1
|
Jiang L, Huang L, Dai C, Zheng R, Miyake M, Mori Y, Nakao S, Morino K, Ymashiro K, Miao Y, Li Q, Ren W, Ye Z, Li H, Yang Z, Shi Y. Genome-Wide Association Analysis Identifies LILRB2 Gene for Pathological Myopia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308968. [PMID: 39207058 PMCID: PMC11516067 DOI: 10.1002/advs.202308968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/13/2024] [Indexed: 09/04/2024]
Abstract
Pathological myopia (PM) is one of the leading causes of blindness, especially in Asia. To identify the genetic risk factors of PM, a two-stage genome-wide association study (GWAS) and replication analysis in East Asian populations is conducted. The analysis identified LILRB2 in 19q13.42 as a new candidate locus for PM. The increased protein expression of LILRB2/Pirb (mouse orthologous protein) in PM patients and myopia mouse models is validated. It is further revealed that the increase in LILRB2/Pirb promoted fatty acid synthesis and lipid accumulation, leading to the destruction of choroidal function and the development of PM. This study revealed the association between LILRB2 and PM, uncovering the molecular mechanism of lipid metabolism disorders leading to the pathogenesis of PM due to LILRB2 upregulation.
Collapse
Affiliation(s)
- Lingxi Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical GeneticsDepartment of Laboratory MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuan610072China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduSichuan610072China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical GeneticsDepartment of Laboratory MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuan610072China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduSichuan610072China
| | - Chao Dai
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical GeneticsDepartment of Laboratory MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuan610072China
| | - Rui Zheng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical GeneticsDepartment of Laboratory MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuan610072China
| | - Masahiro Miyake
- Department of Ophthalmology and Visual SciencesKyoto University Graduate School of MedicineKyoto606‐8501Japan
| | - Yuki Mori
- Department of Ophthalmology and Visual SciencesKyoto University Graduate School of MedicineKyoto606‐8501Japan
| | - Shin‐ya Nakao
- Department of Ophthalmology and Visual SciencesKyoto University Graduate School of MedicineKyoto606‐8501Japan
| | - Kazuya Morino
- Department of Ophthalmology and Visual SciencesKyoto University Graduate School of MedicineKyoto606‐8501Japan
| | - Kenji Ymashiro
- Department of Ophthalmology and Visual SciencesKyoto University Graduate School of MedicineKyoto606‐8501Japan
| | - Yang‐Bao Miao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical GeneticsDepartment of Laboratory MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuan610072China
| | - Qi Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical GeneticsDepartment of Laboratory MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuan610072China
| | - Weiming Ren
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical GeneticsDepartment of Laboratory MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuan610072China
| | - Zimeng Ye
- School of MedicineUniversity of SydneyCamperdownNSW2050Australia
| | - Hongjing Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical GeneticsDepartment of Laboratory MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuan610072China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduSichuan610072China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical GeneticsDepartment of Laboratory MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuan610072China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduSichuan610072China
- Jinfeng Laboratory, Chongqing, ChinaChongqing400000China
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical GeneticsDepartment of Laboratory MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuan610072China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduSichuan610072China
| |
Collapse
|
2
|
Tang T, Ren C, Cai Y, Li Y, Wang K, Zhao M. Lifelong Changes in the Choroidal Thickness, Refractive Status, and Ocular Dimensions in C57BL/6J Mouse. Invest Ophthalmol Vis Sci 2024; 65:26. [PMID: 39422919 PMCID: PMC11500047 DOI: 10.1167/iovs.65.12.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/25/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose To investigate the changes in choroidal thickness (ChT), refractive status, and ocular dimensions in the mouse eye in vivo using updated techniques and instrumentation. Methods High-resolution swept-source optical coherence tomography (SS-OCT), eccentric infrared photoretinoscopy, and custom real-time optical coherence tomography were used to analyze choroidal changes, refractive changes and ocular growth in C57BL/6J mice from postnatal day (P) 21 to month 22. Results The ChT gradually increased with age, with the thickest region in the para-optic nerve head and thinning outward, and the temporal ChT was globally thicker than the nasal ChT. Retinal thickness remained stable until 4 months and subsequently decreased. The average spherical equivalent refraction error was -4.81 ± 2.71 diopters (D) at P21, which developed into emmetropia by P32, reached a hyperopic peak (+5.75 ± 1.38 D) at P82 and returned to +0.66 ± 1.86 D at 22 months. Central corneal thickness, anterior chamber depth, lens thickness, and axial length (AL) increased continuously before 4 months, but subsequently exhibited subtle changes. Vitreous chamber depth decreased with lens growth. ChT was correlated significantly with the ocular parameters (except for retinal thickness) before the age of 4 months, but these correlations diminished after 4 months. Furthermore, for mice younger than 4 months, the difference in the ChT, especially temporal ChT, between the two eyes contributed most to that of axial length and spherical equivalent refraction error. Conclusions Four months could be a watershed age in the growth of mouse eyes. Large-span temporal recordings of refraction, ocular dimensions, and choroidal changes provided references for the study of the physiological and pathological mechanisms responsible for myopia.
Collapse
Affiliation(s)
- Tao Tang
- Department of Ophthalmology & Clinical Centre of Optometry, Peking University People's Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
- Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of the Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Chi Ren
- Department of Ophthalmology & Clinical Centre of Optometry, Peking University People's Hospital, Beijing, China
- Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of the Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Yi Cai
- Department of Ophthalmology & Clinical Centre of Optometry, Peking University People's Hospital, Beijing, China
- Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of the Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Yan Li
- Department of Ophthalmology & Clinical Centre of Optometry, Peking University People's Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
- Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of the Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Kai Wang
- Department of Ophthalmology & Clinical Centre of Optometry, Peking University People's Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
- Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of the Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology & Clinical Centre of Optometry, Peking University People's Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
- Eye Disease and Optometry Institute, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of the Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| |
Collapse
|
3
|
Liu XN, Yap SEL, Chen XYE, Philip K, Naduvilath TJ, Sankaridurg PR. Late Bedtime and Altered Diurnal Axial Length Rhythms of the Eye. Curr Eye Res 2024:1-9. [PMID: 39229673 DOI: 10.1080/02713683.2024.2396383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
PURPOSE Affecting one-third of the population worldwide and increasing, the sight-threatening condition myopia is causing a significant socio-economic burden. To better understand its etiology, recent studies investigated the role of ocular and systemic rhythms, yet results are conflicting. Here we profiled 24-h variations of axial length of the eye and salivary melatonin concentration in young adults with and without myopia and explored the potential impacts of bedtime on these rhythms. METHODS A total of 25 healthy young adults (age 25.0 ± 4.8 years, 13 females) completed this study, including 13 myopes (mean spherical equivalent refractive error -2.93 ± 1.46 diopters) and 12 non-myopes (0.14 ± 0.42 diopters). Saliva sample collection and axial length measurements were repeated for seven times over 24 h starting from 8 am. Information on sleep and chronotype was collected at first visit with the Pittsburgh Sleep Quality Index and the Morningness-Eveningness Questionnaire. RESULTS Significant diurnal rhythms of axial length and salivary melatonin concentration were identified in both refractive groups (both p < 0.001), with no myopia-related rhythm difference (interaction of measurement time-point × myopia, p = 0.9). Late bedtime was associated with altered rhythms (p = 0.009) and smaller diurnal change (p = 0.01) in axial length. Elevated melatonin levels were observed in myopes (p = 0.006) and in late sleepers (p = 0.017). CONCLUSIONS These findings suggest that sleep/wake cycles may be involved in the regulation of axial length rhythms. Further research is needed to determine if there exists a causal relationship between the two.
Collapse
Affiliation(s)
- Xiao Nicole Liu
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- Brien Holden Vision Institute, Sydney, Australia
| | - Stephanie Ee Leen Yap
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Xiao-Yu Eric Chen
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Krupa Philip
- Brien Holden Vision Institute, Sydney, Australia
| | - Thomas John Naduvilath
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- Brien Holden Vision Institute, Sydney, Australia
| | - Padmaja R Sankaridurg
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
4
|
Wilmet B, Michiels C, Zhang J, Callebert J, Sahel JA, Picaud S, Audo I, Zeitz C. Loss of ON-Pathway Function in Mice Lacking Lrit3 Decreases Recovery From Lens-Induced Myopia. Invest Ophthalmol Vis Sci 2024; 65:18. [PMID: 39250117 PMCID: PMC11385651 DOI: 10.1167/iovs.65.11.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Purpose To determine whether the Lrit3-/- mouse model of complete congenital stationary night blindness with an ON-pathway defect harbors myopic features and whether the genetic defect influences the recovery from lens-induced myopia. Methods Retinal levels of dopamine (DA) and 3,4 dihydroxyphenylacetic acid (DOPAC) from adult isolated Lrit3-/- retinas were quantified using ultra performance liquid chromatography after light adaptation. Natural refractive development of Lrit3-/- mice was measured from three weeks to nine weeks of age using an infrared photorefractometer. Susceptibility to myopia induction was assessed using a lens-induced myopia protocol with -25 D lenses placed in front of the right eye of the animals for three weeks; the mean interocular shift was measured with an infrared photorefractometer after two and three weeks of goggling and after one and two weeks after removal of goggles. Results Compared to wild-type littermates (Lrit3+/+), both DA and DOPAC were drastically reduced in Lrit3-/- retinas. Natural refractive development was normal but Lrit3-/- mice showed a higher myopic shift and a lower ability to recover from induced myopia. Conclusions Our data consolidate the link between ON pathway defect altered dopaminergic signaling and myopia. We document for the first time the role of ON pathway on the recovery from myopia induction.
Collapse
Affiliation(s)
- Baptiste Wilmet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Jingyi Zhang
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jacques Callebert
- Service of Biochemistry and Molecular Biology, INSERM U942, Hospital Lariboisière, Paris, France
| | - José Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburg, PA, United States
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
5
|
Wang K, Han G, Hao R. Advances in the study of the influence of photoreceptors on the development of myopia. Exp Eye Res 2024; 245:109976. [PMID: 38897270 DOI: 10.1016/j.exer.2024.109976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
This review examines the pivotal role of photoreceptor cells in ocular refraction development, focusing on dopamine (DA) as a key neurotransmitter. Contrary to the earlier view favoring cone cells, recent studies have highlighted the substantial contributions of both rod and cone cells to the visual signaling pathways that influence ocular refractive development. Notably, rod cells appeared to play a central role. Photoreceptor cells interact intricately with circadian rhythms, color vision pathways, and other neurotransmitters, all of which are crucial for the complex mechanisms driving the development of myopia. This review emphasizes that ocular refractive development results from a coordinated interplay between diverse cell types, signaling pathways, and neurotransmitters. This perspective has significant implications for unraveling the complex mechanisms underlying myopia and aiding in the development of more effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Kailei Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, PR China; Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin, 300020, PR China
| | - Guoge Han
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, PR China; Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin, 300020, PR China; Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, PR China.
| | - Rui Hao
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, PR China; Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Hospital, Tianjin, 300020, PR China; Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, 300020, PR China.
| |
Collapse
|
6
|
Rodriguez NG, Claici AO, Ramos-Castaneda JA, González-Zamora J, Bilbao-Malavé V, de la Puente M, Fernandez-Robredo P, Garzón-Parra SJ, Garza-Leon M, Recalde S. Conjunctival ultraviolet autofluorescence as a biomarker of outdoor exposure in myopia: a systematic review and meta-analysis. Sci Rep 2024; 14:1097. [PMID: 38212604 PMCID: PMC10784576 DOI: 10.1038/s41598-024-51417-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Outdoor exposure is considered the primary modifiable risk factor in preventing the development of myopia. This effect is thought to be attributed to the light-induced synthesis and release of dopamine in the retina. However, until recent years, there was no objective quantifiable method available to measure the association between time spent outdoors and myopia. It is only recently that the conjunctival ultraviolet autofluorescence (CUVAF) area, serving as a biomarker for sun exposure, has begun to be utilized in numerous studies. To provide a comprehensive summary of the relevant evidence pertaining to the association between the CUVAF area and myopia across different geographic regions and age groups, a systematic review and meta-analysis were conducted. The search encompassed multiple databases, including MEDLINE, SCIENCE DIRECT, GOOGLE SCHOLAR, WEB OF SCIENCE, and SCOPUS, and utilized specific search terms such as "conjunctival ultraviolet autofluorescence", "CUVAF", "UVAF", "objective marker of ocular sun exposure", "myopia", "degenerative myopia", and "high myopia". The bibliographic research included papers published between the years 2006 and 2022. A total of 4051 records were initially identified, and after duplicates were removed, 49 articles underwent full-text review. Nine articles were included in the systematic review. These studies covered myopia and outdoor exposure across different regions (Australia, Europe and India) with a total population of 3615 individuals. They found that myopes generally had smaller CUVAF areas compared to non-myopes. The meta-analysis confirmed this, revealing statistically smaller CUVAF areas in myopic patients, with a mean difference of - 3.30 mm2 (95% CI - 5.53; - 1.06). Additionally, some studies showed a positive correlation between more outdoor exposure and larger CUVAF areas. In terms of outdoor exposure time, myopic patients reported less time outdoors than non-myopic individuals, with a mean difference of - 3.38 h/week (95% CI - 4.66; - 2.09). Overall, these findings highlight the connection between outdoor exposure, CUVAF area and myopia, with regional variations playing a significant role. The results of this meta-analysis validate CUVAF as a quantitative method to objectively measure outdoor exposure in relation with myopia development.
Collapse
Grants
- 01/0022-23 Doctoral fellowship funded by Miniciencias Bogotá, Colombia.
- PI20/00251 Instituto de Salud Carlos III through the project Co-funded by European Regional Development Fund "A way to make Europe"
- CUN 2019 Multiópticas
- (RD21/0017/0027) Redes de Investigación Cooperativa Orientadas al Resultado en Salud (RICORS) de Terapias avanzadas , Enfermedades Inflamatorias and Enfermedades vasculares cerebrales , Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III
- (RD21/0002/0010) Redes de Investigación Cooperativa Orientadas al Resultado en Salud (RICORS) de Terapias avanzadas , Enfermedades Inflamatorias and Enfermedades vasculares cerebrales , Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III
- (RD21/0006/0008) Redes de Investigación Cooperativa Orientadas al Resultado en Salud (RICORS) de Terapias avanzadas , Enfermedades Inflamatorias and Enfermedades vasculares cerebrales , Ministerio de Ciencia, Innovación y Universidades, Instituto de Salud Carlos III
- 01-20/21 Fundación Jesús Gangoiti Barrera
- Instituto de Salud Carlos III through the project Co-funded by European Regional Development Fund “A way to make Europe”
Collapse
Affiliation(s)
- Natali Gutierrez Rodriguez
- Grupo de Investigación en Optometría-Facultad de Optometría de la Universidad Antonio Nariño, Bogotá, Colombia
| | - Aura Ortega Claici
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, Pamplona, Spain
- Faculty of Medicine, Universidad de Navarra, Pamplona, Spain
| | - Jorge A Ramos-Castaneda
- Research Group Innovación y Cuidado, Faculty of Nursing, Universidad Antonio Nariño, Neiva, Colombia
| | - Jorge González-Zamora
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, Pamplona, Spain
- Department of Ophthalmology, Clínica Universidad de Navarra, Madrid, Spain
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
| | - Valentina Bilbao-Malavé
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, Pamplona, Spain
- Department of Ophthalmology, Bellvitge University Hospital, Barcelona, Spain
| | - Miriam de la Puente
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, Pamplona, Spain
- Department of Ophthalmology, Clínica Universidad de Navarra, Madrid, Spain
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
| | - Patricia Fernandez-Robredo
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, Pamplona, Spain
- Department of Ophthalmology, Clínica Universidad de Navarra, Madrid, Spain
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain
| | - Sandra Johanna Garzón-Parra
- Grupo de Investigación en Optometría-Facultad de Optometría de la Universidad Antonio Nariño, Bogotá, Colombia
| | - Manuel Garza-Leon
- Clinical Science Department, Science of Health Division, University of Monterrey, San Pedro Garza García, Nuevo León, México
| | - Sergio Recalde
- Retinal Pathologies and New Therapies Group, Experimental Ophthalmology Laboratory, Department of Ophthalmology, Clinica Universidad de Navarra, Pamplona, Spain.
- Department of Ophthalmology, Clínica Universidad de Navarra, Madrid, Spain.
- Navarra Institute for Health Research, IdiSNA, Pamplona, Spain.
| |
Collapse
|
7
|
Tapia F, Peñaloza V, Silva-Olivares F, Sotomayor-Zárate R, Schmachtenberg O, Vielma AH. Glucagon Increases Retinal Rod Bipolar Cell Inhibition Through a D1 Dopamine Receptor-Dependent Pathway That Is Altered After Lens-Defocus Treatment in Mice. Invest Ophthalmol Vis Sci 2024; 65:46. [PMID: 38289613 PMCID: PMC10840015 DOI: 10.1167/iovs.65.1.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Purpose Members of the secretin/glucagon family have diverse roles in retinal physiological and pathological conditions. Out of them, glucagon has been associated with eye growth regulation and image defocus signaling in the eye, both processes central in myopia induction. On the other hand, dopamine is perhaps the most studied molecule in myopia and has been proposed as fundamental in myopia pathogenesis. However, glucagonergic activity in the mammalian retina and its possible link with dopaminergic signaling remain unknown. Methods To corroborate whether glucagon and dopamine participate together in the modulation of synaptic activity in the retina, inhibitory post-synaptic currents were measured in rod bipolar cells from retinal slices of wild type and negative lens-exposed mice, using whole cell patch-clamp recordings and selective pharmacology. Results Glucagon produced an increase of inhibitory post-synaptic current frequency in rod bipolar cells, which was also dependent on dopaminergic activity, as it was abolished by dopamine type 1 receptor antagonism and under scotopic conditions. The effect was also abolished after 3-week negative lens-exposure but could be recovered using dopamine type 1 receptor agonism. Conclusions Altogether, these results support a possible neuromodulatory role of glucagon in the retina of mammals as part of a dopaminergic activity-dependent synaptic pathway that is affected under myopia-inducing conditions.
Collapse
Affiliation(s)
- Felipe Tapia
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Valentín Peñaloza
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Francisco Silva-Olivares
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Alex H. Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
8
|
Cui Z, Huang Y, Chen X, Chen T, Hou X, Yu N, Li Y, Qiu J, Chen P, Yu K, Zhuang J. Identification of miR-671-5p and Its Related Pathways as General Mechanisms of Both Form-Deprivation and Lens-Induced Myopia in Mice. Curr Issues Mol Biol 2023; 45:2060-2072. [PMID: 36975502 PMCID: PMC10047131 DOI: 10.3390/cimb45030132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Animal models have been indispensable in shaping the understanding of myopia mechanisms, with form-deprivation myopia (FDM) and lens-induced myopia (LIM) being the most utilized. Similar pathological outcomes suggest that these two models are under the control of shared mechanisms. miRNAs play an important role in pathological development. Herein, based on two miRNA datasets (GSE131831 and GSE84220), we aimed to reveal the general miRNA changes involved in myopia development. After a comparison of the differentially expressed miRNAs, miR-671-5p was identified as the common downregulated miRNA in the retina. miR-671-5p is highly conserved and related to 40.78% of the target genes of all downregulated miRNAs. Moreover, 584 target genes of miR-671-5p are related to myopia, from which we further identified 8 hub genes. Pathway analysis showed that these hub genes are enriched in visual learning and extra-nuclear estrogen signaling. Furthermore, two of the hub genes are also targeted by atropine, which strongly supports a key role of miR-671-5p in myopic development. Finally, Tead1 was identified as a possible upstream regulator of miR-671-5p in myopia development. Overall, our study identified the general regulatory role of miR-671-5p in myopia as well as its upstream and downstream mechanisms and provided novel treatment targets, which might inspire future studies.
Collapse
Affiliation(s)
- Zedu Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuke Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Taiwei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiangtao Hou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Na Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jin Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Pei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
- Correspondence: (K.Y.); (J.Z.); Tel.: +86-20-6667-8735 (J.Z.); Fax: +86-20-8733-3271 (J.Z.)
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
- Correspondence: (K.Y.); (J.Z.); Tel.: +86-20-6667-8735 (J.Z.); Fax: +86-20-8733-3271 (J.Z.)
| |
Collapse
|
9
|
Wilmet B, Callebert J, Duvoisin R, Goulet R, Tourain C, Michiels C, Frederiksen H, Schaeffel F, Marre O, Sahel JA, Audo I, Picaud S, Zeitz C. Mice Lacking Gpr179 with Complete Congenital Stationary Night Blindness Are a Good Model for Myopia. Int J Mol Sci 2022; 24:ijms24010219. [PMID: 36613663 PMCID: PMC9820543 DOI: 10.3390/ijms24010219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Mutations in GPR179 are one of the most common causes of autosomal recessive complete congenital stationary night blindness (cCSNB). This retinal disease is characterized in patients by impaired dim and night vision, associated with other ocular symptoms, including high myopia. cCSNB is caused by a complete loss of signal transmission from photoreceptors to ON-bipolar cells. In this study, we hypothesized that the lack of Gpr179 and the subsequent impaired ON-pathway could lead to myopic features in a mouse model of cCSNB. Using ultra performance liquid chromatography, we show that adult Gpr179-/- mice have a significant decrease in both retinal dopamine and 3,4-dihydroxyphenylacetic acid, compared to Gpr179+/+ mice. This alteration of the dopaminergic system is thought to be correlated with an increased susceptibility to lens-induced myopia but does not affect the natural refractive development. Altogether, our data added a novel myopia model, which could be used to identify therapeutic interventions.
Collapse
Affiliation(s)
- Baptiste Wilmet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Correspondence: (B.W.); (C.Z.); Tel.: +33-1-53-46-25-26 (B.W.); +33-1-53-46-25-40 (C.Z.)
| | - Jacques Callebert
- Service of Biochemistry and Molecular Biology, INSERM U942, Hospital Lariboisière, AP-HP, 75010 Paris, France
| | - Robert Duvoisin
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ruben Goulet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Christophe Tourain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR8250, Paris Descartes University, 75270 Paris, France
| | - Christelle Michiels
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Frank Schaeffel
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4056 Basel, Switzerland
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, 72076 Tuebingen, Germany
- Zeiss Vision Lab, Ophthalmic Research Institute, University of Tuebingen, 72076 Tuebingen, Germany
| | - Olivier Marre
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - José Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, 75012 Paris, France
- Fondation Ophtalmologique Adolphe de Rothschild, 75019 Paris, France
- Académie des Sciences, Institut de France, 75006 Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DGOS CIC 1423, 75012 Paris, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
- Correspondence: (B.W.); (C.Z.); Tel.: +33-1-53-46-25-26 (B.W.); +33-1-53-46-25-40 (C.Z.)
| |
Collapse
|
10
|
Huang Y, Chen X, Zhuang J, Yu K. The Role of Retinal Dysfunction in Myopia Development. Cell Mol Neurobiol 2022:10.1007/s10571-022-01309-1. [DOI: 10.1007/s10571-022-01309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
|