1
|
Wu J, Xu W, Su Y, Wang GH, Ma JJ. Targeting chaperone-mediated autophagy in neurodegenerative diseases: mechanisms and therapeutic potential. Acta Pharmacol Sin 2024:10.1038/s41401-024-01416-3. [PMID: 39548290 DOI: 10.1038/s41401-024-01416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
The pathological hallmarks of various neurodegenerative diseases including Parkinson's disease and Alzheimer's disease prominently feature the accumulation of misfolded proteins and neuroinflammation. Chaperone-mediated autophagy (CMA) has emerged as a distinct autophagic process that coordinates the lysosomal degradation of specific proteins bearing the pentapeptide motif Lys-Phe-Glu-Arg-Gln (KFERQ), a recognition target for the cytosolic chaperone HSC70. Beyond its role in protein quality control, recent research underscores the intimate interplay between CMA and immune regulation in neurodegeneration. In this review, we illuminate the molecular mechanisms and regulatory pathways governing CMA. We further discuss the potential roles of CMA in maintaining neuronal proteostasis and modulating neuroinflammation mediated by glial cells. Finally, we summarize the recent advancements in CMA modulators, emphasizing the significance of activating CMA for the therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin Wu
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| | - Wan Xu
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Ying Su
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Guang-Hui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Jing-Jing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Gorina DS, Lastovka AV, Rogachev AD, Podturkina AV, Pavlova AV, Ardashov OV, Li-Zhulanov NS, Tolstikova TG, Volcho KP, Salakhutdinov NF. Pharmacokinetics and Dose Proportionality Study of a Novel Antiparkinsonian Agent, a 1 H-1,2,4-Triazol-3-ylthio-conjugate of Prottremine. Molecules 2024; 29:4498. [PMID: 39339493 PMCID: PMC11434290 DOI: 10.3390/molecules29184498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The novel antiparkinsonian agent PA-96 is the focus of our research. PA-96 supported the survival of cultured naïve dopamine neurons, alleviated motor deficits in MPTP and haloperidol-based mice models of Parkinson's disease, and increased the density of tyrosine hydroxylase positive neurons and dopamine concentration in the midbrain of an MPTP-damaged brain. In this work, an HPLC-MS/MS method was developed and validated, and the pharmacokinetics of the agent was investigated in mice after a single or multiple oral administration (p.o.) and intravenous injection (i.v.) at various doses. The dose proportionality was also evaluated after a single p.o. administration of three ascending doses (1, 5, and 10 mg/kg) and a single i.v. injection of two doses (1 and 10 mg/kg); also, the bioavailability was estimated. The disproportionality of pharmacokinetic parameters could be explained by the saturation of active centres of enzymes or receptors binding the substance: at low doses, part of the compound is bound, leaving a small amount circulating in blood, and rapidly metabolised and/or bound too. The bioavailability of PA-96 was c.a. 7 and 35% for the doses of 5 and 10 mg/kg, correspondingly.
Collapse
Affiliation(s)
- Daria S. Gorina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia; (D.S.G.); (A.D.R.); (A.V.P.); (A.V.P.); (O.V.A.); (N.S.L.-Z.); (T.G.T.); (K.P.V.); (N.F.S.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova str., 2, 630090 Novosibirsk, Russia
| | - Anastasiya V. Lastovka
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia; (D.S.G.); (A.D.R.); (A.V.P.); (A.V.P.); (O.V.A.); (N.S.L.-Z.); (T.G.T.); (K.P.V.); (N.F.S.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova str., 2, 630090 Novosibirsk, Russia
| | - Artem D. Rogachev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia; (D.S.G.); (A.D.R.); (A.V.P.); (A.V.P.); (O.V.A.); (N.S.L.-Z.); (T.G.T.); (K.P.V.); (N.F.S.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova str., 2, 630090 Novosibirsk, Russia
| | - Alexandra V. Podturkina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia; (D.S.G.); (A.D.R.); (A.V.P.); (A.V.P.); (O.V.A.); (N.S.L.-Z.); (T.G.T.); (K.P.V.); (N.F.S.)
| | - Alla V. Pavlova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia; (D.S.G.); (A.D.R.); (A.V.P.); (A.V.P.); (O.V.A.); (N.S.L.-Z.); (T.G.T.); (K.P.V.); (N.F.S.)
| | - Oleg V. Ardashov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia; (D.S.G.); (A.D.R.); (A.V.P.); (A.V.P.); (O.V.A.); (N.S.L.-Z.); (T.G.T.); (K.P.V.); (N.F.S.)
| | - Nikolai S. Li-Zhulanov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia; (D.S.G.); (A.D.R.); (A.V.P.); (A.V.P.); (O.V.A.); (N.S.L.-Z.); (T.G.T.); (K.P.V.); (N.F.S.)
| | - Tatyana G. Tolstikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia; (D.S.G.); (A.D.R.); (A.V.P.); (A.V.P.); (O.V.A.); (N.S.L.-Z.); (T.G.T.); (K.P.V.); (N.F.S.)
| | - Konstantin P. Volcho
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia; (D.S.G.); (A.D.R.); (A.V.P.); (A.V.P.); (O.V.A.); (N.S.L.-Z.); (T.G.T.); (K.P.V.); (N.F.S.)
| | - Nariman F. Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia; (D.S.G.); (A.D.R.); (A.V.P.); (A.V.P.); (O.V.A.); (N.S.L.-Z.); (T.G.T.); (K.P.V.); (N.F.S.)
| |
Collapse
|
3
|
Lv QK, Tao KX, Yao XY, Pang MZ, Cao BE, Liu CF, Wang F. Melatonin MT1 receptors regulate the Sirt1/Nrf2/Ho-1/Gpx4 pathway to prevent α-synuclein-induced ferroptosis in Parkinson's disease. J Pineal Res 2024; 76:e12948. [PMID: 38488331 DOI: 10.1111/jpi.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/19/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons and aggregation of α-synuclein (α-syn). Ferroptosis, a form of cell death induced by iron accumulation and lipid peroxidation, is involved in the pathogenesis of PD. It is unknown whether melatonin receptor 1 (MT1) modulates α-syn and ferroptosis in PD. Here, we used α-syn preformed fibrils (PFFs) to induce PD models in vivo and in vitro. In PD mice, α-syn aggregation led to increased iron deposition and ferroptosis. MT1 knockout exacerbated these changes and resulted in more DA neuronal loss and severe motor impairment. MT1 knockout also suppressed the Sirt1/Nrf2/Ho1/Gpx4 pathway, reducing resistance to ferroptosis, and inhibited expression of ferritin Fth1, leading to more release of ferrous ions. In vitro experiments confirmed these findings. Knockdown of MT1 enhanced α-syn PFF-induced intracellular α-syn aggregation and suppressed expression of the Sirt1/Nrf2/Ho1/Gpx4 pathway and Fth1 protein, thereby aggravating ferroptosis. Conversely, overexpression of MT1 reversed these effects. Our findings reveal a novel mechanism by which MT1 activation prevents α-syn-induced ferroptosis in PD, highlighting the neuroprotective role of MT1 in PD.
Collapse
Affiliation(s)
- Qian-Kun Lv
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Kang-Xin Tao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiao-Yu Yao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng-Zhu Pang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Bing-Er Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Hu C, Yan Y, Jin Y, Yang J, Xi Y, Zhong Z. Decoding the Cellular Trafficking of Prion-like Proteins in Neurodegenerative Diseases. Neurosci Bull 2024; 40:241-254. [PMID: 37755677 PMCID: PMC10838874 DOI: 10.1007/s12264-023-01115-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/02/2023] [Indexed: 09/28/2023] Open
Abstract
The accumulation and spread of prion-like proteins is a key feature of neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, or Amyotrophic Lateral Sclerosis. In a process known as 'seeding', prion-like proteins such as amyloid beta, microtubule-associated protein tau, α-synuclein, silence superoxide dismutase 1, or transactive response DNA-binding protein 43 kDa, propagate their misfolded conformations by transforming their respective soluble monomers into fibrils. Cellular and molecular evidence of prion-like propagation in NDs, the clinical relevance of their 'seeding' capacities, and their levels of contribution towards disease progression have been intensively studied over recent years. This review unpacks the cyclic prion-like propagation in cells including factors of aggregate internalization, endo-lysosomal leaking, aggregate degradation, and secretion. Debates on the importance of the role of prion-like protein aggregates in NDs, whether causal or consequent, are also discussed. Applications lead to a greater understanding of ND pathogenesis and increased potential for therapeutic strategies.
Collapse
Affiliation(s)
- Chenjun Hu
- Department of Neurology of the Second Affiliated Hospital and Department of Human Anatomy, Histology and Embryology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yiqun Yan
- Department of Neurology of the Second Affiliated Hospital and Department of Human Anatomy, Histology and Embryology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yanhong Jin
- Department of Neurology of the Second Affiliated Hospital and Department of Human Anatomy, Histology and Embryology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jun Yang
- Department of Physiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yongmei Xi
- Division of Human Reproduction and Developmental Genetics, Women's Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Zhen Zhong
- Department of Neurology of the Second Affiliated Hospital and Department of Human Anatomy, Histology and Embryology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Li X, Chen C, Pan T, Zhou X, Sun X, Zhang Z, Wu D, Chen X. Trends and hotspots in non-motor symptoms of Parkinson's disease: a 10-year bibliometric analysis. Front Aging Neurosci 2024; 16:1335550. [PMID: 38298610 PMCID: PMC10827952 DOI: 10.3389/fnagi.2024.1335550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
Non-motor symptoms are prevalent among individuals with Parkinson's disease (PD) and seriously affect patient quality of life, even more so than motor symptoms. In the past decade, an increasing number of studies have investigated non-motor symptoms in PD. The present study aimed to comprehensively analyze the global literature, trends, and hotspots of research investigating non-motor symptoms in PD through bibliometric methods. Studies addressing non-motor symptoms in the Web of Science Core Collection (WoSCC), published between January 2013 and December 2022, were retrieved. Bibliometric methods, including the R package "Bibliometrix," VOS viewer, and CiteSpace software, were used to investigate and visualize parameters, including yearly publications, country/region, institution, and authors, to collate and quantify information. Analysis of keywords and co-cited references explored trends and hotspots. There was a significant increase in the number of publications addressing the non-motor symptoms of PD, with a total of 3,521 articles retrieved. The United States was ranked first in terms of publications (n = 763) and citations (n = 11,269), maintaining its leadership position among all countries. King's College London (United Kingdom) was the most active institution among all publications (n = 133) and K Ray Chaudhuri was the author with the most publications (n = 131). Parkinsonism & Related Disorders published the most articles, while Movement Disorders was the most cited journal. Reference explosions have shown that early diagnosis, biomarkers, novel magnetic resonance imaging techniques, and deep brain stimulation have become research "hotspots" in recent years. Keyword clustering revealed that alpha-synuclein is the largest cluster for PD. The keyword heatmap revealed that non-motor symptoms appeared most frequently (n = 1,104), followed by quality of life (n = 502), dementia (n = 403), and depression (n = 397). Results of the present study provide an objective, comprehensive, and systematic analysis of these publications, and identifies trends and "hot" developments in this field of research. This work will inform investigators worldwide to help them conduct further research and develop new therapies.
Collapse
Affiliation(s)
- Xuefeng Li
- Changchun University of Chinese Medicine, Changchun, China
| | - Chunhai Chen
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Ting Pan
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Xue Zhou
- Changchun University of Chinese Medicine, Changchun, China
| | - Xiaozhou Sun
- Center of Children's Clinic, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Ziyang Zhang
- Changchun University of Chinese Medicine, Changchun, China
| | - Dalong Wu
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Xinhua Chen
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Wang J, Wang X, Li H, Shi L, Song N, Xie J. Updates on brain regions and neuronal circuits of movement disorders in Parkinson's disease. Ageing Res Rev 2023; 92:102097. [PMID: 38511877 DOI: 10.1016/j.arr.2023.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 03/22/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease with a global burden that affects more often in the elderly. The basal ganglia (BG) is believed to account for movement disorders in PD. More recently, new findings in the original regions in BG involved in motor control, as well as the new circuits or new nucleuses previously not specifically considered were explored. In the present review, we provide up-to-date information related to movement disorders and modulations in PD, especially from the perspectives of brain regions and neuronal circuits. Meanwhile, there are updates in deep brain stimulation (DBS) and other factors for the motor improvement in PD. Comprehensive understandings of brain regions and neuronal circuits involved in motor control could benefit the development of novel therapeutical strategies in PD.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Xiaoting Wang
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Hui Li
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Limin Shi
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China
| | - Ning Song
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China.
| | - Junxia Xie
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
7
|
Podturkina AV, Ardashov OV, Volcho KP, Salakhutdinov NF. A New Stereoselective Approach to the Substitution of Allyl Hydroxy Group in para-Mentha-1,2-diol in the Search for New Antiparkinsonian Agents. Molecules 2023; 28:7303. [PMID: 37959723 PMCID: PMC10650740 DOI: 10.3390/molecules28217303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Two approaches to the synthesis of para-menthene epoxide ((1S,5S,6R)-4) are developed. The first approach includes a reaction between chlorohydrin 7 and NaH in THF. The second involves the formation of epoxide in the reaction of corresponding diacetate 6 with sodium tert-butoxide. One possible mechanism of this reaction is proposed to explain unexpected outcomes in the regio- and stereospecificity of epoxide (1S,5S,6R)-4 formation. The epoxide ring in (1S,5S,6R)-4 is then opened by various S- and O-nucleophiles. This series of reactions allows for the stereoselective synthesis of diverse derivatives of the monoterpenoid Prottremine 1, a compound known for its antiparkinsonian activity, including promising antiparkinsonian properties.
Collapse
Affiliation(s)
| | | | - Konstantin P. Volcho
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (A.V.P.); (O.V.A.); (N.F.S.)
| | | |
Collapse
|
8
|
Liu LL, Han Y, Zhang ZJ, Wang YQ, Hu YW, Kaznacheyeva E, Ding JQ, Guo DK, Wang GH, Li B, Ren HG. Loss of DJ-1 function contributes to Parkinson's disease pathogenesis in mice via RACK1-mediated PKC activation and MAO-B upregulation. Acta Pharmacol Sin 2023; 44:1948-1961. [PMID: 37225849 PMCID: PMC10545772 DOI: 10.1038/s41401-023-01104-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative motor disorder characterized by a dramatic reduction in pars compacta of substantia nigra dopaminergic neurons and striatal dopamine (DA) levels. Mutations or deletions in the PARK7/DJ-1 gene are associated with an early-onset familial form of PD. DJ-1 protein prevents neurodegeneration via its regulation of oxidative stress and mitochondrial function as well as its roles in transcription and signal transduction. In this study, we investigated how loss of DJ-1 function affected DA degradation, ROS generation and mitochondrial dysfunction in neuronal cells. We showed that loss of DJ-1 significantly increased the expression of monoamine oxidase (MAO)-B but not MAO-A in both neuronal cells and primary astrocytes. In DJ-1-knockout (KO) mice, MAO-B protein levels in the substantia nigra (SN) and striatal regions were significantly increased. We demonstrated that the induction of MAO-B expression by DJ-1 deficiency depended on early growth response 1 (EGR1) in N2a cells. By coimmunoprecipitation omics analysis, we found that DJ-1 interacted with receptor of activated protein C kinase 1 (RACK1), a scaffolding protein, and thus inhibited the activity of the PKC/JNK/AP-1/EGR1 cascade. The PKC inhibitor sotrastaurin or the JNK inhibitor SP600125 completely inhibited DJ-1 deficiency-induced EGR1 and MAO-B expression in N2a cells. Moreover, the MAO-B inhibitor rasagiline inhibited mitochondrial ROS generation and rescued neuronal cell death caused by DJ-1 deficiency, especially in response to MPTP stimulation in vitro and in vivo. These results suggest that DJ-1 exerts neuroprotective effects by inhibiting the expression of MAO-B distributed at the mitochondrial outer membrane, which mediates DA degradation, ROS generation and mitochondrial dysfunction. This study reveals a mechanistic link between DJ-1 and MAO-B expression and contributes to understanding the crosslinks among pathogenic factors, mitochondrial dysfunction and oxidative stress in PD pathogenesis.
Collapse
Affiliation(s)
- Le-le Liu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yu Han
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zi-Jia Zhang
- Qingdao Municipal Hospital of Shandong Province, Qingdao, 266011, China
| | - Yi-Qi Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yu-Wei Hu
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Elena Kaznacheyeva
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, 194064, Russia
| | - Jian-Qing Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Dong-Kai Guo
- Laboratory of Clinical Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Guang-Hui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Bin Li
- Department of General Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, China.
| | - Hai-Gang Ren
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
9
|
Liu K, Song M, Gao S, Yao L, Zhang L, Feng J, Wang L, Gao R, Wang Y. The Dynamics of Dopamine D 2 Receptor-Expressing Striatal Neurons and the Downstream Circuit Underlying L-Dopa-Induced Dyskinesia in Rats. Neurosci Bull 2023; 39:1411-1425. [PMID: 37022638 PMCID: PMC10465438 DOI: 10.1007/s12264-023-01054-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/05/2022] [Indexed: 04/07/2023] Open
Abstract
L-dopa (l-3,4-dihydroxyphenylalanine)-induced dyskinesia (LID) is a debilitating complication of dopamine replacement therapy for Parkinson's disease. The potential contribution of striatal D2 receptor (D2R)-positive neurons and downstream circuits in the pathophysiology of LID remains unclear. In this study, we investigated the role of striatal D2R+ neurons and downstream globus pallidus externa (GPe) neurons in a rat model of LID. Intrastriatal administration of raclopride, a D2R antagonist, significantly inhibited dyskinetic behavior, while intrastriatal administration of pramipexole, a D2-like receptor agonist, yielded aggravation of dyskinesia in LID rats. Fiber photometry revealed the overinhibition of striatal D2R+ neurons and hyperactivity of downstream GPe neurons during the dyskinetic phase of LID rats. In contrast, the striatal D2R+ neurons showed intermittent synchronized overactivity in the decay phase of dyskinesia. Consistent with the above findings, optogenetic activation of striatal D2R+ neurons or their projections in the GPe was adequate to suppress most of the dyskinetic behaviors of LID rats. Our data demonstrate that the aberrant activity of striatal D2R+ neurons and downstream GPe neurons is a decisive mechanism mediating dyskinetic symptoms in LID rats.
Collapse
Affiliation(s)
- Kuncheng Liu
- Department of Physiology and Pathophysiology and Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China
- Department of Clinical Medicine, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China
| | - Miaomiao Song
- Department of Physiology and Pathophysiology and Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China
| | - Shasha Gao
- Department of Physiology and Pathophysiology and Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China
| | - Lu Yao
- Department of Physiology and Pathophysiology and Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China
| | - Li Zhang
- Department of Physiology and Pathophysiology and Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China
| | - Jie Feng
- Department of Physiology and Pathophysiology and Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China
| | - Ling Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710004, China
| | - Rui Gao
- Department of Medical Imaging and Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710061, China
| | - Yong Wang
- Department of Physiology and Pathophysiology and Institute of Neuroscience, School of Basic Medical Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
10
|
Qiu X, Sun M, Xu C, Tang Y, Chen Z. One Small Step for Neurotechnology, One Giant Leap for an In-Depth Understanding of the Brain. Neurosci Bull 2023; 39:1034-1036. [PMID: 36719592 PMCID: PMC10264306 DOI: 10.1007/s12264-023-01027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/27/2022] [Indexed: 02/01/2023] Open
Affiliation(s)
- Xiaoyun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Minjuan Sun
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yingying Tang
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
11
|
Starr LA, McKay LE, Peter KN, Seyfarth LM, Berkowitz LA, Caldwell KA, Caldwell GA. Attenuation of Dopaminergic Neurodegeneration in a C. elegans Parkinson's Model through Regulation of Xanthine Dehydrogenase (XDH-1) Expression by the RNA Editase, ADR-2. J Dev Biol 2023; 11:jdb11020020. [PMID: 37218814 DOI: 10.3390/jdb11020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Differential RNA editing by adenosine deaminases that act on RNA (ADARs) has been implicated in several neurological disorders, including Parkinson's disease (PD). Here, we report results of a RNAi screen of genes differentially regulated in adr-2 mutants, normally encoding the only catalytically active ADAR in Caenorhabditis elegans, ADR-2. Subsequent analysis of candidate genes that alter the misfolding of human α-synuclein (α-syn) and dopaminergic neurodegeneration, two PD pathologies, reveal that reduced expression of xdh-1, the ortholog of human xanthine dehydrogenase (XDH), is protective against α-synuclein-induced dopaminergic neurodegeneration. Further, RNAi experiments show that WHT-2, the worm ortholog of the human ABCG2 transporter and a predicted interactor of XDH-1, is the rate-limiting factor in the ADR-2, XDH-1, WHT-2 system for dopaminergic neuroprotection. In silico structural modeling of WHT-2 indicates that the editing of one nucleotide in the wht-2 mRNA leads to the substitution of threonine with alanine at residue 124 in the WHT-2 protein, changing hydrogen bonds in this region. Thus, we propose a model where wht-2 is edited by ADR-2, which promotes optimal export of uric acid, a known substrate of WHT-2 and a product of XDH-1 activity. In the absence of editing, uric acid export is limited, provoking a reduction in xdh-1 transcription to limit uric acid production and maintain cellular homeostasis. As a result, elevation of uric acid is protective against dopaminergic neuronal cell death. In turn, increased levels of uric acid are associated with a decrease in ROS production. Further, downregulation of xdh-1 is protective against PD pathologies because decreased levels of XDH-1 correlate to a concomitant reduction in xanthine oxidase (XO), the form of the protein whose by-product is superoxide anion. These data indicate that modifying specific targets of RNA editing may represent a promising therapeutic strategy for PD.
Collapse
Affiliation(s)
- Lindsey A Starr
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Luke E McKay
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kylie N Peter
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Lena M Seyfarth
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Laura A Berkowitz
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kim A Caldwell
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center of Excellence for the Basic Biology of Aging, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Guy A Caldwell
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center of Excellence for the Basic Biology of Aging, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
12
|
Premotor, nonmotor and motor symptoms of Parkinson's Disease: A new clinical state of the art. Ageing Res Rev 2023; 84:101834. [PMID: 36581178 DOI: 10.1016/j.arr.2022.101834] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Parkinson's Disease (PD) is a neurodegenerative disorder that affects dopaminergic neurons in the mesencephalic substantia nigra, causing a progressive clinical course characterized by pre-motor, non-motor and motor symptoms, which negatively impact the quality of life of patients and cause high health care costs. Therefore, the present study aims to discuss the clinical manifestations of PD and to make a correlation with the gut-brain (GB) axis, approaching epidemiology and therapeutic perspectives, to better understand its clinical progression and identify symptoms early. A literature review was performed regarding the association between clinical progression, the gut-brain axis, epidemiology, and therapeutic perspectives, in addition to detailing pre-motor, non-motor symptoms (neuropsychiatric, cognitive, autonomic, sleep disorders, sensory abnormalities) and cardinal motor symptoms. Therefore, this article addresses a topic of extreme relevance, since the previously mentioned clinical manifestations (pre-motor and non-motor) can often act as prodromal markers for the early diagnosis of PD and may precede it by up to 20 years.
Collapse
|
13
|
Weng RX, Wei YX, Li YC, Xu X, Zhuang JB, Xu GY, Li R. Folic acid attenuates chronic visceral pain by reducing clostridiales abundance and hydrogen sulfide production. Mol Pain 2023; 19:17448069221149834. [PMID: 36550612 PMCID: PMC9830571 DOI: 10.1177/17448069221149834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Irritable bowel syndrome (IBS) related chronic visceral pain affects 20% of people worldwide. The treatment options are very limited. Although the scholarly reviews have appraised the potential effects of the intestinal microbiota on intestinal motility and sensation, the exact mechanism of intestinal microbiota in IBS-like chronic visceral pain remains largely unclear. The purpose of this study is to investigate whether Folic Acid (FA) attenuated visceral pain and its possible mechanisms. Chronic visceral hyperalgesia was induced in rats by neonatal colonic inflammation (NCI). 16S rDNA analysis of fecal samples from human subjects and rats was performed. Patch clamp recording was used to determine synaptic transmission of colonic-related spinal dorsal horn. Alpha diversity of intestinal flora was increased in patients with IBS, as well as the obviously increased abundance of Clostridiales order (a main bacteria producing hydrogen sulfide). The hydrogen sulfide content was positive correlation with visceral pain score in patients with IBS. Consistently, NCI increased Clostridiales frequency and hydrogen sulfide content in feces of adult rats. Notably, the concentration of FA was markedly decreased in peripheral blood of IBS patients compared with non-IBS human subjects. FA supplement alleviated chronic visceral pain and normalized the Clostridiales frequency in NCI rats. In addition, FA supplement significantly reduced the frequency of sEPSCs of neurons in the spinal dorsal horn of NCI rats. Folic Acid treatment attenuated chronic visceral pain of NCI rats through reducing hydrogen sulfide production from Clostridiales in intestine.
Collapse
Affiliation(s)
- Rui-Xia Weng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China,Institute of Neuroscience, Soochow University, Suzhou, P. R. China,Department of Gastroenterology, The People’s Hospital of Suzhou New District, Suzhou, P. R. China
| | - Ying-Xue Wei
- Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Yong-Chang Li
- Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Xue Xu
- Department of Gastroenterology, The People’s Hospital of Suzhou New District, Suzhou, P. R. China
| | - Jian-Bo Zhuang
- Department of Gastroenterology, The People’s Hospital of Suzhou New District, Suzhou, P. R. China
| | - Guang-Yin Xu
- Institute of Neuroscience, Soochow University, Suzhou, P. R. China,Guang-Yin Xu, Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, 199 Renai Rd, Suzhou 215123, P. R. China.
| | - Rui Li
- Guang-Yin Xu, Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, 199 Renai Rd, Suzhou 215123, P. R. China.
| |
Collapse
|
14
|
Advances in NURR1-Regulated Neuroinflammation Associated with Parkinson's Disease. Int J Mol Sci 2022; 23:ijms232416184. [PMID: 36555826 PMCID: PMC9788636 DOI: 10.3390/ijms232416184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Neuroinflammation plays a crucial role in the progression of neurodegenerative disorders, particularly Parkinson's disease (PD). Glial cell activation and subsequent adaptive immune involvement are neuroinflammatory features in familial and idiopathic PD, resulting in the death of dopaminergic neuron cells. An oxidative stress response, inflammatory mediator production, and immune cell recruitment and activation are all hallmarks of this activation, leading to chronic neuroinflammation and progressive neurodegeneration. Several studies in PD patients' cerebrospinal fluid and peripheral blood revealed alterations in inflammatory markers and immune cell populations that may lead to or exacerbate neuroinflammation and perpetuate the neurodegenerative process. Most of the genes causing PD are also expressed in astrocytes and microglia, converting their neuroprotective role into a pathogenic one and contributing to disease onset and progression. Nuclear receptor-related transcription factor 1 (NURR1) regulates gene expression linked to dopaminergic neuron genesis and functional maintenance. In addition to playing a key role in developing and maintaining neurotransmitter phenotypes in dopaminergic neurons, NURR1 agonists have been shown to reverse behavioral and histological abnormalities in animal PD models. NURR1 protects dopaminergic neurons from inflammation-induced degeneration, specifically attenuating neuronal death by suppressing the expression of inflammatory genes in microglia and astrocytes. This narrative review highlights the inflammatory changes in PD and the advances in NURR1-regulated neuroinflammation associated with PD. Further, we present new evidence that targeting this inflammation with a variety of potential NURR1 target therapy medications can effectively slow the progression of chronic neuroinflammation-induced PD.
Collapse
|
15
|
Emerging insights between gut microbiome dysbiosis and Parkinson's disease: Pathogenic and clinical relevance. Ageing Res Rev 2022; 82:101759. [PMID: 36243356 DOI: 10.1016/j.arr.2022.101759] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 10/09/2022] [Indexed: 01/31/2023]
Abstract
Parkinson's disease (PD) is a complicated neurodegenerative disease, of which gastrointestinal disturbance appears prior to motor symptoms. Numerous studies have shed light on the roles of gastrointestinal tract and its neural connection to brain in PD pathology. In the past decades, the fields of microbiology and neuroscience have become ever more entwined. The emergence of gut microbiome has been considered as one of the key regulators of gut-brain function. With the advent of multi-omics sequencing techniques, gut microbiome of PD patients has been shown unique characteristics. The resident gut microbiota can exert considerable effects in PD and there are suggestions of a link between gut microbiome dysbiosis and PD progression. In this review, we summarize the latest progresses of gut microbiome dysbiosis in PD pathogenesis, further highlight the clinical relevance of gut microbiota and its metabolites in both the non-motor and motor symptoms of PD. Furthermore, we draw attention to the complex interplay between gut microbiota and PD drugs, with the purpose of improving drug efficacy and prescription accordingly. Further studies at specific strain level and longitudinal prospective clinical trials using optimized methods are still needed for the development of diagnostic markers and novel therapeutic regimens for PD.
Collapse
|
16
|
Association of Glial Activation and α-Synuclein Pathology in Parkinson's Disease. Neurosci Bull 2022; 39:479-490. [PMID: 36229715 PMCID: PMC10043108 DOI: 10.1007/s12264-022-00957-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/10/2022] [Indexed: 10/17/2022] Open
Abstract
The accumulation of pathological α-synuclein (α-syn) in the central nervous system and the progressive loss of dopaminergic neurons in the substantia nigra pars compacta are the neuropathological features of Parkinson's disease (PD). Recently, the findings of prion-like transmission of α-syn pathology have expanded our understanding of the region-specific distribution of α-syn in PD patients. Accumulating evidence suggests that α-syn aggregates are released from neurons and endocytosed by glial cells, which contributes to the clearance of α-syn. However, the activation of glial cells by α-syn species produces pro-inflammatory factors that decrease the uptake of α-syn aggregates by glial cells and promote the transmission of α-syn between neurons, which promotes the spread of α-syn pathology. In this article, we provide an overview of current knowledge on the role of glia and α-syn pathology in PD pathogenesis, highlighting the relationships between glial responses and the spread of α-syn pathology.
Collapse
|
17
|
Liu X, Yu H, Wang Y, Li S, Cheng C, Al-Nusaif M, Le W. Altered Motor Performance, Sleep EEG, and Parkinson's Disease Pathology Induced by Chronic Sleep Deprivation in Lrrk2 G2019S Mice. Neurosci Bull 2022; 38:1170-1182. [PMID: 35612787 PMCID: PMC9554065 DOI: 10.1007/s12264-022-00881-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/10/2022] [Indexed: 11/28/2022] Open
Abstract
Parkinson's disease (PD) is a multifaceted disease in which environmental variables combined with genetic predisposition cause dopaminergic (DAergic) neuron loss in the substantia nigra pars compacta. The mutation of leucine-rich repeat kinase 2 (Lrrk2) is the most common autosomal dominant mutation in PD, and it has also been reported in sporadic cases. A growing body of research suggests that circadian rhythm disruption, particularly sleep-wake abnormality, is common during the early phase of PD. Our present study aimed to evaluate the impact of sleep deprivation (SD) on motor ability, sleep performance, and PD pathologies in Lrrk2G2019S transgenic mice. After two months of SD, Lrrk2G2019S mice at 12 months of age showed an exacerbated PD-like phenotype with motor deficits, a reduced striatal DA level, degenerated DAergic neurons, and altered sleep structure and biological rhythm accompanied by the decreased protein expression level of circadian locomotor output cycles kaput Lrrk2 gene in the brain. All these changes persisted and were even more evident in 18-month-old mice after 6 months of follow-up. Moreover, a significant increase in α-synuclein aggregation was found in SD-treated transgenic mice at 18 months of age. Taken together, our findings indicate that sleep abnormalities, as a risk factor, may contribute to the pathogenesis and progression of PD. Early detection of sleep disorders and improvement of sleep quality may help to delay disease progression and provide long-term clinical benefits.
Collapse
Affiliation(s)
- Xinyao Liu
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Hang Yu
- Institute of Neurology, Sichuan Academy of Sciences-Sichuan Provincial Hospital of UESTC Medical School, Chengdu, 610031, China
| | - Yuanyuan Wang
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Cheng Cheng
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Murad Al-Nusaif
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Weidong Le
- Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
- Institute of Neurology, Sichuan Academy of Sciences-Sichuan Provincial Hospital of UESTC Medical School, Chengdu, 610031, China.
| |
Collapse
|
18
|
Ma C, Wang X, Smith WW, Liu Z. VPS35 Protects Against TMEM230-mutation-induced Progressive Locomotor Deficits in Drosophila. Neurosci Bull 2022; 38:652-656. [PMID: 35536503 DOI: 10.1007/s12264-022-00862-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/21/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Chao Ma
- Department of Human Anatomy and Cytoneurobiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Xiaobo Wang
- Department of Human Anatomy and Cytoneurobiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, 21287, USA
| | - Wanli W Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, 21287, USA.
| | - Zhaohui Liu
- Department of Human Anatomy and Cytoneurobiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
19
|
Targeting the Cuneiform Nucleus in Parkinson's Disease: Option to Improve Locomotor Activity. Neurosci Bull 2022; 38:976-978. [PMID: 35524913 PMCID: PMC9352819 DOI: 10.1007/s12264-022-00870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022] Open
|
20
|
Wang Q, Xue X, Huang Z, Wang Y. Microglia Share the Burden. Neurosci Bull 2022; 38:695-698. [PMID: 35415798 DOI: 10.1007/s12264-022-00854-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/24/2022] [Indexed: 10/18/2022] Open
Affiliation(s)
- Qian Wang
- School of Pharmacy and Department of Neurosurgery, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiumin Xue
- School of Pharmacy and Department of Neurosurgery, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhihui Huang
- School of Pharmacy and Department of Neurosurgery, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yongjie Wang
- School of Pharmacy and Department of Neurosurgery, The Affiliated Hospital, Hangzhou Normal University, Hangzhou, 311121, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
21
|
Li T, Cheng C, Jia C, Leng Y, Qian J, Yu H, Liu Y, Wang N, Yang Y, Al-Nusaif M, Le W. Peripheral Clock System Abnormalities in Patients With Parkinson's Disease. Front Aging Neurosci 2021; 13:736026. [PMID: 34658839 PMCID: PMC8519399 DOI: 10.3389/fnagi.2021.736026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Objective: To evaluate the altered expression of peripheral clock genes, circulating melatonin levels, and their correlations with sleep-wake phenotypes including probable rapid eye movement sleep behavior disorder (pRBD) symptoms in a relatively large population of Parkinson’s disease (PD) patients. Methods: We determined the expression profiles of five principal clock genes, BMAL1, CLOCK, CRY1, PER1, and PER2, in the peripheral blood mononuclear cells (PBMCs) of PD patients (n = 326), and healthy controls (HC, n = 314) using quantitative real-time PCR. Melatonin concentration in the plasma of two groups was evaluated by enzyme-linked immunosorbent assay. Then we performed comprehensive association analyses on the PBMCs clock gene expression, plasma melatonin levels and sleep characteristics. Results: Our data showed that the expression levels of BMAL1, CLOCK, CRY1, PER1, and PER2 were significantly decreased in the PBMCs of PD as compared with that of HC (P < 0.05). PD patients had reduced plasma melatonin levels compared with HC (P < 0.0001). pRBD and excessive daytime sleepiness are common in these PD patients and are associated with the expression levels of all five clock genes (r = −0.344∼−0.789, P < 0.01) and melatonin concentration (r = −0.509∼−0.753, P < 0.01). Statistical analyses also revealed that a combination of five clock genes and melatonin could reach a high diagnostic performance (areas under the curves, 97%) for PD comorbid pRBD. Conclusion: This case-control study demonstrates that peripheral BMAL1, CLOCK, CRY1, PER1, PER2, and melatonin levels are altered in PD patients and may serve as endogenous markers for sleep and wakefulness disturbances of PD.
Collapse
Affiliation(s)
- Tianbai Li
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Cheng Cheng
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Congcong Jia
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yue Leng
- Department of Psychiatry, Neurology, and Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States.,San Francisco VA Medical Center, San Francisco, CA, United States
| | - Jin Qian
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hang Yu
- Sichuan Provincial Hospital, Institute of Neurology, Sichuan Academy of Medical Sciences, Chengdu, China
| | - Yufei Liu
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Nanxing Wang
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yuting Yang
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Murad Al-Nusaif
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Sichuan Provincial Hospital, Institute of Neurology, Sichuan Academy of Medical Sciences, Chengdu, China
| |
Collapse
|