1
|
Zhang XM, Zeng LN, Yang WY, Ding L, Chen KZ, Fu WJ, Zeng SQ, Liang YR, Chen GH, Wu HF. Inhibition of LncRNA Vof-16 expression promotes nerve regeneration and functional recovery after spinal cord injury. Neural Regen Res 2022; 17:217-227. [PMID: 34100459 PMCID: PMC8451561 DOI: 10.4103/1673-5374.314322] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Our previous RNA sequencing study showed that the long non-coding RNA ischemia-related factor Vof-16 (lncRNA Vof-16) was upregulated after spinal cord injury, but its precise role in spinal cord injury remains unclear. Bioinformatics predictions have indicated that lncRNA Vof-16 may participate in the pathophysiological processes of inflammation and apoptosis. PC12 cells were transfected with a pHBLV-U6-MCS-CMV-ZsGreen-PGK-PURO vector to express an lncRNA Vof-16 knockdown lentivirus and a pHLV-CMVIE-ZsGree-Puro vector to express an lncRNA Vof-16 overexpression lentivirus. The overexpression of lncRNA Vof-16 inhibited PC12 cell survival, proliferation, migration, and neurite extension, whereas lncRNA Vof-16 knockdown lentiviral vector resulted in the opposite effects in PC12 cells. Western blot assay results showed that the overexpression of lncRNA Vof-16 increased the protein expression levels of interleukin 6, tumor necrosis factor-α, and Caspase-3 and decreased Bcl-2 expression levels in PC12 cells. Furthermore, we established rat models of spinal cord injury using the complete transection at T10. Spinal cord injury model rats were injected with the lncRNA Vof-16 knockdown or overexpression lentiviral vectors immediately after injury. At 7 days after spinal cord injury, rats treated with lncRNA Vof-16 knockdown displayed increased neuronal survival and enhanced axonal extension. At 8 weeks after spinal cord injury, rats treated with the lncRNA Vof-16 knockdown lentiviral vector displayed improved neurological function in the hind limb. Notably, lncRNA Vof-16 knockdown injection increased Bcl-2 expression and decreased tumor necrosis factor-α and Caspase-3 expression in treated animals. Rats treated with the lncRNA Vof-16 overexpression lentiviral vector displayed opposite trends. These findings suggested that lncRNA Vof-16 is associated with the regulation of inflammation and apoptosis. The inhibition of lncRNA Vof-16 may be useful for promoting nerve regeneration and functional recovery after spinal cord injury. The experiments were approved by the Institutional Animal Care and Use Committee of Guangdong Medical University, China.
Collapse
Affiliation(s)
- Xiao-Min Zhang
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Li-Ni Zeng
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan; Biology Research Group, Guangzheng Experimental School, Huizhou, Guangdong Province, China
| | - Wan-Yong Yang
- Geriatric Medicine Center, Dongguan Waterfront Zone Central Hospital, Dongguan, Guangdong Province, China
| | - Lu Ding
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan; Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Kang-Zhen Chen
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Wen-Jin Fu
- Clinical Laboratory, Affiliated Houjie Hospital, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Si-Quan Zeng
- Geriatric Medicine Center, Dongguan Waterfront Zone Central Hospital, Dongguan, Guangdong Province, China
| | - Yin-Ru Liang
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Gan-Hai Chen
- Department of Intensive Care Unit, Affiliated Houjie Hospital, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Hong-Fu Wu
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China
| |
Collapse
|
2
|
Yamazaki K, Kawabori M, Seki T, Houkin K. Clinical Trials of Stem Cell Treatment for Spinal Cord Injury. Int J Mol Sci 2020; 21:ijms21113994. [PMID: 32498423 PMCID: PMC7313002 DOI: 10.3390/ijms21113994] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
There are more than one million patients worldwide suffering paralysis caused by spinal cord injury (SCI). SCI causes severe socioeconomic problems not only to the patients and their caregivers but also to society; therefore, the development of innovative treatments is crucial. Many pharmacological therapies have been attempted in an effort to reduce SCI-related damage; however, no single therapy that could dramatically improve the serious long-term sequelae of SCI has emerged. Stem cell transplantation therapy, which can ameliorate damage or regenerate neurological networks, has been proposed as a promising candidate for SCI treatment, and many basic and clinical experiments using stem cells for SCI treatment have been launched, with promising results. However, the cell transplantation methods, including cell type, dose, transplantation route, and transplantation timing, vary widely between trials, and there is no consensus regarding the most effective treatment strategy. This study reviews the current knowledge on this issue, with a special focus on the clinical trials that have used stem cells for treating SCI, and highlights the problems that remain to be solved before the widespread clinical use of stem cells can be adopted.
Collapse
|
3
|
Zhong J, Xu J, Lu S, Wang Z, Zheng Y, Tang Q, Zhu J, Zhu T. A Prevascularization Strategy Using Novel Fibrous Porous Silk Scaffolds for Tissue Regeneration in Mice with Spinal Cord Injury. Stem Cells Dev 2020; 29:615-624. [PMID: 32085678 DOI: 10.1089/scd.2019.0199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Junjie Zhong
- State Key Laboratory for Medical Neurobiology, Department of Neurosurgery, Institutes of Brain Science, Fudan University Huashan Hospital, Shanghai Medical College-Fudan University, Shanghai, China
| | - Jiaxin Xu
- Endoscopy Centre and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shijun Lu
- The Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital, Suzhou, China
| | - Zhifu Wang
- State Key Laboratory for Medical Neurobiology, Department of Neurosurgery, Institutes of Brain Science, Fudan University Huashan Hospital, Shanghai Medical College-Fudan University, Shanghai, China
| | - Yongtao Zheng
- State Key Laboratory for Medical Neurobiology, Department of Neurosurgery, Institutes of Brain Science, Fudan University Huashan Hospital, Shanghai Medical College-Fudan University, Shanghai, China
| | - Qisheng Tang
- State Key Laboratory for Medical Neurobiology, Department of Neurosurgery, Institutes of Brain Science, Fudan University Huashan Hospital, Shanghai Medical College-Fudan University, Shanghai, China
| | - Jianhong Zhu
- State Key Laboratory for Medical Neurobiology, Department of Neurosurgery, Institutes of Brain Science, Fudan University Huashan Hospital, Shanghai Medical College-Fudan University, Shanghai, China
| | - Tongming Zhu
- State Key Laboratory for Medical Neurobiology, Department of Neurosurgery, Institutes of Brain Science, Fudan University Huashan Hospital, Shanghai Medical College-Fudan University, Shanghai, China
| |
Collapse
|
4
|
MicroRNA-31 regulating apoptosis by mediating the phosphatidylinositol-3 kinase/protein kinase B signaling pathway in treatment of spinal cord injury. Brain Dev 2019; 41:649-661. [PMID: 31036380 DOI: 10.1016/j.braindev.2019.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/01/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
Apoptosis is a highly conservative energy demand program for non-inflammatory cell death, which is extremely significant in normal physiology and disease. There are many techniques used for studying apoptosis. MicroRNA (miRNA) is closely related to cell apoptosis, and especially microRNA-31 (miR-31) is involved in apoptosis by regulating a large number of target genes and signaling pathways. In many neurological diseases, cell apoptosis or programmed cell death plays an important role in the reduction of cell number, including the reduction of neurons in spinal cord injuries. In recent years, the phosphoinositol 3-kinase/AKT (PI3K/AKT) signal pathway, as a signal pathway involved in a variety of cell functions, has been studied in spinal cord injury diseases. The PI3K/AKT pathway directly or indirectly affects whether apoptosis occurs in a cell, thereby affecting a significant intracellular event sequence. This paper reviewed the interactions of miR-31 target sites in the PI3K/AKT signaling pathway, and explored new ways to prevent and treat spinal cord injury by regulating the effect of miR-31 on apoptosis.
Collapse
|
5
|
Wang Z, Zhu J. MEMOIR: A Novel System for Neural Lineage Tracing. Neurosci Bull 2017; 33:763-765. [PMID: 28780643 PMCID: PMC5725379 DOI: 10.1007/s12264-017-0161-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/11/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
- Zhifu Wang
- Department of Neurosurgery, Fudan University Huashan Hospital, Shanghai, 200040, China
- National Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and The Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Shanghai, 200120, China
| | - Jianhong Zhu
- Department of Neurosurgery, Fudan University Huashan Hospital, Shanghai, 200040, China.
- National Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and The Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Shanghai, 200120, China.
| |
Collapse
|
6
|
Melo FR, Bressan RB, Forner S, Martini AC, Rode M, Delben PB, Rae GA, Figueiredo CP, Trentin AG. Transplantation of Human Skin-Derived Mesenchymal Stromal Cells Improves Locomotor Recovery After Spinal Cord Injury in Rats. Cell Mol Neurobiol 2017; 37:941-947. [PMID: 27510317 DOI: 10.1007/s10571-016-0414-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurologic disorder with significant impacts on quality of life, life expectancy, and economic burden. Although there are no fully restorative treatments yet available, several animal and small-scale clinical studies have highlighted the therapeutic potential of cellular interventions for SCI. Mesenchymal stem cells (MSCs)-which are conventionally isolated from the bone marrow-recently emerged as promising candidates for treating SCI and have been shown to provide trophic support, ameliorate inflammatory responses, and reduce cell death following the mechanical trauma. Here we evaluated the human skin as an alternative source of adult MSCs suitable for autologous cell transplantation strategies for SCI. We showed that human skin-derived MSCs (hSD-MSCs) express a range of neural markers under standard culture conditions and are able to survive and respond to neurogenic stimulation in vitro. In addition, using histological analysis and behavioral assessment, we demonstrated as a proof-of-principle that hSD-MSC transplantation reduces the severity of tissue loss and facilitates locomotor recovery in a rat model of SCI. Altogether, the study provides further characterization of skin-derived MSC cultures and indicates that the human skin may represent an attractive source for cell-based therapies for SCI and other neurological disorders. Further investigation is needed to elucidate the mechanisms by which hSD-MSCs elicit tissue repair and/or locomotor recovery.
Collapse
Affiliation(s)
- Fernanda Rosene Melo
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Raul Bardini Bressan
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | - Stefânia Forner
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, Brazil
| | - Alessandra Cadete Martini
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, Brazil
| | - Michele Rode
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Priscilla Barros Delben
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Giles Alexander Rae
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, Brazil
| | - Claudia Pinto Figueiredo
- Faculdade de Farmácia, Centro de Ciências Da Saúde, Universidade Federal Do Rio de Janeiro, Campus Universitário, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Andrea Gonçalves Trentin
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
7
|
Oh SK, Jeon SR. Current Concept of Stem Cell Therapy for Spinal Cord Injury: A Review. Korean J Neurotrauma 2016; 12:40-46. [PMID: 27857906 PMCID: PMC5110917 DOI: 10.13004/kjnt.2016.12.2.40] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/10/2016] [Accepted: 04/28/2016] [Indexed: 01/17/2023] Open
Abstract
Spinal cord injury (SCI) is a catastrophic condition associated with significant neurological deficit, social, and financial burdens. Over the past decades, various treatments including medication, surgery, and rehabilitation therapy for SCI have been performed, but there were no definite treatment option to improve neurological function of patients with chronic SCI. Therefore, new treatment trials with stem cells have been studied to regenerate injured spinal cord. Among various types of stem cells, bone marrow derived mesenchymal stem cells is highly expected as candidates for the stem cell therapy. The result of the current research showed that direct intramedullary injection to the injured spinal cord site in subacute phase is most effective. Neurological examination, electrophysiologic studies, and magnetic resonance imaging are commonly used to assess the effectiveness of treatment. Diffusion tensor imaging visualizing white matter tract can be also alternative option to identify neuronal regeneration. Despite various challenging issues, stem cell therapy will open new perspectives for SCI treatment.
Collapse
Affiliation(s)
- Sun Kyu Oh
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Tissue-Engineered Regeneration of Hemisected Spinal Cord Using Human Endometrial Stem Cells, Poly ε-Caprolactone Scaffolds, and Crocin as a Neuroprotective Agent. Mol Neurobiol 2016; 54:5657-5667. [DOI: 10.1007/s12035-016-0089-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
|
9
|
Charsar BA, Urban MW, Lepore AC. Harnessing the power of cell transplantation to target respiratory dysfunction following spinal cord injury. Exp Neurol 2016; 287:268-275. [PMID: 27531634 DOI: 10.1016/j.expneurol.2016.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/29/2016] [Accepted: 08/12/2016] [Indexed: 12/13/2022]
Abstract
The therapeutic benefit of cell transplantation has been assessed in a host of central nervous system (CNS) diseases, including disorders of the spinal cord such as traumatic spinal cord injury (SCI). The promise of cell transplantation to preserve and/or restore normal function can be aimed at a variety of therapeutic mechanisms, including replacement of lost or damaged CNS cell types, promotion of axonal regeneration or sprouting, neuroprotection, immune response modulation, and delivery of gene products such as neurotrophic factors, amongst other possibilities. Despite significant work in the field of transplantation in models of SCI, limited attention has been directed at harnessing the therapeutic potential of cell grafting for preserving respiratory function after SCI, despite the critical role pulmonary compromise plays in patient outcome in this devastating disease. Here, we will review the limited number of studies that have demonstrated the therapeutic potential of intraspinal transplantation of a variety of cell types for addressing respiratory dysfunction in SCI.
Collapse
Affiliation(s)
- Brittany A Charsar
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN 418, Philadelphia, PA, 19107, United States
| | - Mark W Urban
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN 418, Philadelphia, PA, 19107, United States
| | - Angelo C Lepore
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN 418, Philadelphia, PA, 19107, United States.
| |
Collapse
|
10
|
Effect of Laminin on Neurotrophic Factors Expression in Schwann-Like Cells Induced from Human Adipose-Derived Stem Cells In Vitro. J Mol Neurosci 2016; 60:465-473. [PMID: 27501706 DOI: 10.1007/s12031-016-0808-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/28/2016] [Indexed: 12/30/2022]
Abstract
The Schwann-like cells can be considered as promising in stem cell therapies, at least in experimental models. Human adipose-derived stem cells (ADSCs) are induced into Schwann-like cells (SC-like cells) and are cultured on either a plastic surface or laminin-coated plates. The findings here reveal that laminin is a critical component in extracellular matrix (ECM) of SC-like cells at in vitro. The survival rate of SC-like cells on a laminin matrix are measured through MTT assay and it is found that this rate is significantly higher than that of the cells grown on a plastic surface (P < 0.05). Schwann cell markers and the myelinogenic ability of SC-like cells at the presence versus absence of laminin are assessed through immunocytochemistry. The analysis of GFAP/S100β and S100β/MBP markers indicate that laminin can increase the differentiated rate and myelinogenic potential of SC-like cells. The expression levels of SCs markers, myelin basic proteins (MBP), and neurotrophic factors in two conditions are analyzed by real-time reverse transcription polymerase chain reaction (RT-PCR). The findings here demonstrated that gene expression of SCs markers, MBP, and brain-derived neurotrophic factors (BDNF) increase significantly on laminin compared to plastic surface (P < 0.01). In contrast, the nerve growth factor (NGF) expression is downregulated significantly on laminin-coated plates (P < 0.05). The obtained data suggest that production of neurotrophic factors in SC-like cell in presence of laminin can induce appropriate microenvironment for nerve repair in neurodegenerative diseases.
Collapse
|
11
|
Zhu T, Tang H, Shen Y, Tang Q, Chen L, Wang Z, Zhou P, Xu F, Zhu J. Transplantation of human induced cerebellar granular-like cells improves motor functions in a novel mouse model of cerebellar ataxia. Am J Transl Res 2016; 8:705-718. [PMID: 27158363 PMCID: PMC4846920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/24/2015] [Indexed: 06/05/2023]
Abstract
Stem cell-based reparative approaches have been applied to cerebellum-related disorders during the last two decades. Direct lineage reprogramming of human fibroblasts into functional granular neurons holds great promise for biomedical applications such as cerebellum regeneration and cellbased disease modeling. In the present study, we showed that a combination of Ascl1, Sox2 and OCT4, in a culture subsequently treated with secreted factors (BMP4, Wnt3a and FGF8b), was capable of converting human fibroblasts from the scalp tissue of patients with traumatic brain injury (TBI) into functional human induced cerebellar granular-like cells (hiCGCs). Morphological analysis, immunocytochemistry, gene expression and electrophysiological analysis were performed to identify the similarity of induced neuronal cells to human cerebellum granular cells. Our strategy improved the efficiency for hiCGCs induction, which gave the highest conversion efficiency 12.30±0.88%, and Ath1(+)/Tuj1(+) double positive cells to 5.56±0.80%. We transplanted hiCGCs into the cerebellum of Nmyc(TRE/TRE): tTS mice, a novel mouse model of cerebellar ataxia, and demonstrated that the hiCGCs were able to survive, migrate, proliferate and promote mild functional recovery after been grafted into cerebellum.
Collapse
Affiliation(s)
- Tongming Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai 200040, China
- National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Hailiang Tang
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai 200040, China
- National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Yiwen Shen
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai 200040, China
- National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai 200040, China
- National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Luping Chen
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai 200040, China
- National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Zhifu Wang
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai 200040, China
- National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Ping Zhou
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai 200040, China
- National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Feng Xu
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai 200040, China
- National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan UniversityShanghai 200040, China
- National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan UniversityShanghai 200032, China
| |
Collapse
|
12
|
Wang Y, Li ZW, Luo M, Li YJ, Zhang KQ. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects. Neural Regen Res 2015. [PMID: 26199615 PMCID: PMC4498360 DOI: 10.4103/1673-5374.158362] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group, followed by the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve fibers, and a completely degraded and resorbed conduit, in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group. These results indicate that bridging 10-mm sciatic nerve defects with a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is beneficial for the regeneration and functional reconstruction of sciatic nerve. Better regeneration was found with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel grafts than with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells grafts and the autologous nerve grafts.
Collapse
Affiliation(s)
- Yang Wang
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun, Jilin Province, China
| | - Zheng-Wei Li
- Department of Orthopedics, Second Hospital, Jilin University, Changchun, Jilin Province, China
| | - Min Luo
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun, Jilin Province, China
| | - Ya-Jun Li
- Mathematics School, Jilin University, Changchun, Jilin Province, China
| | - Ke-Qiang Zhang
- Department of Orthopedics, Second Hospital, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
13
|
Liu C, Huang Y, Pang M, Yang Y, Li S, Liu L, Shu T, Zhou W, Wang X, Rong L, Liu B. Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds. PLoS One 2015; 10:e0117709. [PMID: 25803031 PMCID: PMC4372351 DOI: 10.1371/journal.pone.0117709] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 12/29/2014] [Indexed: 12/31/2022] Open
Abstract
Tissue engineering has brought new possibilities for the treatment of spinal cord injury. Two important components for tissue engineering of the spinal cord include a suitable cell source and scaffold. In our study, we investigated induced mouse embryonic fibroblasts (MEFs) directly reprogrammed into neural stem cells (iNSCs), as a cell source. Three-dimensional (3D) electrospun poly (lactide-co-glycolide)/polyethylene glycol (PLGA-PEG) nanofiber scaffolds were used for iNSCs adhesion and growth. Cell growth, survival and proliferation on the scaffolds were investigated. Scanning electron microscopy (SEM) and nuclei staining were used to assess cell growth on the scaffolds. Scaffolds with iNSCs were then transplanted into transected rat spinal cords. Two or 8 weeks following transplantation, immunofluorescence was performed to determine iNSC survival and differentiation within the scaffolds. Functional recovery was assessed using the Basso, Beattie, Bresnahan (BBB) Scale. Results indicated that iNSCs showed similar morphological features with wild-type neural stem cells (wt-NSCs), and expressed a variety of neural stem cell marker genes. Furthermore, iNSCs were shown to survive, with the ability to self-renew and undergo neural differentiation into neurons and glial cells within the 3D scaffolds in vivo. The iNSC-seeded scaffolds restored the continuity of the spinal cord and reduced cavity formation. Additionally, iNSC-seeded scaffolds contributed to functional recovery of the spinal cord. Therefore, PLGA-PEG scaffolds seeded with iNSCs may serve as promising supporting transplants for repairing spinal cord injury (SCI).
Collapse
Affiliation(s)
- Chang Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Yong Huang
- Department of Breast & Thyroid Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Yang Yang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Shangfu Li
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Linshan Liu
- Department of Biochemistry, University of California, Los Angeles, California 90095-1569, United States of America
| | - Tao Shu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Wei Zhou
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Xuan Wang
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| |
Collapse
|
14
|
Chen Q, Zhang Z, Liu J, He Q, Zhou Y, Shao G, Sun X, Cao X, Gong A, Jiang P. A fibrin matrix promotes the differentiation of EMSCs isolated from nasal respiratory mucosa to myelinating phenotypical Schwann-like cells. Mol Cells 2015; 38:221-8. [PMID: 25666351 PMCID: PMC4363721 DOI: 10.14348/molcells.2015.2170] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/08/2014] [Accepted: 11/19/2014] [Indexed: 12/16/2022] Open
Abstract
Because Schwann cells perform the triple tasks of myelination, axon guidance and neurotrophin synthesis, they are candidates for cell transplantation that might cure some types of nervous-system degenerative diseases or injuries. However, Schwann cells are difficult to obtain. As another option, ectomesenchymal stem cells (EMSCs) can be easily harvested from the nasal respiratory mucosa. Whether fibrin, an important transplantation vehicle, can improve the differentiation of EMSCs into Schwann-like cells (SLCs) deserves further research. EMSCs were isolated from rat nasal respiratory mucosa and were purified using anti-CD133 magnetic cell sorting. The purified cells strongly expressed HNK-1, nestin, p75(NTR), S-100, and vimentin. Using nuclear staining, the MTT assay and Western blotting analysis of the expression of cell-cycle markers, the proliferation rate of EMSCs on a fibrin matrix was found to be significantly higher than that of cells grown on a plastic surface but insignificantly lower than that of cells grown on fibronectin. Additionally, the EMSCs grown on the fibrin matrix expressed myelination-related molecules, including myelin basic protein (MBP), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and galactocerebrosides (GalCer), more strongly than did those grown on fibronectin or a plastic surface. Furthermore, the EMSCs grown on the fibrin matrix synthesized more neurotrophins compared with those grown on fibronectin or a plastic surface. The expression level of integrin in EMSCs grown on fibrin was similar to that of cells grown on fibronectin but was higher than that of cells grown on a plastic surface. These results demonstrated that fibrin not only promoted EMSC proliferation but also the differentiation of EMSCs into the SLCs. Our findings suggested that fibrin has great promise as a cell transplantation vehicle for the treatment of some types of nervous system diseases or injuries.
Collapse
Affiliation(s)
- Qian Chen
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang,
China
| | - Zhijian Zhang
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang,
China
| | - Jinbo Liu
- Department of Orthopedics, the Third Affiliated Hospital of Suzhou University, Changzhou,
China
| | - Qinghua He
- School of Pharmacology, Jiangsu University, Zhenjiang,
China
| | - Yuepeng Zhou
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang,
China
| | - Genbao Shao
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang,
China
| | - Xianglan Sun
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang,
China
| | - Xudong Cao
- Department of Chemical Engineering, University of Ottawa, Ottawa, Ontario,
Canada
| | - Aihua Gong
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang,
China
| | - Ping Jiang
- Department of Histology and Embryology, School of Medicine, Jiangsu University, Zhenjiang,
China
| |
Collapse
|