transgenic marmoset. Motility measurement offers a convenient way to characterize developmental and pathological changes in animals, as well as an economical and labor-free means for long-term evaluation in a wide range of basic and translational studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Kazuhiko Seki
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
8
|
Homman-Ludiye J, Bourne JA. The Marmoset: The Next Frontier in Understanding the Development of the Human Brain. ILAR J 2021; 61:248-259. [PMID: 33620074 DOI: 10.1093/ilar/ilaa028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
Rodent models, particularly mice, have dominated the field of developmental neuroscience for decades, like they have in most fields of biomedicine research. However, with 80 million years since rodents and primates last shared a common ancestor, the use of mice to model the development of the human brain is not without many shortcomings. The human brain diverges from the mouse brain in many aspects and is comprised of novel structures as well as diversified cellular subtypes. While these newly evolved features have no equivalent in rodents, they are observed in nonhuman primates. Therefore, elucidating the cellular mechanisms underlying the development and maturation of the healthy and diseased human brain can be achieved using less complex nonhuman primates. Historically, macaques were the preferred nonhuman primate model. However, over the past decade, the New World marmoset monkey (Callithrix jacchus) has gained more importance, particularly in the field of neurodevelopment. With its small size, twin or triplet birth, and prosocial behavior, the marmoset is an ideal model to study normal brain development as well as neurodevelopmental disorders, which are often associated with abnormal social behaviors. The growing interest in the marmoset has prompted many comparative studies, all demonstrating that the marmoset brain closely resembles that of the human and is perfectly suited to model human brain development. The marmoset is thus poised to extend its influence in the field of neurodevelopment and will hopefully fill the gaps that the mouse has left in our understanding of how our brain forms and how neurodevelopmental disorders originate.
Collapse
Affiliation(s)
- Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
9
|
Domestication Phenotype Linked to Vocal Behavior in Marmoset Monkeys. Curr Biol 2020; 30:5026-5032.e3. [PMID: 33065007 DOI: 10.1016/j.cub.2020.09.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/01/2020] [Accepted: 09/15/2020] [Indexed: 12/28/2022]
Abstract
The domestication syndrome refers to a set of traits that are the by-products of artificial selection for increased tolerance toward humans [1-3]. One hypothesis is that some species, like humans and bonobos, "self-domesticated" and have been under selection for that same suite of domesticated phenotypes [4-8]. However, the evidence for this has been largely circumstantial. Here, we provide evidence that, in marmoset monkeys, the size of a domestication phenotype-a white facial fur patch-is linked to their degree of affiliative vocal responding. During development, the amount of parental vocal feedback experienced influences the rate of growth of this facial white patch, and this suggests a mechanistic link between the two phenotypes, possibly via neural crest cells. Our study provides evidence for links between vocal behavior and the development of morphological phenotypes associated with domestication in a nonhuman primate.
Collapse
|
10
|
Common marmoset as a model primate for study of the motor control system. Curr Opin Neurobiol 2020; 64:103-110. [DOI: 10.1016/j.conb.2020.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 02/08/2023]
|
11
|
Huang J, Cheng X, Zhang S, Chang L, Li X, Liang Z, Gong N. Having Infants in the Family Group Promotes Altruistic Behavior of Marmoset Monkeys. Curr Biol 2020; 30:4047-4055.e3. [PMID: 32822603 DOI: 10.1016/j.cub.2020.07.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/05/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022]
Abstract
The common marmoset (Callithrix jacchus) has attracted much attention as a useful model for studying social behaviors [1-3]. They naturally live in a monogamous family group and exhibit cooperative breeding [4], in which parents and older siblings help to carry infants less than 2 months old [5-7]. Marmoset parents also transfer foods to their offspring, a process that may help them learn the food diet [8]. Furthermore, marmosets show spontaneous altruistic behaviors, such as providing food to non-reciprocating and genetically unrelated individuals [9]. These social habits indicate that marmosets may be a useful non-human primate model for studying parenting and altruistic behaviors, as well as underlying neural mechanisms. Using a novel rescue paradigm, we found that marmoset parents and older siblings showed strong motivation to rescue trapped young infants but not juvenile marmosets beyond 2 months of age, and infant calls alone could trigger these parents' rescue behaviors. The marmoset parents showed little rescue of each other, but young infants or infant calls could also induce such parents' mutual rescue. Moreover, all these infant- and mate-rescue behaviors depended on currently having young infants in the family group. Functional MRI studies on awake adult marmosets showed that calls from young infants, but not juvenile marmosets, elicited a large-scale activation of specific brain areas including auditory and insular cortices, and such activation was absent in marmosets not living with infants. Thus, such infant-induced modification of neural activity offers a window for examining the neural basis of altruistic behaviors in marmoset monkeys.
Collapse
Affiliation(s)
- Junfeng Huang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochun Cheng
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shikun Zhang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liangtang Chang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuebo Li
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhifeng Liang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| | - Neng Gong
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
12
|
Gustison ML, Borjon JI, Takahashi DY, Ghazanfar AA. Vocal and locomotor coordination develops in association with the autonomic nervous system. eLife 2019; 8:e41853. [PMID: 31310236 PMCID: PMC6684270 DOI: 10.7554/elife.41853] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 07/06/2019] [Indexed: 11/13/2022] Open
Abstract
In adult animals, movement and vocalizations are coordinated, sometimes facilitating, and at other times inhibiting, each other. What is missing is how these different domains of motor control become coordinated over the course of development. We investigated how postural-locomotor behaviors may influence vocal development, and the role played by physiological arousal during their interactions. Using infant marmoset monkeys, we densely sampled vocal, postural and locomotor behaviors and estimated arousal fluctuations from electrocardiographic measures of heart rate. We found that vocalizations matured sooner than postural and locomotor skills, and that vocal-locomotor coordination improved with age and during elevated arousal levels. These results suggest that postural-locomotor maturity is not required for vocal development to occur, and that infants gradually improve coordination between vocalizations and body movement through a process that may be facilitated by arousal level changes.
Collapse
Affiliation(s)
- Morgan L Gustison
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Jeremy I Borjon
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of PsychologyPrinceton UniversityPrincetonUnited States
| | - Daniel Y Takahashi
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of PsychologyPrinceton UniversityPrincetonUnited States
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of PsychologyPrinceton UniversityPrincetonUnited States
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonUnited States
| |
Collapse
|
13
|
Umeda T, Koizumi M, Katakai Y, Saito R, Seki K. Decoding of muscle activity from the sensorimotor cortex in freely behaving monkeys. Neuroimage 2019; 197:512-526. [PMID: 31015029 DOI: 10.1016/j.neuroimage.2019.04.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 01/06/2023] Open
Abstract
Remarkable advances have recently been made in the development of Brain-Machine Interface (BMI) technologies for restoring or enhancing motor function. However, the application of these technologies may be limited to patients in static conditions, as these developments have been largely based on studies of animals (e.g., non-human primates) in constrained movement conditions. The ultimate goal of BMI technology is to enable individuals to move their bodies naturally or control external devices without physical constraints. Here, we demonstrate accurate decoding of muscle activity from electrocorticogram (ECoG) signals in unrestrained, freely behaving monkeys. We recorded ECoG signals from the sensorimotor cortex as well as electromyogram signals from multiple muscles in the upper arm while monkeys performed two types of movements with no physical restraints, as follows: forced forelimb movement (lever-pull task) and natural whole-body movement (free movement within the cage). As in previous reports using restrained monkeys, we confirmed that muscle activity during forced forelimb movement was accurately predicted from simultaneously recorded ECoG data. More importantly, we demonstrated that accurate prediction of muscle activity from ECoG data was possible in monkeys performing natural whole-body movement. We found that high-gamma activity in the primary motor cortex primarily contributed to the prediction of muscle activity during natural whole-body movement as well as forced forelimb movement. In contrast, the contribution of high-gamma activity in the premotor and primary somatosensory cortices was significantly larger during natural whole-body movement. Thus, activity in a larger area of the sensorimotor cortex was needed to predict muscle activity during natural whole-body movement. Furthermore, decoding models obtained from forced forelimb movement could not be generalized to natural whole-body movement, which suggests that decoders should be built individually and according to different behavior types. These results contribute to the future application of BMI systems in unrestrained individuals.
Collapse
Affiliation(s)
- Tatsuya Umeda
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 1878502, Japan.
| | - Masashi Koizumi
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 1878502, Japan
| | - Yuko Katakai
- Administrative Section of Primate Research Facility, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 1878502, Japan; The Corporation for Production and Research of Laboratory Primates, Tsukuba, Ibaraki, 3050003, Japan
| | - Ryoichi Saito
- Administrative Section of Primate Research Facility, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 1878502, Japan
| | - Kazuhiko Seki
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 1878502, Japan.
| |
Collapse
|
14
|
Ausderau KK, Dammann C, McManus K, Schneider M, Emborg ME, Schultz-Darken N. Cross-species comparison of behavioral neurodevelopmental milestones in the common marmoset monkey and human child. Dev Psychobiol 2017; 59:807-821. [PMID: 28763098 DOI: 10.1002/dev.21545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/14/2017] [Indexed: 02/04/2023]
Abstract
The common marmoset (Callithrix jacchus) is an increasingly popular non-human primate species for developing transgenic and genomic edited models of neurological disorders. These models present an opportunity to assess from birth the impact of genetic mutations and to identify candidate predictive biomarkers of early disease onset. In order to apply findings from marmosets to humans, a cross-species comparison of typical development is essential. Aiming to identify similarities, differences, and gaps in knowledge of neurodevelopment, we evaluated peer-reviewed literature focused on the first 6 months of life of marmosets and compared to humans. Five major developmental constructs, including reflexes and reactions, motor, feeding, self-help, and social, were compared. Numerous similarities were identified in the developmental sequences with differences often influenced by the purpose of the behavior, specifically for marmoset survival. The lack of detailed knowledge of marmoset development was exposed as related to the vast resources for humans.
Collapse
Affiliation(s)
- Karla K Ausderau
- Occupational Therapy Program, Department of Kinesiology, University of Wisconsin, Madison, Wisconsin.,Waisman Center, University of Wisconsin, Madison, Wisconsin
| | - Caitlin Dammann
- Occupational Therapy Program, Department of Kinesiology, University of Wisconsin, Madison, Wisconsin
| | - Kathy McManus
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| | - Mary Schneider
- Occupational Therapy Program, Department of Kinesiology, University of Wisconsin, Madison, Wisconsin.,Harlow Center for Biological Psychology, University of Wisconsin, Madison, Wisconsin
| | - Marina E Emborg
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin.,Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - Nancy Schultz-Darken
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
15
|
Walker J, MacLean J, Hatsopoulos NG. The marmoset as a model system for studying voluntary motor control. Dev Neurobiol 2016; 77:273-285. [DOI: 10.1002/dneu.22461] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Jeff Walker
- Committee on Computational Neuroscience, University of Chicago; Chicago Illinois 60637
| | - Jason MacLean
- Committee on Computational Neuroscience, University of Chicago; Chicago Illinois 60637
- Department of Neurobiology; University of Chicago; Chicago Illinois 60637
| | - Nicholas G. Hatsopoulos
- Committee on Computational Neuroscience, University of Chicago; Chicago Illinois 60637
- Department of Organismal Biology and Anatomy; University of Chicago; Chicago Illinois 60637
| |
Collapse
|
16
|
Schultz-Darken N, Braun KM, Emborg ME. Neurobehavioral development of common marmoset monkeys. Dev Psychobiol 2015; 58:141-58. [PMID: 26502294 DOI: 10.1002/dev.21360] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/07/2015] [Indexed: 11/06/2022]
Abstract
Common marmoset (Callithrix jacchus) monkeys are a resource for biomedical research and their use is predicted to increase due to the suitability of this species for transgenic approaches. Identification of abnormal neurodevelopment due to genetic modification relies upon the comparison with validated patterns of normal behavior defined by unbiased methods. As scientists unfamiliar with nonhuman primate development are interested to apply genomic editing techniques in marmosets, it would be beneficial to the field that the investigators use validated methods of postnatal evaluation that are age and species appropriate. This review aims to analyze current available data on marmoset physical and behavioral postnatal development, describe the methods used and discuss next steps to better understand and evaluate marmoset normal and abnormal postnatal neurodevelopment.
Collapse
Affiliation(s)
- Nancy Schultz-Darken
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI
| | - Katarina M Braun
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI.,Medical Scientist Training Program, University of Wisconsin, Madison, WI
| | - Marina E Emborg
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI.,Medical Scientist Training Program, University of Wisconsin, Madison, WI.,Department of Medical Physics, University of Wisconsin, Madison, WI
| |
Collapse
|
17
|
Wang Y, Fang Q, Gong N. A modified light-dark box test for the common marmoset. Neurosci Bull 2014; 30:394-400. [PMID: 24638903 DOI: 10.1007/s12264-013-1426-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/03/2013] [Indexed: 11/29/2022] Open
Abstract
The common marmoset (Callithrix jacchus) has attracted extensive attention for use as a non-human primate model in biomedical research, especially in the study of neuropsychiatric disorders. However, behavioral test methods are still limited in the field of marmoset research. The light-dark box is widely used for the evaluation of anxiety in rodents, but little is known about light-dark preference in marmosets. Here, we modified the light-dark test to study this behavior. The modified apparatus consisted of three compartments: one transparent open area and two closed opaque compartments. The closed compartments could be dark or light. We found that both adult and young marmosets liked to explore the open area, but the young animals showed more interest than adults. Furthermore, when one of the closed compartments was light and the other dark, the adult marmosets showed a preference for the dark compartment, but the young animals had no preference. These results suggest that the exploratory behavior and the light-dark preference in marmosets are age-dependent. Our study provides a new method to study exploration, anxiety, and fear in marmosets.
Collapse
Affiliation(s)
- Yiwen Wang
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, China
| | | | | |
Collapse
|