1
|
Yi Y, Zhong C, Wei-wei H. The long-term neurodevelopmental outcomes of febrile seizures and underlying mechanisms. Front Cell Dev Biol 2023; 11:1186050. [PMID: 37305674 PMCID: PMC10248510 DOI: 10.3389/fcell.2023.1186050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Febrile seizures (FSs) are convulsions caused by a sudden increase in body temperature during a fever. FSs are one of the commonest presentations in young children, occurring in up to 4% of children between the ages of about 6 months and 5 years old. FSs not only endanger children's health, cause panic and anxiety to families, but also have many adverse consequences. Both clinical and animal studies show that FSs have detrimental effects on neurodevelopment, that cause attention deficit hyperactivity disorder (ADHD), increased susceptibility to epilepsy, hippocampal sclerosis and cognitive decline during adulthood. However, the mechanisms of FSs in developmental abnormalities and disease occurrence during adulthood have not been determined. This article provides an overview of the association of FSs with neurodevelopmental outcomes, outlining both the underlying mechanisms and the possible appropriate clinical biomarkers, from histological changes to cellular molecular mechanisms. The hippocampus is the brain region most significantly altered after FSs, but the motor cortex and subcortical white matter may also be involved in the development disorders induced by FSs. The occurrence of multiple diseases after FSs may share common mechanisms, and the long-term role of inflammation and γ-aminobutyric acid (GABA) system are currently well studied.
Collapse
Affiliation(s)
- You Yi
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Zhong
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hu Wei-wei
- Department of Pharmacology and Department of Pharmacy of the Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Insight into Drug Resistance in Status Epilepticus: Evidence from Animal Models. Int J Mol Sci 2023; 24:ijms24032039. [PMID: 36768361 PMCID: PMC9917109 DOI: 10.3390/ijms24032039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023] Open
Abstract
Status epilepticus (SE), a condition with abnormally prolonged seizures, is a severe type of epilepsy. At present, SE is not well controlled by clinical treatments. Antiepileptic drugs (AEDs) are the main therapeutic approaches, but they are effective for SE only with a narrow intervening window, and they easily induce resistance. Thus, in this review, we provide an updated summary for an insight into drug-resistant SE, hoping to add to the understanding of the mechanism of refractory SE and the development of active compounds. Firstly, we briefly outline the limitations of current drug treatments for SE by summarizing the extensive experimental literature and clinical data through a search of the PubMed database, and then summarize the common animal models of refractory SE with their advantages and disadvantages. Notably, we also briefly review some of the hypotheses about drug resistance in SE that are well accepted in the field, and furthermore, put forward future perspectives for follow-up research on SE.
Collapse
|
3
|
Brennan GP, Garcia-Curran MM, Patterson KP, Luo R, Baram TZ. Multiple Disruptions of Glial-Neuronal Networks in Epileptogenesis That Follows Prolonged Febrile Seizures. Front Neurol 2021; 12:615802. [PMID: 33679583 PMCID: PMC7930821 DOI: 10.3389/fneur.2021.615802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/25/2021] [Indexed: 12/26/2022] Open
Abstract
Background and Rationale: Bi-directional neuronal-glial communication is a critical mediator of normal brain function and is disrupted in the epileptic brain. The potential role of aberrant microglia and astrocyte function during epileptogenesis is important because the mediators involved provide tangible targets for intervention and prevention of epilepsy. Glial activation is intrinsically involved in the generation of childhood febrile seizures (FS), and prolonged FS (febrile status epilepticus, FSE) antecede a proportion of adult temporal lobe epilepsy (TLE). Because TLE is often refractory to treatment and accompanied by significant memory and emotional difficulties, we probed the role of disruptions of glial-neuronal networks in the epileptogenesis that follows experimental FSE (eFSE). Methods: We performed a multi-pronged examination of neuronal-glia communication and the resulting activation of molecular signaling cascades in these cell types following eFSE in immature mice and rats. Specifically, we examined pathways involving cytokines, microRNAs, high mobility group B-1 (HMGB1) and the prostaglandin E2 signaling. We aimed to block epileptogenesis using network-specific interventions as well as via a global anti-inflammatory approach using dexamethasone. Results: (A) eFSE elicited a strong inflammatory response with rapid and sustained upregulation of pro-inflammatory cytokines. (B) Within minutes of the end of the eFSE, HMGB1 translocated from neuronal nuclei to dendrites, en route to the extracellular space and glial Toll-like receptors. Administration of an HMGB1 blocker to eFSE rat pups did not decrease expression of downstream inflammatory cascades and led to unacceptable side effects. (C) Prolonged seizure-like activity caused overall microRNA-124 (miR-124) levels to plunge in hippocampus and release of this microRNA from neurons via extra-cellular vesicles. (D) Within hours of eFSE, structural astrocyte and microglia activation was associated not only with cytokine production, but also with activation of the PGE2 cascade. However, administration of TG6-10-1, a blocker of the PGE2 receptor EP2 had little effect on spike-series provoked by eFSE. (E) In contrast to the failure of selective interventions, a 3-day treatment of eFSE–experiencing rat pups with the broad anti-inflammatory drug dexamethasone attenuated eFSE-provoked pro-epileptogenic EEG changes. Conclusions: eFSE, a provoker of TLE-like epilepsy in rodents leads to multiple and rapid disruptions of interconnected glial-neuronal networks, with a likely important role in epileptogenesis. The intricate, cell-specific and homeostatic interplays among these networks constitute a serious challenge to effective selective interventions that aim to prevent epilepsy. In contrast, a broad suppression of glial-neuronal dysfunction holds promise for mitigating FSE-induced hyperexcitability and epileptogenesis in experimental models and in humans.
Collapse
Affiliation(s)
- Gary P Brennan
- Departments of Anatomy/Neurobiology, Pediatrics, and Neurology, University of California, Irvine, Irvine, CA, United States.,School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,FutureNeuro Research Centre, Royal College of Surgeons Ireland, Dublin, Ireland
| | - Megan M Garcia-Curran
- Departments of Anatomy/Neurobiology, Pediatrics, and Neurology, University of California, Irvine, Irvine, CA, United States
| | - Katelin P Patterson
- Departments of Anatomy/Neurobiology, Pediatrics, and Neurology, University of California, Irvine, Irvine, CA, United States
| | - Renhao Luo
- Departments of Anatomy/Neurobiology, Pediatrics, and Neurology, University of California, Irvine, Irvine, CA, United States
| | - Tallie Z Baram
- Departments of Anatomy/Neurobiology, Pediatrics, and Neurology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
4
|
Dutton SBB, Dutt K, Papale LA, Helmers S, Goldin AL, Escayg A. Early-life febrile seizures worsen adult phenotypes in Scn1a mutants. Exp Neurol 2017; 293:159-171. [PMID: 28373025 DOI: 10.1016/j.expneurol.2017.03.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 02/17/2017] [Accepted: 03/22/2017] [Indexed: 01/27/2023]
Abstract
Mutations in the voltage-gated sodium channel (VGSC) gene SCN1A, encoding the Nav1.1 channel, are responsible for a number of epilepsy disorders including genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome (DS). Patients with SCN1A mutations often experience prolonged early-life febrile seizures (FSs), raising the possibility that these events may influence epileptogenesis and lead to more severe adult phenotypes. To test this hypothesis, we subjected 21-23-day-old mice expressing the human SCN1A GEFS+ mutation R1648H to prolonged hyperthermia, and then examined seizure and behavioral phenotypes during adulthood. We found that early-life FSs resulted in lower latencies to induced seizures, increased severity of spontaneous seizures, hyperactivity, and impairments in social behavior and recognition memory during adulthood. Biophysical analysis of brain slice preparations revealed an increase in epileptiform activity in CA3 pyramidal neurons along with increased action potential firing, providing a mechanistic basis for the observed worsening of adult phenotypes. These findings demonstrate the long-term negative impact of early-life FSs on disease outcomes. This has important implications for the clinical management of this patient population and highlights the need for therapeutic interventions that could ameliorate disease progression.
Collapse
Affiliation(s)
- Stacey B B Dutton
- Department of Human Genetics, Emory University, Atlanta, GA 30022, USA; Department of Biology, Agnes Scott College, Atlanta, GA 30030, USA
| | - Karoni Dutt
- Departments of Microbiology & Molecular Genetics and Anatomy & Neurobiology, University of California, Irvine, CA 92697, USA
| | - Ligia A Papale
- Department of Human Genetics, Emory University, Atlanta, GA 30022, USA
| | - Sandra Helmers
- Department of Neurology, Emory University, Atlanta, GA 30022, USA
| | - Alan L Goldin
- Departments of Microbiology & Molecular Genetics and Anatomy & Neurobiology, University of California, Irvine, CA 92697, USA
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA 30022, USA.
| |
Collapse
|
5
|
Feng B, Chen Z. Generation of Febrile Seizures and Subsequent Epileptogenesis. Neurosci Bull 2016; 32:481-92. [PMID: 27562688 DOI: 10.1007/s12264-016-0054-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/13/2016] [Indexed: 11/24/2022] Open
Abstract
Febrile seizures (FSs) occur commonly in children aged from 6 months to 5 years. Complex (repetitive or prolonged) FSs, but not simple FSs, can lead to permanent brain modification. Human infants and immature rodents that have experienced complex FSs have a high risk of subsequent temporal lobe epilepsy. However, the causes of FSs and the mechanisms underlying the subsequent epileptogenesis remain unknown. Here, we mainly focus on two major questions concerning FSs: how fever triggers seizures, and how epileptogenesis occurs after FSs. The risk factors responsible for the occurrence of FSs and the epileptogenesis after prolonged FSs are thoroughly summarized and discussed. An understanding of these factors can provide potential therapeutic targets for the prevention of FSs and also yield biomarkers for identifying patients at risk of epileptogenesis following FSs.
Collapse
Affiliation(s)
- Bo Feng
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Feng B, Tang Y, Chen B, Xu C, Wang Y, Dai Y, Wu D, Zhu J, Wang S, Zhou Y, Shi L, Hu W, Zhang X, Chen Z. Transient increase of interleukin-1β after prolonged febrile seizures promotes adult epileptogenesis through long-lasting upregulating endocannabinoid signaling. Sci Rep 2016; 6:21931. [PMID: 26902320 PMCID: PMC4763292 DOI: 10.1038/srep21931] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 02/03/2016] [Indexed: 01/18/2023] Open
Abstract
It remains unclear how infantile febrile seizures (FS) enhance adult seizure susceptibility. Here we showed that the transient increase of interleukin-1β (IL-1β) after prolonged FS promoted adult seizure susceptibility, which was blocked by interleukin-1 receptor antagonist (IL-1Ra) within a critical time window. Postnatal administered IL-1β alone mimicked the effect of FS on adult seizure susceptibility. IL-1R1 knockout mice were not susceptible to adult seizure after prolonged FS or IL-1β treatment. Prolonged FS or early-life IL-1β treatment increased the expression of cannabinoid type 1 receptor (CB1R) for over 50 days, which was blocked by IL-1Ra or was absent in IL-1R1 knockout mice. CB1R antagonist, knockdown and endocannabinoid synthesis inhibitor abolished FS or IL-1β-enhanced seizure susceptibility. Thus, this work identifies a pathogenic role of postnatal IL-1β/IL-1R1 pathway and subsequent prolonged prominent increase of endocannabinoid signaling in adult seizure susceptibility following prolonged FS, and highlights IL-1R1 as a potential therapeutic target for preventing the development of epilepsy after infantile FS.
Collapse
Affiliation(s)
- Bo Feng
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Zhejiang University, 310058, China
| | - Yangshun Tang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Zhejiang University, 310058, China
| | - Bin Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Zhejiang University, 310058, China
| | - Cenglin Xu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Zhejiang University, 310058, China
| | - Yi Wang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Zhejiang University, 310058, China
| | - Yunjian Dai
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Zhejiang University, 310058, China
| | - Dengchang Wu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Zhejiang University, 310058, China.,Department of Neurology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, China
| | - Junmin Zhu
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, Zhejiang University, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital, Zhejiang University, China
| | - Yudong Zhou
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Zhejiang University, 310058, China
| | - Liyun Shi
- Department of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Weiwei Hu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Zhejiang University, 310058, China
| | - Xia Zhang
- University of Ottawa Institute of Mental Health Research at the Royal, Department of Psychiatry, and Department of Cellular and Molecular Medicine, Ottawa K1Z 7K4, Canada
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Zhejiang University, 310058, China.,Department of Neurology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, Zhejiang University, China
| |
Collapse
|