1
|
Zhou X, Xiao Q, Liu Y, Chen S, Xu X, Zhang Z, Hong Y, Shao J, Chen Y, Chen Y, Wang L, Yang F, Tu J. Astrocyte-mediated regulation of BLA WFS1 neurons alleviates risk-assessment deficits in DISC1-N mice. Neuron 2024; 112:2197-2217.e7. [PMID: 38642554 DOI: 10.1016/j.neuron.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/10/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
Assessing and responding to threats is vital in everyday life. Unfortunately, many mental illnesses involve impaired risk assessment, affecting patients, families, and society. The brain processes behind these behaviors are not well understood. We developed a transgenic mouse model (disrupted-in-schizophrenia 1 [DISC1]-N) with a disrupted avoidance response in risky settings. Our study utilized single-nucleus RNA sequencing and path-clamp coupling with real-time RT-PCR to uncover a previously undescribed group of glutamatergic neurons in the basolateral amygdala (BLA) marked by Wolfram syndrome 1 (WFS1) expression, whose activity is modulated by adjacent astrocytes. These neurons in DISC1-N mice exhibited diminished firing ability and impaired communication with the astrocytes. Remarkably, optogenetic activation of these astrocytes reinstated neuronal excitability via D-serine acting on BLAWFS1 neurons' NMDA receptors, leading to improved risk-assessment behavior in the DISC1-N mice. Our findings point to BLA astrocytes as a promising target for treating risk-assessment dysfunctions in mental disorders.
Collapse
Affiliation(s)
- Xinyi Zhou
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Qian Xiao
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yaohui Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, China
| | - Shuai Chen
- University of Chinese of Academy of Sciences, Beijing 100049, China
| | - Xirong Xu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China
| | - Zhigang Zhang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuchuan Hong
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China
| | - Jie Shao
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yuewen Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Fan Yang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Jie Tu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
2
|
Zhao Y, Guo W, Zhou J, Wang X. Schizophrenia and risk preference: a bidirectional two-sample mendelian randomization study. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01853-5. [PMID: 38914854 DOI: 10.1007/s00406-024-01853-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
Increasing evidence shows that risk preference is associated with schizophrenia. However, the causality and direction of this association are not clear; Therefore, we used Mendelian randomization (MR) to examine the potential bidirectional relationship between risk preference and schizophrenia. Genome-wide association studies (GWAS) summary data on risk preference of 939,908 participants from the UK Biobank and 23andMe were used to identify general risk preference. Data from 320,404 subjects (76,755 cases and 243,649 controls) from The Psychiatric Genomics Consortium were used to identify schizophrenia. The weighted median (WM), the inverse variance weighted (IVW), and the Mendelian randomization-Egger (MR-Egger) methods were used for the MR analysis to estimate the causal effect and detect the directional pleiotropy. The GWAS summary data were respectively from two combined samples, containing 939,908 and 320,404 subjects of European ancestry. Mendelian randomization evidence suggested that risk preference was associated with increased onset of schizophrenia (OR = 2.84, 95CI%: 1.77-4.56, P = 1.58*10 - 5) and that schizophrenia was also associated with raised risk preference (OR = 1.11, 95CI%: 1.07-1.15, P = 7.98*10 - 8). With the use of large-scale GWAS data, robust evidence suggests an interaction between risk preference and schizophrenia. This also indicates that early identification of and intervention for increased risk preference may improve the prognosis of schizophrenia.
Collapse
Affiliation(s)
- Yixin Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Weilong Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jiansong Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| | - Xiaoping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
3
|
Sauer JF, Bartos M. Disrupted-in-schizophrenia-1 is required for normal pyramidal cell-interneuron communication and assembly dynamics in the prefrontal cortex. eLife 2022; 11:79471. [PMID: 36239988 PMCID: PMC9566853 DOI: 10.7554/elife.79471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
We interrogated prefrontal circuit function in mice lacking Disrupted-in-schizophrenia-1 (Disc1-mutant mice), a risk factor for psychiatric disorders. Single-unit recordings in awake mice revealed reduced average firing rates of fast-spiking interneurons (INTs), including optogenetically identified parvalbumin-positive cells, and a lower proportion of INTs phase-coupled to ongoing gamma oscillations. Moreover, we observed decreased spike transmission efficacy at local pyramidal cell (PYR)-INT connections in vivo, suggesting a reduced excitatory effect of local glutamatergic inputs as a potential mechanism of lower INT rates. On the network level, impaired INT function resulted in altered activation of PYR assemblies: While assembly activations defined as coactivations within 25 ms were observed equally often, the expression strength of individual assembly patterns was significantly higher in Disc1-mutant mice. Our data, thus, reveal a role of Disc1 in shaping the properties of prefrontal assembly patterns by setting INT responsiveness to glutamatergic drive.
Collapse
Affiliation(s)
- Jonas-Frederic Sauer
- Institute for Physiology I, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marlene Bartos
- Institute for Physiology I, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Zhou X, Xiao Q, Tu J. Diverse risk-avoidance behaviors in DISC1 mice are associated with different neuronal firing patterns in BLA neurons. Biochem Biophys Res Commun 2022; 587:107-112. [PMID: 34871997 DOI: 10.1016/j.bbrc.2021.11.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 10/25/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022]
Abstract
It is very important to maintain normal levels of risk avoidance in daily life. We found that DISC1-NTM mice, which are a model for mental disorders, had a phenotype marked by a risk-avoidance impairment as measured in an open-field test (OFT). We used optogenetic methods to modulate glutamatergic neurons in the basolateral amygdala (BLA) in an attempt to rescue this risk-avoidance impairment. We found that photostimulation of BLA neurons at 20 Hz modified DISC1-NTM mouse behavior from low risk avoidance to high risk avoidance. We observed following photostimulation that, compared to controls, the number of entries to the center of the open field was lower and less time was spent in the central area. We also found that the time spent immobile was higher during photostimulation compared with WT mice. We also used a lower photostimulation frequency of 5 Hz, which activated BLA glutamatergic neurons and rescued the risk-avoidance impairment in DISC1-NTM mice. Our findings confirm that the BLA participates in diverse risk-avoidance behavior. Our results are also a reminder that differences in neuronal firing patterns within the same pathway may lead to different physiological functions.
Collapse
Affiliation(s)
- Xinyi Zhou
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of Chinese of Academy of Sciences, Beijing, 100049, China
| | - Qian Xiao
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Jie Tu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of Chinese of Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Năstase MG, Vlaicu I, Trifu SC, Trifu SC. Genetic polymorphism and neuroanatomical changes in schizophrenia. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:307-322. [PMID: 36374137 PMCID: PMC9801677 DOI: 10.47162/rjme.63.2.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The article is a review of the latest meta-analyses regarding the genetic spectrum in schizophrenia, discussing the risks given by the disrupted-in-schizophrenia 1 (DISC1), catechol-O-methyltransferase (COMT), monoamine oxidases-A∕B (MAO-A∕B), glutamic acid decarboxylase 67 (GAD67) and neuregulin 1 (NRG1) genes, and dysbindin-1 protein. The DISC1 polymorphism significantly increases the risk of schizophrenia, as well injuries from the prefrontal cortex that affect connectivity. NRG1 is one of the most important proteins involved. Its polymorphism is associated with the reduction of areas in the corpus callosum, right uncinate, inferior lateral fronto-occipital fascicle, right external capsule, fornix, right optic tract, gyrus. NRG1 and the ErbB4 receptor (tyrosine kinase receptor) are closely related to the N-methyl-D-aspartate receptor (NMDAR) (glutamate receptor). COMT is located on chromosome 22 and together with interleukin-10 (IL-10) have an anti-inflammatory and immunosuppressive function that influences the dopaminergic system. MAO gene methylation has been associated with mental disorders. MAO-A is a risk gene in the onset of schizophrenia, more precisely a certain type of single-nucleotide polymorphism (SNP), at the gene level, is associated with schizophrenia. In schizophrenia, we find deficits of the γ-aminobutyric acid (GABA)ergic neurotransmitter, the dysfunctions being found predominantly at the level of the substantia nigra. In schizophrenia, missing an allele at GAD67, caused by a SNP, has been correlated with decreases in parvalbumin (PV), somatostatin receptor (SSR), and GAD ribonucleic acid (RNA). Resulting in the inability to mature PV and SSR neurons, which has been associated with hyperactivity.
Collapse
Affiliation(s)
- Mihai Gabriel Năstase
- Department of Neurosciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania;
| | - Ilinca Vlaicu
- Department of Psychiatry, Hospital for Psychiatry, Săpunari, Călăraşi County, Romania
| | - Simona Corina Trifu
- Department of Neurosciences, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | | | | |
Collapse
|