1
|
Helm BM, Ayers MD, Kean AC. All Along the Watchtower: a Case of Long QT Syndrome Misdiagnosis Secondary to Genetic Testing Misinterpretation. J Genet Couns 2018; 27:1515-1522. [DOI: 10.1007/s10897-018-0287-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/02/2018] [Indexed: 11/29/2022]
|
2
|
The Genetic Counselor in the Pediatric Arrhythmia Clinic: Review and Assessment of Services. J Genet Couns 2017; 27:558-564. [DOI: 10.1007/s10897-017-0169-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
|
3
|
Sefa Okten M, Tuluce K, Yakar Tuluce S, Kilic S, Soner Kemal H, Sayin A, Vuran O, Yagmur B, Mutlu I, Simsek E, Soydas Cinar C, Gurgun C. Screening first-degree relatives of patients with idiopathic dilated cardiomyopathy. Herz 2016; 42:669-676. [DOI: 10.1007/s00059-016-4498-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/30/2016] [Accepted: 10/13/2016] [Indexed: 11/30/2022]
|
4
|
Gigli M, Begay RL, Morea G, Graw SL, Sinagra G, Taylor MRG, Granzier H, Mestroni L. A Review of the Giant Protein Titin in Clinical Molecular Diagnostics of Cardiomyopathies. Front Cardiovasc Med 2016; 3:21. [PMID: 27493940 PMCID: PMC4954824 DOI: 10.3389/fcvm.2016.00021] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/27/2016] [Indexed: 12/17/2022] Open
Abstract
Titin (TTN) is known as the largest sarcomeric protein that resides within the heart muscle. Due to alternative splicing of TTN, the heart expresses two major isoforms (N2B and N2BA) that incorporate four distinct regions termed the Z-line, I-band, A-band, and M-line. Next-generation sequencing allows a large number of genes to be sequenced simultaneously and provides the opportunity to easily analyze giant genes such as TTN. Mutations in the TTN gene can cause cardiomyopathies, in particular dilated cardiomyopathy (DCM). DCM is the most common form of cardiomyopathy, and it is characterized by systolic dysfunction and dilation of the left ventricle. TTN truncating variants have been described as the most common cause of DCM, while the real impact of TTN missense variants in the pathogenesis of DCM is still unclear. In a recent population screening study, rare missense variants potentially pathogenic based on bioinformatic filtering represented only 12.6% of the several hundred rare TTN missense variants found, suggesting that missense variants are very common in TTN and are frequently benign. The aim of this review is to understand the clinical role of TTN mutations in DCM and in other cardiomyopathies. Whereas TTN truncations are common in DCM, there is evidence that TTN truncations are rare in the hypertrophic cardiomyopathy (HCM) phenotype. Furthermore, TTN mutations can also cause arrhythmogenic right ventricular cardiomyopathy (ARVC) with distinct clinical features and outcomes. Finally, the identification of a rare TTN missense variant cosegregating with the restrictive cardiomyopathy (RCM) phenotype suggests that TTN is a novel disease-causing gene in this disease. Clinical diagnostic testing is currently able to analyze over 100 cardiomyopathy genes, including TTN; however, the size and presence of extensive genetic variation in TTN presents clinical challenges in determining significant disease-causing mutations. This review discusses the current knowledge of TTN genetic variations in cardiomyopathies and the impact of the diagnosis of TTN pathogenic mutations in the clinical setting.
Collapse
Affiliation(s)
- Marta Gigli
- Adult Medical Genetics Program, Cardiovascular Institute, University of Colorado Denver, Aurora, CO, USA; Department of Cardiology, Hospital and University of Trieste, Trieste, Italy
| | - Rene L Begay
- Adult Medical Genetics Program, Cardiovascular Institute, University of Colorado Denver , Aurora, CO , USA
| | - Gaetano Morea
- Adult Medical Genetics Program, Cardiovascular Institute, University of Colorado Denver, Aurora, CO, USA; Department of Cardiology, Hospital and University of Trieste, Trieste, Italy
| | - Sharon L Graw
- Adult Medical Genetics Program, Cardiovascular Institute, University of Colorado Denver , Aurora, CO , USA
| | - Gianfranco Sinagra
- Department of Cardiology, Hospital and University of Trieste , Trieste , Italy
| | - Matthew R G Taylor
- Adult Medical Genetics Program, Cardiovascular Institute, University of Colorado Denver , Aurora, CO , USA
| | - Henk Granzier
- Molecular Cardiovascular Research Program, University of Arizona , Tucson, AZ , USA
| | - Luisa Mestroni
- Adult Medical Genetics Program, Cardiovascular Institute, University of Colorado Denver , Aurora, CO , USA
| |
Collapse
|
5
|
|
6
|
Affiliation(s)
- Virginie Beauséjour Ladouceur
- Department of Pediatric Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Adult/Pediatric Cardiovascular Genetics, Boston Children's Hospital and Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
7
|
Rasmussen LV. The electronic health record for translational research. J Cardiovasc Transl Res 2014; 7:607-14. [PMID: 25070682 DOI: 10.1007/s12265-014-9579-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/15/2014] [Indexed: 02/02/2023]
Abstract
With growing adoption and use, the electronic health record (EHR) represents a rich source of clinical data that also offers many benefits for secondary use in biomedical research. Such benefits include access to a more comprehensive medical history, cost reductions, and increased efficiency in conducting research, as well as opportunities to evaluate new and expanded populations for sufficient statistical power. Existing work utilizing EHR data has uncovered some complexities and considerations for their use but, more importantly, has also generated practical lessons and solutions. Given an understanding of EHR data use in cardiovascular research, expanded adoption of this data source offers great potential to further transform the research landscape.
Collapse
Affiliation(s)
- Luke V Rasmussen
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA,
| |
Collapse
|
8
|
Sturm AC. The Role of Genetic Counselors for Patients with Familial Hypercholesterolemia. CURRENT GENETIC MEDICINE REPORTS 2014. [DOI: 10.1007/s40142-014-0036-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Cemin R, Janardhanan R, Donazzan L, Daves M. Peripartum cardiomyopathy: moving towards a more central role of genetics. Curr Cardiol Rev 2014; 9:179-84. [PMID: 23909634 PMCID: PMC3780342 DOI: 10.2174/1573403x113099990029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 12/12/2012] [Indexed: 11/22/2022] Open
Abstract
Peripartum cardiomyopathy (PCM) is a relatively rare disease with potentially devasting consequences requiring prompt identification and correct treatment. Overall prognosis is good in majority of the cases, although some patients may progress to irreversible heart failure. Early diagnosis is important and effective treatment reduces mortality rates and increases the chance of complete recovery of ventricular systolic function. The aetiology and pathogenesis seems to be multifactorial and poorly understood, with the available literature rather conflicting. In recent years, there has been increased interest in the role played by genetic predisposition in the development of PCM. It probably develops as a result of a complex interaction of pregnancy-associated factors and genetic factors and recently there have been many observations pointing out the central role played by a genetic predisposition. The direct and indirect observations on genetic susceptibility may offer new insights into the pathogenesis of PCM. However, larger studies are needed before advising routine genetic testing in these patients.
Collapse
Affiliation(s)
- Roberto Cemin
- Department of Cardiology, San Maurizio Regional Hospital of Bolzano, Italy.
| | | | | | | |
Collapse
|
10
|
Using genetic testing to guide therapeutic decisions in cardiomyopathy. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2013; 15:387-96. [PMID: 23794152 DOI: 10.1007/s11936-013-0252-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OPINION STATEMENT Genetic analysis of human cardiomyopathy has rapidly transitioned from a strictly research endeavor to a diagnostic tool readily available to clinicians across the globe. In contemporary practice, genetic testing improves the efficiency of family evaluations and clarifies the etiology of ambiguous clinical presentations. The great promise of genetic diagnosis is to enable preventative therapies for individuals at high risk of future disease development, a strategy that is under active clinical investigation. However, in the present and future, careful interpretation of DNA sequence variation is critical, and can be ensured by referral to a specialized cardiovascular genetics clinic.
Collapse
|
11
|
Abstract
The heritable cardiomyopathies are relatively common conditions that can lead to heart failure and sudden cardiac death. Family history collection, genetic testing and genetic counseling are recommended for these patients and families in multiple practice guidelines and consensus statements. Research discoveries and rapidly dropping costs of DNA sequencing technologies have resulted in the availability of multiple cardiomyopathy genetic testing panels. Genetic testing not only helps in determining the underlying etiology of idiopathic and familial cardiomyopathies, but is also a powerful tool in the determination of which relatives are at-risk and which are not. Both pre- and post-test genetic counseling is an imperative component of genetic testing, as there are many benefits and limitations of genetic testing that need discussed with each patient undergoing this process.
Collapse
Affiliation(s)
- Amy Curry Sturm
- Division of Human Genetics, Internal Medicine, Wexner Medical Center at The Ohio State University, 2001 Polaris Parkway, Columbus, OH 43240, USA.
| |
Collapse
|
12
|
|
13
|
Kassem HS, Girolami F, Sanoudou D. Molecular genetics made simple. Glob Cardiol Sci Pract 2012; 2012:6. [PMID: 25610837 PMCID: PMC4239820 DOI: 10.5339/gcsp.2012.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/01/2012] [Indexed: 01/24/2023] Open
Abstract
Genetics have undoubtedly become an integral part of biomedical science and clinical practice, with important implications in deciphering disease pathogenesis and progression, identifying diagnostic and prognostic markers, as well as designing better targeted treatments. The exponential growth of our understanding of different genetic concepts is paralleled by a growing list of genetic terminology that can easily intimidate the unfamiliar reader. Rendering genetics incomprehensible to the clinician however, defeats the very essence of genetic research: its utilization for combating disease and improving quality of life. Herein we attempt to correct this notion by presenting the basic genetic concepts along with their usefulness in the cardiology clinic. Bringing genetics closer to the clinician will enable its harmonious incorporation into clinical care, thus not only restoring our perception of its simple and elegant nature, but importantly ensuring the maximal benefit for our patients.
Collapse
Affiliation(s)
- Heba Sh Kassem
- Pathology Department and Clinical Genomics Center, Alexandria Faculty of Medicine, Egypt ; Magdi Yacoub Foundation Serving Egypt, Egypt
| | | | - Despina Sanoudou
- Department of Pharmacology, Medical School, University of Athens, Greece
| |
Collapse
|
14
|
Hershberger RE, Siegfried JD. Update 2011: clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol 2011; 57:1641-9. [PMID: 21492761 DOI: 10.1016/j.jacc.2011.01.015] [Citation(s) in RCA: 265] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 12/27/2010] [Accepted: 01/31/2011] [Indexed: 11/19/2022]
Abstract
A great deal of progress has recently been made in the discovery and understanding of the genetics of familial dilated cardiomyopathy (FDC). A consensus has emerged that with a new diagnosis of idiopathic dilated cardiomyopathy (IDC), the clinical screening of first-degree family members will reveal FDC in at least 20% to 35% of those family members. Point mutations in 31 autosomal and 2 X-linked genes representing diverse gene ontogeny have been implicated in causing FDC but account for only 30% to 35% of genetic causes. Next-generation sequencing methods have dramatically decreased sequencing costs, making clinical genetic testing feasible for extensive panels of dilated cardiomyopathy genes. Next-generation sequencing also provides opportunities to discover additional genetic causes of FDC and IDC. Guidelines for evaluation and testing of FDC and IDC are now available, and when combined with FDC genetic testing and counseling, will bring FDC/IDC genetics to the forefront of cardiovascular genetic medicine.
Collapse
Affiliation(s)
- Ray E Hershberger
- Cardiovascular Division, Department of Medicine, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, USA.
| | | |
Collapse
|
15
|
Burkett EL, Hershberger RE. Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals. Genet Med 2011; 45:969-81. [PMID: 15808750 DOI: 10.1016/j.jacc.2004.11.066] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 09/16/2004] [Accepted: 11/22/2004] [Indexed: 12/19/2022] Open
Abstract
Dilated cardiomyopathy (DCM), usually diagnosed as idiopathic dilated cardiomyopathy (IDC), has been shown to have a familial basis in 20-35% of cases. Genetic studies in familial dilated cardiomyopathy (FDC) have shown dramatic locus heterogeneity with mutations identified in >30 mostly autosomal genes showing primarily dominant transmission. Most mutations are private missense, nonsense or short insertion/deletions. Marked allelic heterogeneity is the rule. Although to date most DCM genetics fits into a Mendelian rare variant disease paradigm, this paradigm may be incomplete with only 30-35% of FDC genetic cause identified. Despite this incomplete knowledge, we predict that DCM genetics will become increasingly relevant for genetics and cardiovascular professionals. This is because DCM causes heart failure, a national epidemic, with considerable morbidity and mortality. The fact that early, even pre-symptomatic intervention can prevent or ameliorate DCM, coupled with more cost-effective genetic testing, will drive further progress in the field. Ongoing questions include: whether sporadic (IDC) disease has a genetic basis, and if so, how it differs from familial disease; which gene-specific or genetic pathways are most relevant; and whether other genetic mechanisms (e.g., DNA structural variants, epigenetics, mitochondrial mutations and others) are operative in DCM. We suggest that such new knowledge will lead to novel approaches to the prevention and treatment of DCM.
Collapse
Affiliation(s)
- Emily L Burkett
- Division of Cardiology, Department of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OT 97239, USA
| | | |
Collapse
|
16
|
Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals. Genet Med 2011; 12:655-67. [PMID: 20864896 DOI: 10.1097/gim.0b013e3181f2481f] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dilated cardiomyopathy (DCM), usually diagnosed as idiopathic dilated cardiomyopathy (IDC), has been shown to have a familial basis in 20-35% of cases. Genetic studies in familial dilated cardiomyopathy (FDC) have shown dramatic locus heterogeneity with mutations identified in >30 mostly autosomal genes showing primarily dominant transmission. Most mutations are private missense, nonsense or short insertion/deletions. Marked allelic heterogeneity is the rule. Although to date most DCM genetics fits into a Mendelian rare variant disease paradigm, this paradigm may be incomplete with only 30-35% of FDC genetic cause identified. Despite this incomplete knowledge, we predict that DCM genetics will become increasingly relevant for genetics and cardiovascular professionals. This is because DCM causes heart failure, a national epidemic, with considerable morbidity and mortality. The fact that early, even pre-symptomatic intervention can prevent or ameliorate DCM, coupled with more cost-effective genetic testing, will drive further progress in the field. Ongoing questions include: whether sporadic (IDC) disease has a genetic basis, and if so, how it differs from familial disease; which gene-specific or genetic pathways are most relevant; and whether other genetic mechanisms (e.g., DNA structural variants, epigenetics, mitochondrial mutations and others) are operative in DCM. We suggest that such new knowledge will lead to novel approaches to the prevention and treatment of DCM.
Collapse
|
17
|
|
18
|
Hershberger RE, Cowan J, Morales A, Siegfried JD. Progress with genetic cardiomyopathies: screening, counseling, and testing in dilated, hypertrophic, and arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Heart Fail 2009; 2:253-61. [PMID: 19808347 DOI: 10.1161/circheartfailure.108.817346] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review focuses on the genetic cardiomyopathies: principally dilated cardiomyopathy, with salient features of hypertrophic cardiomyopathy and arrhythmogenic right ventricular dysplasia/cardiomyopathy, regarding genetic etiology, genetic testing, and genetic counseling. Enormous progress has recently been made in identifying genetic causes for each cardiomyopathy, and key phenotype and genotype information is reviewed. Clinical genetic testing is rapidly emerging with a principal rationale of identifying at-risk asymptomatic or disease-free relatives. Knowledge of a disease-causing mutation can guide clinical surveillance for disease onset, thereby enhancing preventive and treatment interventions. Genetic counseling is also indicated for patients and their family members regarding the symptoms of their cardiomyopathy, its inheritance pattern, family screening recommendations, and genetic testing options and possible results.
Collapse
Affiliation(s)
- Ray E Hershberger
- Cardiovascular Division, University of Miami Miller School of Medicine, Miami, Fla 33136, USA.
| | | | | | | |
Collapse
|
19
|
Hershberger RE, Lindenfeld J, Mestroni L, Seidman CE, Taylor MRG, Towbin JA. Genetic evaluation of cardiomyopathy--a Heart Failure Society of America practice guideline. J Card Fail 2009; 15:83-97. [PMID: 19254666 DOI: 10.1016/j.cardfail.2009.01.006] [Citation(s) in RCA: 304] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/22/2009] [Accepted: 01/26/2009] [Indexed: 12/28/2022]
Abstract
Substantial progress has been made recently in understanding the genetic basis of cardiomyopathy. Cardiomyopathies with known genetic cause include hypertrophic (HCM), dilated (DCM), restrictive (RCM), arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) and left ventricular noncompaction (LVNC). HCM, DCM, and RCM have been recognized as distinct clinical entities for decades, whereas ARVD/C and LVNC are relative newcomers to the field. Hence the clinical and genetic knowledge for each cardiomyopathy varies, as do the recommendations and strength of evidence.
Collapse
Affiliation(s)
- Ray E Hershberger
- Cardiovascular Division, University of Miami Miller School of Medicine, Miami, Florida 33101-5138, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The goals of this article are to define translational genomics and assess the need for programs in translational genomics. The benefits of developing a translational genomics program will be outlined from a clinical perspective, a research perspective, and a consumer perspective.
Collapse
|