1
|
Cho H, Park Y. Synergistic Antidepressant-like Effects of Biotics and n-3 Polyunsaturated Fatty Acids on Dopaminergic Pathway through the Brain-Gut Axis in Rats Exposed to Chronic Mild Stress. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10332-1. [PMID: 39243350 DOI: 10.1007/s12602-024-10332-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 09/09/2024]
Abstract
Probiotics, postbiotics, and n-3 polyunsaturated fatty acids (PUFA) have antidepressant-like effects. However, the underlying mechanisms of the dopaminergic pathway are unclear. The present study investigated the hypothesis that probiotics and postbiotics combined with n-3 PUFA synergistically improve depression by modulating the dopaminergic pathway through the brain-gut axis. Rats were randomly divided into seven groups: non-chronic mild stress (CMS) with n-6 PUFA, and CMS with n-6 PUFA, n-3 PUFA, probiotics, postbiotics, probiotics combined with n-3 PUFA, and postbiotics combined with n-3 PUFA. Probiotics, postbiotics, and n-3 PUFA improved depressive behaviors, decreased blood concentrations of interferon-γ, and interleukin-1β, and increased the brain and gut concentrations of short chain fatty acids and dopamine. Moreover, probiotics, postbiotics, and n-3 PUFA increased the brain and gut expression of glucocorticoid receptor and tyrosine hydroxylase; brain expression of l-type amino acid transporter 1 and dopamine receptor (DR) D1; and gut expression of DRD2. The expression of phosphorylated protein kinase A/protein kinase A and phosphorylated cAMP response element-binding protein/cAMP response element-binding protein increased in the brain, however, decreased in the gut by the supplementation of probiotics, postbiotics, and n-3 PUFA. There was synergistic effect of probiotics and postbiotics combined with n-3 PUFA on the depressive behaviors and dopaminergic pathway in blood, brain, and gut. Moreover, no significant difference in the dopaminergic pathways between the probiotics and postbiotics was observed. In conclusion, probiotics and postbiotics, combined with n-3 PUFA have synergistic antidepressant-like effects on the dopaminergic pathway through the brain-gut axis in rats exposed to CMS.
Collapse
Affiliation(s)
- Hyunji Cho
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea.
| |
Collapse
|
2
|
Tian H, Huang D, Wang J, Li H, Gao J, Zhong Y, Xia L, Zhang A, Lin Z, Ke X. The role of the "gut microbiota-mitochondria" crosstalk in the pathogenesis of multiple sclerosis. Front Microbiol 2024; 15:1404995. [PMID: 38741740 PMCID: PMC11089144 DOI: 10.3389/fmicb.2024.1404995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Multiple Sclerosis (MS) is a neurologic autoimmune disease whose exact pathophysiologic mechanisms remain to be elucidated. Recent studies have shown that the onset and progression of MS are associated with dysbiosis of the gut microbiota. Similarly, a large body of evidence suggests that mitochondrial dysfunction may also have a significant impact on the development of MS. Endosymbiotic theory has found that human mitochondria are microbial in origin and share similar biological characteristics with the gut microbiota. Therefore, gut microbiota and mitochondrial function crosstalk are relevant in the development of MS. However, the relationship between gut microbiota and mitochondrial function in the development of MS is not fully understood. Therefore, by synthesizing previous relevant literature, this paper focuses on the changes in gut microbiota and metabolite composition in the development of MS and the possible mechanisms of the crosstalk between gut microbiota and mitochondrial function in the progression of MS, to provide new therapeutic approaches for the prevention or reduction of MS based on this crosstalk.
Collapse
Affiliation(s)
- Huan Tian
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dunbing Huang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaqi Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huaqiang Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxin Gao
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Zhong
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Libin Xia
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhonghua Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Rehabilitation Medicine Center, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincia Hospital, Fuzhou, China
| | - Xiaohua Ke
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Peng HR, Qiu JQ, Zhou QM, Zhang YK, Chen QY, Yin YQ, Su W, Yu S, Wang YT, Cai Y, Gu MN, Zhang HH, Sun QQ, Hu G, Wu YW, Liu J, Chen S, Zhu ZJ, Song XY, Zhou JW. Intestinal epithelial dopamine receptor signaling drives sex-specific disease exacerbation in a mouse model of multiple sclerosis. Immunity 2023; 56:2773-2789.e8. [PMID: 37992711 DOI: 10.1016/j.immuni.2023.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/22/2023] [Accepted: 10/27/2023] [Indexed: 11/24/2023]
Abstract
Although the gut microbiota can influence central nervous system (CNS) autoimmune diseases, the contribution of the intestinal epithelium to CNS autoimmunity is less clear. Here, we showed that intestinal epithelial dopamine D2 receptors (IEC DRD2) promoted sex-specific disease progression in an animal model of multiple sclerosis. Female mice lacking Drd2 selectively in intestinal epithelial cells showed a blunted inflammatory response in the CNS and reduced disease progression. In contrast, overexpression or activation of IEC DRD2 by phenylethylamine administration exacerbated disease severity. This was accompanied by altered lysozyme expression and gut microbiota composition, including reduced abundance of Lactobacillus species. Furthermore, treatment with N2-acetyl-L-lysine, a metabolite derived from Lactobacillus, suppressed microglial activation and neurodegeneration. Taken together, our study indicates that IEC DRD2 hyperactivity impacts gut microbial abundances and increases susceptibility to CNS autoimmune diseases in a female-biased manner, opening up future avenues for sex-specific interventions of CNS autoimmune diseases.
Collapse
Affiliation(s)
- Hai-Rong Peng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Qian Qiu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China
| | - Qin-Ming Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu-Kai Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiao-Yu Chen
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yan-Qing Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wen Su
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shui Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ya-Ting Wang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuping Cai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China
| | - Ming-Na Gu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Hao-Hao Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qing-Qing Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Hu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yi-Wen Wu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Aging Studies, Shanghai 201210, China.
| | - Xin-Yang Song
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jia-Wei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China; Innovation Center of Neurodegeneration, School of Medicine, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
4
|
Kurnik-Łucka M, Latacz G, Bucki A, Rivera-Meza M, Khan N, Konwar J, Skowron K, Kołaczkowski M, Gil K. Neuroprotective Activity of Enantiomers of Salsolinol and N-Methyl-( R)-salsolinol: In Vitro and In Silico Studies. ACS OMEGA 2023; 8:38566-38576. [PMID: 37867702 PMCID: PMC10586258 DOI: 10.1021/acsomega.3c05527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023]
Abstract
Salsolinol (1-methyl-1,2,3,4-tetrahydroisoquinoline-6,7-diol) is a close structural analogue of dopamine with an asymmetric center at the C1 position, and its presence in vivo, both in humans and rodents, has already been proven. Yet, given the fact that salsolinol colocalizes with dopamine-rich regions and was first detected in the urine of Parkinson's disease patients, its direct role in the process of neurodegeneration has been proposed. Here, we report that R and S enantiomers of salsolinol, which we purified from commercially available racemic mixture by means of high-performance liquid chromatography, exhibited neuroprotective properties (at the concentration of 50 μM) toward the human dopaminergic SH-SY5Y neuroblastoma cell line. Furthermore, within the study, we observed no toxic effect of N-methyl-(R)-salsolinol on SH-SY5Y neuroblastoma cells up to the concentration of 750 μM, either. Additionally, our molecular docking analysis showed that enantiomers of salsolinol should exhibit a distinct ability to interact with dopamine D2 receptors. Thus, we postulate that our results highlight the need to acknowledge salsolinol as an active dopamine metabolite and to further explore the neuroregulatory role of enantiomers of salsolinol.
Collapse
Affiliation(s)
- Magdalena Kurnik-Łucka
- Department
of Pathophysiology, Jagiellonian University
Medical College, 31-008 Krakow, Poland
| | - Gniewomir Latacz
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Adam Bucki
- Department
of Medicinal Chemistry, Jagiellonian University
Medical College, 31-008 Krakow, Poland
| | - Mario Rivera-Meza
- Laboratory
of Experimental Pharmacology, Faculty of Chemical Sciences and Pharmaceutical
Sciences, University of Chile, 8380494 Santiago, Chile
| | - Nadia Khan
- Department
of Pathophysiology, Jagiellonian University
Medical College, 31-008 Krakow, Poland
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Jahnobi Konwar
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Kamil Skowron
- Department
of Pathophysiology, Jagiellonian University
Medical College, 31-008 Krakow, Poland
| | - Marcin Kołaczkowski
- Department
of Medicinal Chemistry, Jagiellonian University
Medical College, 31-008 Krakow, Poland
| | - Krzysztof Gil
- Department
of Pathophysiology, Jagiellonian University
Medical College, 31-008 Krakow, Poland
| |
Collapse
|
5
|
Singh Y, Trautwein C, Romani J, Salker MS, Neckel PH, Fraccaroli I, Abeditashi M, Woerner N, Admard J, Dhariwal A, Dueholm MKD, Schäfer KH, Lang F, Otzen DE, Lashuel HA, Riess O, Casadei N. Overexpression of human alpha-Synuclein leads to dysregulated microbiome/metabolites with ageing in a rat model of Parkinson disease. Mol Neurodegener 2023; 18:44. [PMID: 37403161 DOI: 10.1186/s13024-023-00628-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/24/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Braak's hypothesis states that sporadic Parkinson's disease (PD) follows a specific progression of pathology from the peripheral to the central nervous system, and this progression can be monitored by detecting the accumulation of alpha-Synuclein (α-Syn) protein. Consequently, there is growing interest in understanding how the gut (commensal) microbiome can regulate α-Syn accumulation, as this could potentially lead to PD. METHODS We used 16S rRNA and shotgun sequencing to characterise microbial diversity. 1H-NMR was employed to understand the metabolite production and intestinal inflammation estimated using ELISA and RNA-sequencing from feces and the intestinal epithelial layer respectively. The Na+ channel current and gut permeability were measured using an Ussing chamber. Immunohistochemistry and immunofluorescence imaging were applied to detect the α-Syn protein. LC-MS/MS was used for characterization of proteins from metabolite treated neuronal cells. Finally, Metascape and Ingenuity Pathway Analysis (IPA) bioinformatics tools were used for identification of dysregulated pathways. RESULTS We studied a transgenic (TG) rat model overexpressing the human SNCA gene and found that a progressive gut microbial composition alteration characterized by the reduction of Firmicutes to Bacteroidetes ratio could be detected in the young TG rats. Interestingly, this ratio then increased with ageing. The dynamics of Lactobacillus and Alistipes were monitored and reduced Lactobacillus and increased Alistipes abundance was discerned in ageing TG rats. Additionally, the SNCA gene overexpression resulted in gut α-Syn protein expression and increased with advanced age. Further, older TG animals had increased intestinal inflammation, decreased Na+ current and a robust alteration in metabolite production characterized by the increase of succinate levels in feces and serum. Manipulation of the gut bacteria by short-term antibiotic cocktail treatment revealed a complete loss of short-chain fatty acids and a reduction in succinate levels. Although antibiotic cocktail treatment did not change α-Syn expression in the enteric nervous system of the colon, however, reduced α-Syn expression was detected in the olfactory bulbs (forebrain) of the TG rats. CONCLUSION Our data emphasize that the gut microbiome dysbiosis synchronous with ageing leads to a specific alteration of gut metabolites and can be modulated by antibiotics which may affect PD pathology.
Collapse
Affiliation(s)
- Yogesh Singh
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstaße 7, 72076, Tübingen, Germany.
- NGS Competence Centre Tübingen (NCCT), University of Tübingen, Calwerstaße 7, 72076, Tübingen, Germany.
- Research Institute of Women's Health, University of Tübingen, Calwerstaße 7/6, 72076, Tübingen, Germany.
| | - Christoph Trautwein
- Werner Siemens Imaging Centre (WSIC), Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Röntgenweg 13, 72076, Tübingen, Germany
| | - Joan Romani
- School of Life Sciences, Institute of Bioengineering, Laboratory of Molecular and Chemical Biology of Neurodegeneration, École Polytechnique Fédérale de Lausanne (EPFL), SV LMNN Station 19, 1015 CH, Lausanne, Switzerland
| | - Madhuri S Salker
- Research Institute of Women's Health, University of Tübingen, Calwerstaße 7/6, 72076, Tübingen, Germany
| | - Peter H Neckel
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Österbergstraße 3, 72074, Tübingen, Germany
| | - Isabel Fraccaroli
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstaße 7, 72076, Tübingen, Germany
| | - Mahkameh Abeditashi
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstaße 7, 72076, Tübingen, Germany
| | - Nils Woerner
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstaße 7, 72076, Tübingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstaße 7, 72076, Tübingen, Germany
| | - Achal Dhariwal
- Institute of Oral Biology, University of Oslo, Sognsvannsveien 10, 0316, Oslo, Norway
| | - Morten K D Dueholm
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Karl-Herbert Schäfer
- Enteric Nervous System Working Group, University of Applied Sciences Kaiserslautern, Zweibrücken Campus, Amerikastrasse 1, 66482, Zweibrücken, Germany
| | - Florian Lang
- Institute of Vegetative Physiology, University of Tübingen, Wilhelmstaße 56, 72074, Tübingen, Germany
| | - Daniel E Otzen
- Interdisciplinary Naonscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Hilal A Lashuel
- School of Life Sciences, Institute of Bioengineering, Laboratory of Molecular and Chemical Biology of Neurodegeneration, École Polytechnique Fédérale de Lausanne (EPFL), SV LMNN Station 19, 1015 CH, Lausanne, Switzerland
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstaße 7, 72076, Tübingen, Germany.
- NGS Competence Centre Tübingen (NCCT), University of Tübingen, Calwerstaße 7, 72076, Tübingen, Germany.
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Calwerstaße 7, 72076, Tübingen, Germany.
- NGS Competence Centre Tübingen (NCCT), University of Tübingen, Calwerstaße 7, 72076, Tübingen, Germany.
| |
Collapse
|
6
|
Gaeta AL, Willicott K, Willicott CW, McKay LE, Keogh CM, Altman TJ, Kimble LC, Yarbrough AL, Caldwell KA, Caldwell GA. Mechanistic impacts of bacterial diet on dopaminergic neurodegeneration in a Caenorhabditis elegans α-synuclein model of Parkinson's disease. iScience 2023; 26:106859. [PMID: 37260751 PMCID: PMC10227375 DOI: 10.1016/j.isci.2023.106859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/03/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
Failure of inherently protective cellular processes and misfolded protein-associated stress contribute to the progressive loss of dopamine (DA) neurons characteristic of Parkinson's disease (PD). A disease-modifying role for the microbiome has recently emerged in PD, representing an impetus to employ the soil-dwelling nematode, Caenorhabditis elegans, as a preclinical model to correlate changes in gene expression with neurodegeneration in transgenic animals grown on distinct bacterial food sources. Even under tightly controlled conditions, hundreds of differentially expressed genes and a robust neuroprotective response were discerned between clonal C. elegans strains overexpressing human alpha-synuclein in the DA neurons fed either one of only two subspecies of Escherichia coli. Moreover, this neuroprotection persisted in a transgenerational manner. Genetic analysis revealed a requirement for the double-stranded RNA (dsRNA)-mediated gene silencing machinery in conferring neuroprotection. In delineating the contribution of individual genes, evidence emerged for endopeptidase activity and heme-associated pathway(s) as mechanistic components for modulating dopaminergic neuroprotection.
Collapse
Affiliation(s)
- Anthony L. Gaeta
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Karolina Willicott
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Corey W. Willicott
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Luke E. McKay
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Candice M. Keogh
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Tyler J. Altman
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Logan C. Kimble
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Abigail L. Yarbrough
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kim A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
- Center for Convergent Bioscience and Medicine, The University of Alabama, Tuscaloosa, AL 35487, USA
- Alabama Research Institute on Aging, The University of Alabama, Tuscaloosa, AL 35487, USA
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center of Excellence for Basic Research in the Biology of Aging, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Guy A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
- Center for Convergent Bioscience and Medicine, The University of Alabama, Tuscaloosa, AL 35487, USA
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center of Excellence for Basic Research in the Biology of Aging, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Kasarello K, Cudnoch-Jedrzejewska A, Czarzasta K. Communication of gut microbiota and brain via immune and neuroendocrine signaling. Front Microbiol 2023; 14:1118529. [PMID: 36760508 PMCID: PMC9907780 DOI: 10.3389/fmicb.2023.1118529] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
The gastrointestinal tract of the human is inhabited by about 5 × 1013 bacteria (of about 1,000 species) as well as archaea, fungi, and viruses. Gut microbiota is known to influence the host organism, but the host may also affect the functioning of the microbiota. This bidirectional cooperation occurs in three main inter-organ signaling: immune, neural, and endocrine. Immune communication relies mostly on the cytokines released by the immune cells into circulation. Also, pathogen-associated or damage-associated molecular patterns (PAMPs or DAMPs) may enter circulation and affect the functioning of the internal organs and gut microbiota. Neural communication relies mostly on the direct anatomical connections made by the vagus nerve, or indirect connections via the enteric nervous system. The third pathway, endocrine communication, is the broadest one and includes the hypothalamic-pituitary-adrenal axis. This review focuses on presenting the latest data on the role of the gut microbiota in inter-organ communication with particular emphasis on the role of neurotransmitters (catecholamines, serotonin, gamma-aminobutyric acid), intestinal peptides (cholecystokinin, peptide YY, and glucagon-like peptide 1), and bacterial metabolites (short-chain fatty acids).
Collapse
|
8
|
Zhang Q, Xing W, Wang Q, Tang Z, Wang Y, Gao W. Gut microbiota-mitochondrial inter-talk in non-alcoholic fatty liver disease. Front Nutr 2022; 9:934113. [PMID: 36204383 PMCID: PMC9530335 DOI: 10.3389/fnut.2022.934113] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
The increasing prevalence of non-alcoholic fatty liver disease (NAFLD), which is a progressive disease, has exerted huge a healthcare burden worldwide. New investigations have suggested that the gut microbiota closely participates in the progression of NAFLD through the gut-liver axis or gut-brain-liver axis. The composition of the microbiota can be altered by multiple factors, primarily dietary style, nutritional supplements, or exercise. Recent evidence has revealed that gut microbiota is involved in mitochondrial biogenesis and energy metabolism in the liver by regulating crucial transcription factors, enzymes, or genes. Moreover, microbiota metabolites can also affect mitochondrial oxidative stress function and swallow formation, subsequently controlling the inflammatory response and regulating the levels of inflammatory cytokines, which are the predominant regulators of NAFLD. This review focuses on the changes in the composition of the gut microbiota and metabolites as well as the cross-talk between gut microbiota and mitochondrial function. We thus aim to comprehensively explore the potential mechanisms of gut microbiota in NAFLD and potential therapeutic strategies targeting NAFLD management.
Collapse
Affiliation(s)
- Qi Zhang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Wenmin Xing
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Qiao Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Zhan Tang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Yazhen Wang
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Wenyan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|