1
|
Arias HR, Kazmierska-Grebowska P, Kowalczyk T, Shim Y, Caban B, Aman C, Allain AE, De Deurwaerdère P, Chagraoui A. Coronaridine congeners induce anticonvulsant activity in rodents by hippocampal mechanisms involving mainly potentiation of GABA A receptors. Eur J Pharmacol 2024; 982:176911. [PMID: 39179091 DOI: 10.1016/j.ejphar.2024.176911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
The coronaridine congeners catharanthine and 18-methoxycoronaridine (18-MC) display sedative, anxiolytic, and antidepressant properties by acting on mechanisms involving GABAergic and/or monoaminergic transmissions. Here, we expanded their pharmacological properties by studying their anticonvulsant activity in male and female mice using the pentylenetetrazole (PTZ)-induced seizure test. To determine potential neurochemical mechanisms, the effect of congeners on monoamine content and kainic acid (KA)-induced epileptiform discharge was studied in the hippocampus. The behavioral results showed that coronaridine congeners induce acute anticonvulsant activity in a dose-dependent but sex-independent manner. Repeated treatment with a subthreshold dose (20 mg/kg) of each congener produced anticonvulsant activity in a sex-independent manner, but was significantly higher in male mice when compared to its acute effect. Using a behaviourally relevant regimen, we found that PTZ increased dopamine metabolites and serotonin tissue content. Coronaridine congeners, which induced distinct effects on monoamines, blunted the effect of PTZ instead of potentiating it, suggesting the existence of another mechanism in their anticonvulsant activity. The electrophysiological results indicated that both congeners inhibit KA-induced epileptiform discharges in hippocampal slices. A key aspect of this study is that the activity of both congeners was observed only in the presence of GABA, supporting the notion that hippocampal GABAAR potentiation plays an important role. Our study showed that coronaridine congeners induce acute anticonvulsant activity in a sex-independent manner. However, a comparatively higher susceptibility was observed in male mice after repeated treatment. The underlying hippocampal mechanisms mainly involve GABAAR potentiation, whereas monoamines play a minor role in the anticonvulsive action.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA
| | | | - Tomasz Kowalczyk
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Yaeun Shim
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Bartosz Caban
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Chloé Aman
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Anne-Emilie Allain
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Abdeslam Chagraoui
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, France; Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France; Normandie University, UNIROUEN, Institute for Research and Innovation in Biomedicine of Normandy (IRIB) Rouen, France.
| |
Collapse
|
2
|
Wu J, Liu P, Geng C, Liu C, Li J, Zhu Q, Li A. Principal neurons in the olfactory cortex mediate bidirectional modulation of seizures. J Physiol 2023; 601:3557-3584. [PMID: 37384845 DOI: 10.1113/jp284731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Although the piriform cortex (PC) has been previously implicated as a critical node for seizure generation and propagation, the underlying neural mechanism has remained unclear. Here, we found increased excitability in PC neurons during amygdala kindling acquisition. Optogenetic or chemogenetic activation of PC pyramidal neurons promoted kindling progression, whereas inhibition of these neurons retarded seizure activities induced by electrical kindling in the amygdala. Furthermore, chemogenetic inhibition of PC pyramidal neurons alleviated the severity of kainic acid-induced acute seizures. These results demonstrate that PC pyramidal neurons bidirectionally modulate seizures in temporal lobe epilepsy, providing evidence for the efficacy of PC pyramidal neurons as a potential therapeutic target for epileptogenesis. KEY POINTS: While the piriform cortex (PC) is an important olfactory centre critically involved in olfactory processing and plays a crucial role in epilepsy due to its close connection with the limbic system, how the PC regulates epileptogenesis is largely unknown. In this study, we evaluated the neuronal activity and the role of pyramidal neurons in the PC in the mouse amygdala kindling model of epilepsy. PC pyramidal neurons are hyperexcited during epileptogenesis. Optogenetic and chemogenetic activation of PC pyramidal neurons significantly promoted seizures in the amygdala kindling model, whereas selective inhibition of these neurons produced an anti-epileptic effect for both electrical kindling and kainic acid-induced acute seizures. The results of the present study indicate that PC pyramidal neurons bidirectionally modulate seizure activity.
Collapse
Affiliation(s)
- Jing Wu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Penglai Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Chi Geng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Changyu Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Jiaxin Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Qiuju Zhu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Dong L, Song LL, Zhao WJ, Zhao L, Tian L, Zheng Y. Modulatory effects of real-time electromagnetic stimulation on epileptiform activity in juvenile rat hippocampus based on multi-electrode array recordings. Brain Res Bull 2023; 198:27-35. [PMID: 37084982 DOI: 10.1016/j.brainresbull.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
Electromagnetic stimulation (EMS) has proven to be useful for the focal suppression of epileptiform activity (EFA) in the hippocampus. There is a critical period during EFA for achieving the transition from brief interictal discharges (IIDs) to prolonged ictal discharges (IDs), and it is unknown whether EMS can modulate this transition. Therefore, this study aimed to evaluate the intensity- and time-dependent effect of EMS on the transition of EFA. A juvenile rat EFA model was constructed by perfusing magnesium-free artificial cerebrospinal fluid (aCSF) on brain slices, and the induced EFA was recorded using a micro-electrode array (MEA) platform. After a stable EFA event was recorded for some time, real-time pulsed magnetic stimulation with low and high peak-to-peak input magnetic field intensities was carried out. A 5-min intervention with real-time magnetic fields with low intensity was found to reduce the amplitude of IDs (ID events still existed), whereas a 5-min intervention with real-time magnetic fields with high input voltages completely suppressed IDs. Short-time magnetic fields (9s and 1min) with high or low input intensity had no effect on EFA. Real-time magnetic fields can block the normal EFA process from IIDs to IDs (i.e., a complete EFA cycle) and this suppression effect is dependent on input intensities and intervention duration. The experimental findings further indicate that magnetic stimulation may be chosen as an alternative antiepileptic therapy.
Collapse
Affiliation(s)
- Lei Dong
- School of Life Sciences, Tiangong University, Tianjin 300387, China; State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Lin-Lin Song
- School of Life Sciences, Tiangong University, Tianjin 300387, China; School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China
| | - Wen-Jun Zhao
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Ling Zhao
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Lei Tian
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
4
|
Dong L, Li G, Gao Y, Lin L, Cao XB, Zheng Y. Exploring the Inhibitory Effect of Low-frequency Magnetic Fields on Epileptiform Discharges in Juvenile Rat Hippocampus. Neuroscience 2021; 467:1-15. [PMID: 34033871 DOI: 10.1016/j.neuroscience.2021.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 10/01/2022]
Abstract
Stimulation with a low frequency electromagnetic field (LF-EMF) has proven to represent a powerful method for the suppression of seizures, as demonstrated in select clinical and laboratory studies. However, the mechanism by which LF-EMF suppresses seizures remains unclear. The purpose of the present study was to explore the modulatory effect of LF-EMF on epileptiform discharges (EDs) using rat hippocampal slices and investigate the underlying mechanisms that mediate these effects. EDs in hippocampal slices was induced by magnesium-free (zero-Mg2+) artificial cerebrospinal fluid (ACSF) and recorded using an in vitro micro-electrode array (MEA). A small sub-decimeter coil was designed and incorporated in a flexible magnetic stimulation device that allowed electromagnetic fields with different parameters to be delivered to slices. After a stable ED event was recorded, magnetic fields of 0.5 Hz (30 min) with a magnetic intensity of 0.13 mT (5 Vpp voltage input) and 0.25 mT (20 Vpp voltage input) were applied. The results indicated that a high-amplitude 0.5 Hz magnetic field could lead to persistent suppression of ictal discharges (IDs), while low-amplitude magnetic fields did not influence IDs. The persistent suppression of complex ED was prevented if the magnetic fields were applied in the presence of 10 μmol/L bicuculline (BIC), a γ-aminobutyric acid type A (GABAA) receptor antagonist, while the application of BIC subsequent to a magnetic field application led to the reappearance of ID. The addition of BIC resulted in EDs that had previously been inhibited by magnetic fields, reappearing. Low-frequency magnetic stimulation was able to inhibit the conversion from interictal discharges (IIDs) or preictal discharges (PIDs) to IDs. This suppression was attributed to the modulation of GABAA receptor activity.
Collapse
Affiliation(s)
- Lei Dong
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Biomedical Detecting Techniques & Instruments, Tianjin University, Tianjin 300072, China
| | - Gang Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Biomedical Detecting Techniques & Instruments, Tianjin University, Tianjin 300072, China
| | - Yang Gao
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Ling Lin
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Biomedical Detecting Techniques & Instruments, Tianjin University, Tianjin 300072, China
| | - Xue-Bin Cao
- Department of Cardiology, 252 Hospital of PLA, Baoding, Hebei 071000, China.
| | - Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
5
|
Bai X, Kirchhoff F, Scheller A. Oligodendroglial GABAergic Signaling: More Than Inhibition! Neurosci Bull 2021; 37:1039-1050. [PMID: 33928492 PMCID: PMC8275815 DOI: 10.1007/s12264-021-00693-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/22/2020] [Indexed: 12/12/2022] Open
Abstract
GABA is the main inhibitory neurotransmitter in the CNS acting at two distinct types of receptor: ligand-gated ionotropic GABAA receptors and G protein-coupled metabotropic GABAB receptors, thus mediating fast and slow inhibition of excitability at central synapses. GABAergic signal transmission has been intensively studied in neurons in contrast to oligodendrocytes and their precursors (OPCs), although the latter express both types of GABA receptor. Recent studies focusing on interneuron myelination and interneuron-OPC synapses have shed light on the importance of GABA signaling in the oligodendrocyte lineage. In this review, we start with a short summary on GABA itself and neuronal GABAergic signaling. Then, we elaborate on the physiological role of GABA receptors within the oligodendrocyte lineage and conclude with a description of these receptors as putative targets in treatments of CNS diseases.
Collapse
Affiliation(s)
- Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany.
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| |
Collapse
|
6
|
Chen L, Wang Y, Chen Z. Adult Neurogenesis in Epileptogenesis: An Update for Preclinical Finding and Potential Clinical Translation. Curr Neuropharmacol 2021; 18:464-484. [PMID: 31744451 PMCID: PMC7457402 DOI: 10.2174/1570159x17666191118142314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
Epileptogenesis refers to the process in which a normal brain becomes epileptic, and is characterized by hypersynchronous spontaneous recurrent seizures involving a complex epileptogenic network. Current available pharmacological treatment of epilepsy is generally symptomatic in controlling seizures but is not disease-modifying in epileptogenesis. Cumulative evidence suggests that adult neurogenesis, specifically in the subgranular zone of the hippocampal dentate gyrus, is crucial in epileptogenesis. In this review, we describe the pathological changes that occur in adult neurogenesis in the epileptic brain and how adult neurogenesis is involved in epileptogenesis through different interventions. This is followed by a discussion of some of the molecular signaling pathways involved in regulating adult neurogenesis, which could be potential druggable targets for epileptogenesis. Finally, we provide perspectives on some possible research directions for future studies.
Collapse
Affiliation(s)
- Liying Chen
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Dong L, Li G, Gao Y, Lin L, Zhang KH, Tian CX, Cao XB, Zheng Y. Effect of priming low-frequency magnetic fields on zero-Mg2+ -induced epileptiform discharges in rat hippocampal slices. Epilepsy Res 2020; 167:106464. [DOI: 10.1016/j.eplepsyres.2020.106464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/16/2022]
|
8
|
Zheng Y, Zhang K, Dong L, Tian C. Study on the mechanism of high-frequency stimulation inhibiting low-Mg 2+-induced epileptiform discharges in juvenile rat hippocampal slices. Brain Res Bull 2020; 165:1-13. [PMID: 32961285 DOI: 10.1016/j.brainresbull.2020.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 11/29/2022]
Abstract
Study on the mechanism of high-frequency stimulation inhibiting low-Mg2+-induced epileptiform discharges in juvenile rat hippocampal slices High-frequency stimulation (HFS) has been demonstrated to be an effective treatment for inhibiting epilepsy in some clinical and laboratory studies. However, the mechanisms underlying the therapeutic effects of HFS are not yet fully understood. In our present study, epileptiform discharges (EDs) in acutely isolated hippocampal slices of male Sprague-Dawley (SD) juvenile rats induced by low-Mg2+ artificial cerebrospinal fluid (ACSF), and electrical stimulation (square wave, 900 pulses, 50 % duty-cycle, 130 Hz) was performed on the CA3 using concentric bipolar electrodes. EDs of neurons in hippocampal were recorded by multi-electrode arrays (MEA). After stable EDs events had been recorded for at least 20 min, HFS was added, followed by 10 μmol/L gamma-aminobutyric acid type A (GABAA) receptors blocker bicuculline (BIC). The results show that the HFS can increase the discharges frequency of inter-ictal discharges (IIDs) and decrease the duration of ictal discharges (IDs). However, the HFS had no effect on the slices with 10 μmol/L BIC. These results indicated that the GABAA receptors are activated when HFS inhibited EDs, thereby achieving the inhibition of low-Mg2+-induced EDs in slices.
Collapse
Affiliation(s)
- Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin, 300387, China.
| | - Kanghui Zhang
- School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Lei Dong
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, 300072, China
| | - Chunxiao Tian
- School of Life Sciences, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
9
|
Dai Y, Song Y, Xie J, Xiao G, Li X, Li Z, Gao F, Zhang Y, He E, Xu S, Wang Y, Zheng W, Jiang X, Qi Z, Meng D, Fan Z, Cai X. CB1-Antibody Modified Liposomes for Targeted Modulation of Epileptiform Activities Synchronously Detected by Microelectrode Arrays. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41148-41156. [PMID: 32809788 DOI: 10.1021/acsami.0c13372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Temporal lobe epilepsy (TLE) is a focal, recurrent, and refractory neurological disorder. Therefore, precisely targeted treatments for TLE are greatly needed. We designed anti-CB1 liposomes that can bind to CB1 receptors in the hippocampus to deliver photocaged compounds (ruthenium bipyridine triphenylphosphine γ-aminobutyric acid, RuBi-GABA) in the TLE rats. A 16-channel silicon microelectrode array (MEA) was implanted for simultaneously monitoring electrophysiological signals of neurons. The results showed that anti-CB1 liposomes were larger in size and remained in the hippocampus longer than unmodified liposomes. Following the blue light stimulation, the neural firing rates and the local field potentials of hippocampal neurons were significantly reduced. It is indicated that RuBi-GABA was enriched near hippocampal neurons due to anti-CB1 liposome delivery and photolyzed by optical stimulation, resulting dissociation of GABA to exert inhibitory actions. Furthermore, K-means cluster analysis revealed that the firing rates of interneurons were decreased to a greater extent than those of pyramidal neurons, which may have been a result of the uneven diffusion of RuBi-GABA due to liposomes binding to CB1. In this study, we developed a novel, targeted method to regulate neural electrophysiology in the hippocampus of the TLE rat using antibody-modified nanoliposomes, implantable MEA, and photocaged compounds. This method effectively suppressed hippocampal activities during seizure ictus with high spatiotemporal resolution, which is a crucial exploration of targeted therapy for epilepsy.
Collapse
Affiliation(s)
- Yuchuan Dai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingyu Xie
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guihua Xiao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuanyu Li
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ziyue Li
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fei Gao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Enhui He
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shengwei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yun Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhimei Qi
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dongdong Meng
- National Engineering Research Center for DPSSL, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhongwei Fan
- National Engineering Research Center for DPSSL, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Ntim M, Li QF, Zhang Y, Liu XD, Li N, Sun HL, Zhang X, Khan B, Wang B, Wu Q, Wu XF, Walana W, Khan K, Ma QH, Zhao J, Li S. TRIM32 Deficiency Impairs Synaptic Plasticity by Excitatory-Inhibitory Imbalance via Notch Pathway. Cereb Cortex 2020; 30:4617-4632. [PMID: 32219328 DOI: 10.1093/cercor/bhaa064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Synaptic plasticity is the neural basis of physiological processes involved in learning and memory. Tripartite motif-containing 32 (TRIM32) has been found to play many important roles in the brain such as neural stem cell proliferation, neurogenesis, inhibition of nerve proliferation, and apoptosis. TRIM32 has been linked to several nervous system diseases including autism spectrum disorder, depression, anxiety, and Alzheimer's disease. However, the role of TRIM32 in regulating the mechanism of synaptic plasticity is still unknown. Our electrophysiological studies using hippocampal slices revealed that long-term potentiation of CA1 synapses was impaired in TRIM32 deficient (KO) mice. Further research found that dendritic spines density, AMPA receptors, and synaptic plasticity-related proteins were also reduced. NMDA receptors were upregulated whereas GABA receptors were downregulated in TRIM32 deficient mice, explaining the imbalance in excitatory and inhibitory neurotransmission. This caused overexcitation leading to decreased neuronal numbers in the hippocampus and cortex. In summary, this study provides this maiden evidence on the synaptic plasticity changes of TRIM32 deficiency in the brain and proposes that TRIM32 relates the notch signaling pathway and its related mechanisms contribute to this deficit.
Collapse
Affiliation(s)
- Michael Ntim
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qi-Fa Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yue Zhang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiao-Da Liu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Hai-Lun Sun
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xuan Zhang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Bakhtawar Khan
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Bin Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiong Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xue-Fei Wu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Williams Walana
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Khizar Khan
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Quan-Hong Ma
- Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Cheng H, Wang Y, Chen J, Chen Z. The piriform cortex in epilepsy: What we learn from the kindling model. Exp Neurol 2020; 324:113137. [DOI: 10.1016/j.expneurol.2019.113137] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022]
|
12
|
Wang XG, Zhu DD, Li N, Huang YL, Wang YZ, Zhang T, Wang CM, Wang B, Peng Y, Ge BY, Li S, Zhao J. Scorpion Venom Heat-Resistant Peptide is Neuroprotective against Cerebral Ischemia-Reperfusion Injury in Association with the NMDA-MAPK Pathway. Neurosci Bull 2019; 36:243-253. [PMID: 31502213 DOI: 10.1007/s12264-019-00425-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Scorpion venom heat-resistant peptide (SVHRP) is a component purified from Buthus martensii Karsch scorpion venom. Our previous studies have shown that SVHRP is neuroprotective in models of Alzheimer's disease and Parkinson's disease. The present study aimed to explore the potential neuroprotective effects of SVHRP on cerebral ischemia/reperfusion (I/R) injury, using a mouse model of middle cerebral artery occlusion/reperfusion (MCAO/R) and a cellular model of oxygen-glucose deprivation/reoxygenation (OGD/R). Our results showed that SVHRP treatment decreased the neurological deficit scores, edema formation, infarct volume and neuronal loss in the MCAO/R mice, and protected primary neurons against OGD/R insult. SVHRP pretreatment suppressed the alterations in protein levels of N-methyl-D-aspartate receptors (NMDARs) and phosphorylated p38 MAPK as well as some proinflammatory factors in both the animal and cellular models. These results suggest that SVHRP has neuroprotective effects against cerebral I/R injury, which might be associated with inhibition of the NMDA-MAPK-mediated excitotoxicity.
Collapse
Affiliation(s)
- Xu-Gang Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.,National-Local Joint Engineering Research Center for Drug-Research and Development of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116000, China.,The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Dan-Dan Zhu
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.,The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug-Research and Development of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116000, China
| | - Yue-Lin Huang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ying-Zi Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.,The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Ting Zhang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Chen-Mei Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bin Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yan Peng
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Bi-Ying Ge
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Shao Li
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China. .,National-Local Joint Engineering Research Center for Drug-Research and Development of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116000, China.
| | - Jie Zhao
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China. .,National-Local Joint Engineering Research Center for Drug-Research and Development of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116000, China.
| |
Collapse
|
13
|
Xu Y, Shen FY, Liu YZ, Wang L, Wang YW, Wang Z. Dependence of Generation of Hippocampal CA1 Slow Oscillations on Electrical Synapses. Neurosci Bull 2019; 36:39-48. [PMID: 31468346 DOI: 10.1007/s12264-019-00419-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/26/2019] [Indexed: 01/01/2023] Open
Abstract
Neuronal oscillations in the hippocampus are critical for many brain functions including learning and memory. The underlying mechanism of oscillation generation has been extensively investigated in terms of chemical synapses and ion channels. Recently, electrical synapses have also been indicated to play important roles, as reported in various brain areas in vivo and in brain slices. However, this issue remains to be further clarified, including in hippocampal networks. Here, using the completely isolated hippocampus, we investigated in vitro the effect of electrical synapses on slow CA1 oscillations (0.5 Hz-1.5 Hz) generated intrinsically by the hippocampus. We found that these oscillations were totally abolished by bath application of a general blocker of gap junctions (carbenoxolone) or a specific blocker of electrical synapses (mefloquine), as determined by whole-cell recordings in both CA1 pyramidal cells and fast-spiking cells. Our findings indicate that electrical synapses are required for the hippocampal generation of slow CA1 oscillations.
Collapse
Affiliation(s)
- Yuan Xu
- Institute and Key Laboratory of Brain Functional Genomics of The Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Feng-Yan Shen
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yu-Zhang Liu
- Institute and Key Laboratory of Brain Functional Genomics of The Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Lidan Wang
- Institute and Key Laboratory of Brain Functional Genomics of The Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Ying-Wei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zhiru Wang
- Institute and Key Laboratory of Brain Functional Genomics of The Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
14
|
Zhang Z, Qiu W, Gong H, Li G, Jiang Q, Liang P, Zheng H, Zhang P. Low-intensity ultrasound suppresses low-Mg2+-induced epileptiform discharges in juvenile mouse hippocampal slices. J Neural Eng 2019; 16:036006. [DOI: 10.1088/1741-2552/ab0b9a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Aydin-Abidin S, Abidin İ. 7,8-Dihydroxyflavone potentiates ongoing epileptiform activity in mice brain slices. Neurosci Lett 2019; 703:25-31. [PMID: 30880161 DOI: 10.1016/j.neulet.2019.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/22/2019] [Accepted: 03/09/2019] [Indexed: 12/14/2022]
Abstract
In the central nervous system, Tropomyosin-receptor-kinase B (TrkB) signaling is involved in neuronal survival, differentiation as well as in regulation of synaptic transmission and excitability. As its powerful potential to modulate neuronal functions, TrkB pathway is an attractive target for novel drugs and treatment of common neurological disorders. 7,8-Dihydroxyflavone (DHF), a TrkB receptor agonist, has similar properties with neurotrophin Brain Derived Neurotropic Factor (BDNF). DHF is reported to have a number of beneficial effects in neuroprotection, against depression and improving learning and memory. However, the outcome of acute application of DHF on the excitability of neuronal circuits is not clear. Especially the effects of DHF on synchronized epileptiform activity are not known. In this study, we investigated whether DHF induces epileptiform activity in brain slices and DHF has any effect on already initiated epileptiform discharges. We used acute horizontal hippocampal-entorhinal cortex slices obtained from 30 to 35 days of mice. Extracellular field potential recordings were obtained from entorhinal cortex (EC) and hippocampus CA1 region. DHF did not initiate any epileptiform activity or abnormal discharges. However, DHF increased the frequency of 4 aminopyridine (4AP) induced ictal and interictal events in both EC and CA1. The duration of induced ictal charges were also prolonged upon DHF application. In a number of slices, both EC and CA1, DHF led to ictogenesis. These results suggest that the acute activation of TrkB by DHF has a powerful potential on synchronized neuronal discharges which should be considered in future therapeutical approaches.
Collapse
Affiliation(s)
- Selcen Aydin-Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| | - İsmail Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|