1
|
Hafkamp FJ, Tio RA, Otterspoor LC, de Greef T, van Steenbergen GJ, van de Ven ART, Smits G, Post H, van Veghel D. Optimal effectiveness of heart failure management - an umbrella review of meta-analyses examining the effectiveness of interventions to reduce (re)hospitalizations in heart failure. Heart Fail Rev 2022; 27:1683-1748. [PMID: 35239106 PMCID: PMC8892116 DOI: 10.1007/s10741-021-10212-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Heart failure (HF) is a major health concern, which accounts for 1-2% of all hospital admissions. Nevertheless, there remains a knowledge gap concerning which interventions contribute to effective prevention of HF (re)hospitalization. Therefore, this umbrella review aims to systematically review meta-analyses that examined the effectiveness of interventions in reducing HF-related (re)hospitalization in HFrEF patients. An electronic literature search was performed in PubMed, Web of Science, PsycInfo, Cochrane Reviews, CINAHL, and Medline to identify eligible studies published in the English language in the past 10 years. Primarily, to synthesize the meta-analyzed data, a best-evidence synthesis was used in which meta-analyses were classified based on level of validity. Secondarily, all unique RCTS were extracted from the meta-analyses and examined. A total of 44 meta-analyses were included which encompassed 186 unique RCTs. Strong or moderate evidence suggested that catheter ablation, cardiac resynchronization therapy, cardiac rehabilitation, telemonitoring, and RAAS inhibitors could reduce (re)hospitalization. Additionally, limited evidence suggested that multidisciplinary clinic or self-management promotion programs, beta-blockers, statins, and mitral valve therapy could reduce HF hospitalization. No, or conflicting evidence was found for the effects of cell therapy or anticoagulation. This umbrella review highlights different levels of evidence regarding the effectiveness of several interventions in reducing HF-related (re)hospitalization in HFrEF patients. It could guide future guideline development in optimizing care pathways for heart failure patients.
Collapse
Affiliation(s)
| | - Rene A. Tio
- Netherlands Heart Network, Veldhoven, The Netherlands
- Catharina Hospital, Eindhoven, The Netherlands
| | - Luuk C. Otterspoor
- Netherlands Heart Network, Veldhoven, The Netherlands
- Catharina Hospital, Eindhoven, The Netherlands
| | - Tineke de Greef
- Netherlands Heart Network, Veldhoven, The Netherlands
- Catharina Hospital, Eindhoven, The Netherlands
| | | | - Arjen R. T. van de Ven
- Netherlands Heart Network, Veldhoven, The Netherlands
- St. Anna Hospital, Geldrop, The Netherlands
| | - Geert Smits
- Netherlands Heart Network, Veldhoven, The Netherlands
- Primary care group Pozob, Veldhoven, The Netherlands
| | - Hans Post
- Netherlands Heart Network, Veldhoven, The Netherlands
- Catharina Hospital, Eindhoven, The Netherlands
| | - Dennis van Veghel
- Netherlands Heart Network, Veldhoven, The Netherlands
- Catharina Hospital, Eindhoven, The Netherlands
| |
Collapse
|
2
|
Akter F, Araf Y, Naser IB, Promon SK. Prospect of 3D bioprinting over cardiac cell therapy and conventional tissue engineering in the treatment of COVID-19 patients with myocardial injury. Regen Ther 2021; 18:447-456. [PMID: 34608441 PMCID: PMC8481096 DOI: 10.1016/j.reth.2021.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Due to multiple mutations of SARS-CoV-2, the mystery of defeating the virus is still unknown. Cardiovascular complications are one of the most concerning effects of COVID-19 recently, originating from direct and indirect mechanisms. These complications are associated with long-term Cardio-vascular diseases and can induce sudden cardiac death in both infected and recovered COVID-19 patients. The purpose of this research is to do a competitive analysis between conventional techniques with the upgraded alternative 3D bioprinting to replace the damaged portion of the myocardium. Additionally, this study focuses on the potential of 3D bioprinting to be a novel alternative. Finally, current challenges and future perspective of 3D bioprinting technique is briefly discussed.
Collapse
Affiliation(s)
- Fariya Akter
- Biotechnology Program, Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Iftekhar Bin Naser
- Biotechnology Program, Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | - Salman Khan Promon
- Department of Life Sciences, School of Environment and Life Sciences, Independent University, Bangladesh (IUB), Bashundhara, Dhaka, Bangladesh
| |
Collapse
|
3
|
Abstract
The last decade has witnessed the publication of a large number of clinical trials, primarily using bone marrow-derived stem cells as the injected cell. Much has been learned through these "first-generation" clinical trials. The considerable advances in our understanding include (1) cell therapy is safe, (2) cell therapy has been modestly effective, (3) the recognition that in humans bone marrow-derived stem cells do not transdifferentiate into cardiomyocytes or new blood vessels (or at least in sufficient numbers to have any effect). The primary mechanism of action for cell therapy is now believed to be through paracrine effects that include the release of cytokines, chemokines, and growth factors that inhibit apoptosis and fibrosis, enhance contractility, and activate endogenous regenerative mechanisms through endogenous circulating or site-specific stem cells. The new direction for clinical trials includes the use of stem cells capable of cardiac lineage, such as endogenous cardiac stem cells.
Collapse
|
4
|
Assmann A, Heke M, Kröpil P, Ptok L, Hafner D, Ohmann C, Martens A, Karluß A, Emmert MY, Kutschka I, Sievers HH, Klein HM. Laser-supported CD133+ cell therapy in patients with ischemic cardiomyopathy: initial results from a prospective phase I multicenter trial. PLoS One 2014; 9:e101449. [PMID: 25000346 PMCID: PMC4084817 DOI: 10.1371/journal.pone.0101449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/03/2014] [Indexed: 11/30/2022] Open
Abstract
Objectives This study evaluates the safety, principal feasibility and restoration potential of laser-supported CD133+ intramyocardial cell transplantation in patients with ischemic cardiomyopathy. Methods Forty-two patients with severe ischemic cardiomyopathy (left ventricular ejection fraction (LVEF) >15% and <35%) were included in this prospective multicenter phase I trial. They underwent coronary artery bypass grafting (CABG) with subsequent transepicardial low-energy laser treatment and autologous CD133+ cell transplantation, and were followed up for 12 months. To evaluate segmental myocardial contractility as well as perfusion and to identify the areas of scar tissue, cardiac MRI was performed at 6 months and compared to the preoperative baseline. In addition, clinical assessment comprising of CCS scoring, blood and physical examination was performed at 3, 6 and 12 months, respectively. Results Intraoperative cell isolation resulted in a mean cell count of 9.7±1.2×106. Laser treatment and subsequent CD133+ cell therapy were successfully and safely carried out in all patients and no procedure-related complications occurred. At 6 months, the LVEF was significantly increased (29.7±1.9% versus 24.6±1.5% with p = 0.004). In addition, freedom from angina was achieved, and quality of life significantly improved after therapy (p<0.0001). Interestingly, an extended area of transmural delayed enhancement (>3 myocardial segments) determined in the preoperative MRI was inversely correlated with a LVEF increase after laser-supported cell therapy (p = 0.024). Conclusions This multicenter trial demonstrates that laser-supported CD133+ cell transplantation is safe and feasible in patients with ischemic cardiomyopathy undergoing CABG, and in most cases, it appears to significantly improve the myocardial function. Importantly, our data show that the beneficial effect was significantly related to the extent of transmural delayed enhancement, suggesting that MRI-guided selection of patients is mandatory to ensure the effectiveness of the therapy. Trial Registration: EudraCT 2005-004051-35) Controlled-Trials.com ISRCTN49998633
Collapse
Affiliation(s)
- Alexander Assmann
- Department of Cardiovascular Surgery, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- Research Group for Experimental Surgery, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Michael Heke
- Department of Cardiovascular Surgery, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- Research Group for Experimental Surgery, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
| | - Patric Kröpil
- Department of Diagnostic and Interventional Radiology, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
| | - Lena Ptok
- Department of Cardiovascular Surgery, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
| | - Dieter Hafner
- Institute of Pharmacology and Clinical Pharmacology, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
| | - Christian Ohmann
- Coordination Centre for Clinical Trials, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
| | - Andreas Martens
- Clinic for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Antje Karluß
- Department of Cardiac and Thoracic Vascular Surgery, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Maximilian Y. Emmert
- Clinic for Cardiac and Vascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Ingo Kutschka
- Clinic for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Hans-Hinrich Sievers
- Department of Cardiac and Thoracic Vascular Surgery, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Hans-Michael Klein
- Department of Cardiovascular Surgery, Heinrich Heine University, Medical Faculty, Duesseldorf, Germany
- * E-mail:
| |
Collapse
|
5
|
Abstract
Although the adult mammalian heart was once believed to be a post-mitotic organ without any capacity for regeneration, recent findings have challenged this dogma. A modified view assigns to the mammalian heart a measurable capacity for regeneration throughout life. The ultimate goals of the cardiac regeneration field have been pursued by multiple strategies, including understanding the developmental biology of cardiomyocytes and cardiac stem and progenitor cells, applying chemical genetics, and engineering biomaterials and delivery methods that facilitate cell transplantation. Successful stimulation of endogenous regenerative capacity in injured adult mammalian hearts can benefit from studies of natural cardiac regeneration.
Collapse
Affiliation(s)
- Aurora Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Beatriz G. Gálvez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| |
Collapse
|
6
|
Francis DP, Mielewczik M, Zargaran D, Cole GD. Autologous bone marrow-derived stem cell therapy in heart disease: discrepancies and contradictions. Int J Cardiol 2013; 168:3381-403. [PMID: 23830344 DOI: 10.1016/j.ijcard.2013.04.152] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Autologous bone marrow stem cell therapy is the greatest advance in the treatment of heart disease for a generation according to pioneering reports. In response to an unanswered letter regarding one of the largest and most promising trials, we attempted to summarise the findings from the most innovative and prolific laboratory. METHOD AND RESULTS Amongst 48 reports from the group, there appeared to be 5 actual clinical studies ("families" of reports). Duplicate or overlapping reports were common, with contradictory experimental design, recruitment and results. Readers cannot always tell whether a study is randomised versus not, open-controlled or blinded placebo-controlled, or lacking a control group. There were conflicts in recruitment dates, criteria, sample sizes, million-fold differences in cell counts, sex reclassification, fractional numbers of patients and conflation of competitors' studies with authors' own. Contradictory results were also common. These included arithmetical miscalculations, statistical errors, suppression of significant changes, exaggerated description of own findings, possible silent patient deletions, fractional numbers of coronary arteries, identical results with contradictory sample sizes, contradictory results with identical sample sizes, misrepresented survival graphs and a patient with a negative NYHA class. We tabulate over 200 discrepancies amongst the reports. The 5 family-flagship papers (Strauer 2002, STAR, IACT, ABCD, BALANCE) have had 2665 citations. Of these, 291 citations were to the pivotal STAR or IACT-JACC papers, but 97% of their eligible citing papers did not mention any discrepancies. Five meta-analyses or systematic reviews covered these studies, but none described any discrepancies and all resolved uncertainties by undisclosed methods, in mutually contradictory ways. Meta-analysts disagreed whether some studies were randomised or "accepter-versus-rejecter". Our experience of presenting the discrepancies to journals is that readers may remain unaware of such problems. CONCLUSIONS Modern reporting of clinical research can still be imperfect. The scientific literature absorbs such reports largely uncritically. Even meta-analyses seem to resolve contradictions haphazardly. Discrepancies communicated to journals are not guaranteed to reach the scientific community. Journals could consider prioritising systematic reporting of queries even if seemingly minor, and establishing a policy of "habeas data".
Collapse
|
7
|
Shevchenko EK, Makarevich PI, Tsokolaeva ZI, Boldyreva MA, Sysoeva VY, Tkachuk VA, Parfyonova YV. Transplantation of modified human adipose derived stromal cells expressing VEGF165 results in more efficient angiogenic response in ischemic skeletal muscle. J Transl Med 2013; 11:138. [PMID: 23742074 PMCID: PMC3680170 DOI: 10.1186/1479-5876-11-138] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/29/2013] [Indexed: 01/21/2023] Open
Abstract
Background Modified cell-based angiogenic therapy has become a promising novel strategy for ischemic heart and limb diseases. Most studies focused on myoblast, endothelial cell progenitors or bone marrow mesenchymal stromal cells transplantation. Yet adipose-derived stromal cells (in contrast to bone marrow) are abundantly available and can be easily harvested during surgery or liposuction. Due to high paracrine activity and availability ADSCs appear to be a preferable cell type for cardiovascular therapy. Still neither genetic modification of human ADSC nor in vivo therapeutic potential of modified ADSC have been thoroughly studied. Presented work is sought to evaluate angiogenic efficacy of modified ADSCs transplantation to ischemic tissue. Materials and methods Human ADSCs were transduced using recombinant adeno-associated virus (rAAV) serotype 2 encoding human VEGF165. The influence of genetic modification on functional properties of ADSCs and their angiogenic potential in animal models were studied. Results We obtained AAV-modified ADSC with substantially increased secretion of VEGF (VEGF-ADSCs). Transduced ADSCs retained their adipogenic and osteogenic differentiation capacities and adhesion properties. The level of angiopoetin-1 mRNA was significantly increased in VEGF-ADSC compared to unmodified cells yet expression of FGF-2, HGF and urokinase did not change. Using matrigel implant model in mice it was shown that VEGF-ADSC substantially stimulated implant vascularization with paralleling increase of capillaries and arterioles. In murine hind limb ischemia test we found significant reperfusion and revascularization after intramuscular transplantation of VEGF-ADSC compared to controls with no evidence of angioma formation. Conclusions Transplantation of AAV-VEGF- gene modified hADSC resulted in stronger therapeutic effects in the ischemic skeletal muscle and may be a promising clinical treatment for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Evgeny K Shevchenko
- Laboratory of angiogenesis, Russian Cardiology Research and Production Complex, 3rd Cherepkovskaya 15A, Moscow, 121552, Russia.
| | | | | | | | | | | | | |
Collapse
|
8
|
Carvajal Monroy PL, Grefte S, Kuijpers-Jagtman AM, Wagener FADTG, Von den Hoff JW. Strategies to improve regeneration of the soft palate muscles after cleft palate repair. TISSUE ENGINEERING. PART B, REVIEWS 2012; 18:468-77. [PMID: 22697475 PMCID: PMC3696944 DOI: 10.1089/ten.teb.2012.0049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 06/12/2012] [Indexed: 12/13/2022]
Abstract
Children with a cleft in the soft palate have difficulties with speech, swallowing, and sucking. These patients are unable to separate the nasal from the oral cavity leading to air loss during speech. Although surgical repair ameliorates soft palate function by joining the clefted muscles of the soft palate, optimal function is often not achieved. The regeneration of muscles in the soft palate after surgery is hampered because of (1) their low intrinsic regenerative capacity, (2) the muscle properties related to clefting, and (3) the development of fibrosis. Adjuvant strategies based on tissue engineering may improve the outcome after surgery by approaching these specific issues. Therefore, this review will discuss myogenesis in the noncleft and cleft palate, the characteristics of soft palate muscles, and the process of muscle regeneration. Finally, novel therapeutic strategies based on tissue engineering to improve soft palate function after surgical repair are presented.
Collapse
Affiliation(s)
- Paola L Carvajal Monroy
- Department of Orthodontics and Craniofacial Biology, at the Nijmegen Centre for Molecular Life Sciences of the Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Marsano A, Maidhof R, Luo J, Fujikara K, Konofagou EE, Banfi A, Vunjak-Novakovic G. The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction. Biomaterials 2012; 34:393-401. [PMID: 23083931 DOI: 10.1016/j.biomaterials.2012.09.038] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/17/2012] [Indexed: 12/16/2022]
Abstract
Key requirements for cardiac tissue engineering include the maintenance of cell viability and function and the establishment of a perfusable vascular network in millimeters thick and compact cardiac constructs upon implantation. We investigated if these requirements can be met by providing an intrinsic vascularization stimulus (via sustained action of VEGF secreted at a controlled rate by transduced myoblasts) to a cardiac patch engineered under conditions of effective oxygen supply (via medium flow through channeled elastomeric scaffolds seeded with neonatal cardiomyocytes). We demonstrate that this combined approach resulted in increased viability, vascularization and functionality of the cardiac patch. After implantation in a mouse model of myocardial infarction, VEGF-expressing patches displayed significantly improved engraftment, survival and differentiation of cardiomyocytes, leading to greatly enhanced contractility as compared to controls not expressing VEGF. Controlled VEGF expression also mediated the formation of mature vascular networks, both within the engineered patches and in the underlying ischemic myocardium. We propose that this combined cell-biomaterial approach can be a promising strategy to engineer cardiac patches with intrinsic and extrinsic vascularization potential.
Collapse
Affiliation(s)
- Anna Marsano
- Columbia University, Department of Biomedical Engineering, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Wen Y, Meng L, Ding Y, Ouyang J. Autologous transplantation of blood-derived stem/progenitor cells for ischaemic heart disease. Int J Clin Pract 2011; 65:858-65. [PMID: 21762310 DOI: 10.1111/j.1742-1241.2011.02715.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIMS Early clinical trials suggest that blood-derived stem/progenitor cells (including peripheral blood-derived stem cells and circulating progenitor cells) may have a positive impact on patients with ischaemic heart disease (IHD). The therapeutic effects of these cells remain unclear, considering the inconsistent results of several clinical trials. The objective of this meta-analysis was to evaluate the effects of autologous blood-derived stem/progenitor cells on improvement of cardiac functional parameters on the basis of a synthesis of the data generated by randomised controlled clinical trials (RCTs) of patients with IHD. METHODS Randomised controlled clinical trials were identified in the MEDLINE, the Cochrane Central Register of Controlled Trials, EBSCO, EMBASE, reviews and reference lists of relevant articles. All searching was completed on 12 January 2011. Weighted mean difference was calculated for changes in left ventricular ejection fraction (LVEF), left ventricular end-diastolic and end-systolic volumes (LVEDV and LVESV) using a fixed effects model. RESULTS Of the 1587 citations identified in the literature search, six RCTs were finally analysed. Compared with controls, blood-derived stem/progenitor cells infusion was safe and improved LVEF by 3.72% (95% CI: 1.98-5.46%; p < 0.0001). However, no significant improvement in LVEDV and LVESV at follow-up was observed. CONCLUSIONS Available evidence showed moderate improvements over conventional therapy in LVEF of blood-derived stem/progenitor cells transplantation in patients with IHD, and supports further RCTs with higher quality.
Collapse
Affiliation(s)
- Y Wen
- Department of Pathology, Nanjing University Medical School, Nanjing, China
| | | | | | | |
Collapse
|