1
|
Reitz CJ, Rasouli M, Alibhai FJ, Khatua TN, Pyle WG, Martino TA. A brief morning rest period benefits cardiac repair in pressure overload hypertrophy and postmyocardial infarction. JCI Insight 2022; 7:164700. [PMID: 36256456 DOI: 10.1172/jci.insight.164700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
Rest has long been considered beneficial to patient healing; however, remarkably, there are no evidence-based experimental models determining how it benefits disease outcomes. Here, we created an experimental rest model in mice that briefly extends the morning rest period. We found in 2 major cardiovascular disease conditions (cardiac hypertrophy, myocardial infarction) that imposing a short, extended period of morning rest each day limited cardiac remodeling compared with controls. Mechanistically, rest mitigates autonomic-mediated hemodynamic stress on the cardiovascular system, relaxes myofilament contractility, and attenuates cardiac remodeling genes, consistent with the benefits on cardiac structure and function. These same rest-responsive gene pathways underlie the pathophysiology of many major human cardiovascular conditions, as demonstrated by interrogating open-source transcriptomic data; thus, patients with other conditions may also benefit from a morning rest period in a similar manner. Our findings implicate rest as a key driver of physiology, creating a potentially new field - as broad and important as diet, sleep, or exercise - and provide a strong rationale for investigation of rest-based therapy for major clinical diseases.
Collapse
|
2
|
Mikhailov N, Plotnikova L, Singh P, Giniatullin R, Hämäläinen RH. Functional Characterization of Mechanosensitive Piezo1 Channels in Trigeminal and Somatic Nerves in a Neuron-on-Chip Model. Int J Mol Sci 2022; 23:ijms23031370. [PMID: 35163293 PMCID: PMC8835985 DOI: 10.3390/ijms23031370] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Mechanosensitive ion channels, Piezo1 and 2, are activated by pressure and involved in diverse physiological functions, including senses of touch and pain, proprioception and many more. Understanding their function is important for elucidating the mechanosensitive mechanisms of a range of human diseases. Recently, Piezo channels were suggested to be contributors to migraine pain generation. Migraine is typically characterized by allodynia and mechanical hyperalgesia associated with the activation and sensitization of trigeminal ganglion (TG) nerve fibers. Notably, migraine specific medicines are ineffective for other types of pain, suggesting a distinct underlying mechanism. To address, in a straightforward manner, the specificity of the mechanosensitivity of trigeminal vs. somatic nerves, we compared the activity of Piezo1 channels in mouse TG neurons vs. dorsal root ganglia (DRG) neurons. We assessed the functional expression of Piezo1 receptors using a conventional live calcium imaging setup equipped with a multibarrel application system and utilizing a microfluidic chip-based setup. Surprisingly, the TG neurons, despite higher expression of the Piezo1 gene, were less responsive to Piezo1 agonist Yoda1 than the DRG neurons. This difference was more prominent in the chip-based setup, suggesting that certain limitations of the conventional approach, such as turbulence, can be overcome by utilizing microfluidic devices with laminar solution flow.
Collapse
Affiliation(s)
- Nikita Mikhailov
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland; (N.M.); (L.P.)
| | - Lidiia Plotnikova
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland; (N.M.); (L.P.)
| | | | - Rashid Giniatullin
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland; (N.M.); (L.P.)
- Correspondence: (R.G.); (R.H.H.)
| | - Riikka H. Hämäläinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland; (N.M.); (L.P.)
- Correspondence: (R.G.); (R.H.H.)
| |
Collapse
|
3
|
Yakupova EI, Vikhlyantsev IM, Lobanov MY, Galzitskaya OV, Bobylev AG. Amyloid Properties of Titin. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523065 DOI: 10.1134/s0006297917130077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review considers data on structural and functional features of titin, on the role of this protein in determination of mechanical properties of sarcomeres, and on specific features of regulation of the stiffness and elasticity of its molecules, amyloid aggregation of this protein in vitro, and possibilities of formation of intramolecular amyloid structure in vivo. Molecular mechanisms are described of protection of titin against aggregation in muscle cells. Based on the data analysis, it is supposed that titin and the formed by it elastic filaments have features of amyloid.
Collapse
Affiliation(s)
- E I Yakupova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | | | |
Collapse
|
4
|
Kempton A, Cefalu M, Justice C, Baich T, Derbala M, Canan B, Janssen PML, Mohler PJ, Smith SA. Altered regulation of cardiac ankyrin repeat protein in heart failure. Heliyon 2018; 4:e00514. [PMID: 29560432 PMCID: PMC5857524 DOI: 10.1016/j.heliyon.2018.e00514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 01/11/2018] [Indexed: 11/17/2022] Open
Abstract
Background Left ventricular assist devices (LVADs) have revolutionized and improved the care of the sickest heart failure (HF) patients, and it is imperative that they receive appropriate ventricular unloading. Assessing this critical parameter with current methodologies (labs, imaging) is usually suboptimal in this patient population. Hence it is imperative to elucidate the molecular underpinnings involved in ventricular unloading. We have previously identified the cytoskeletal protein βII spectrin as an essential nodal protein involved in post-translational targeting and βII spectrin protein levels are significantly altered in multiple forms of human and animal HF. We therefore hypothesized that the βII spectrin pathway would play a critical role in LVAD remodeling. Methods Human heart failure samples were obtained from patients undergoing heart transplantation. Wild type (WT) mice and our previously validated βII spectrin conditional knock out (βII cKO) mice were used for animal experiments. Transaortic constriction (TAC) was performed on WT mice. Protein expression was assessed via immunoblots, and protein interactions were assessed with co-immunoprecipitation. Transcriptome analysis was performed using isolated whole hearts from control adult WT mice (n = 3) compared to βII cKO spectrin mice (n = 3). Results We report that hearts from mice selectively lacking βII spectrin expression in cardiomyocytes displayed altered transcriptional regulation of cardiac ankyrin repeat protein (CARP). Notably, CARP protein expression is increased after TAC. Additionally, our findings illustrate that prior to LVAD support, CARP levels are elevated in HF patients compared to normal healthy controls. Further, for the first time in a LVAD population, we show that elevated CARP levels in HF patients return to normal following LVAD support. Conclusion Our findings illustrate that CARP is a dynamic molecule that responds to reduced afterload and stress, and has the potential to serve as a prognostic biomarker to assess for an adequate response to LVAD therapy.
Collapse
Affiliation(s)
- Amber Kempton
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Matt Cefalu
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Cody Justice
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Tesla Baich
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Mohamed Derbala
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Benjamin Canan
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Peter J Mohler
- Department of Internal Medicine (Division of Cardiology), The Ohio State University College of Medicine, Columbus, OH, USA.,Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA.,Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Sakima A Smith
- Department of Internal Medicine (Division of Cardiology), The Ohio State University College of Medicine, Columbus, OH, USA.,Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
5
|
Muscle Lim Protein and myosin binding protein C form a complex regulating muscle differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2308-2321. [DOI: 10.1016/j.bbamcr.2017.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 08/09/2017] [Accepted: 08/30/2017] [Indexed: 01/10/2023]
|
6
|
Vafiadaki E, Arvanitis DA, Sanoudou D. Muscle LIM Protein: Master regulator of cardiac and skeletal muscle functions. Gene 2015; 566:1-7. [PMID: 25936993 PMCID: PMC6660132 DOI: 10.1016/j.gene.2015.04.077] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022]
Abstract
Muscle LIM Protein (MLP) has emerged as a key regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, are causative of human cardiomyopathies, whereas altered expression patterns are observed in human failing heart and skeletal myopathies. In vitro and in vivo evidences reveal a complex and diverse functional role of MLP in striated muscle, which is determined by its multiple interacting partners and subcellular distribution. Experimental evidence suggests that MLP is implicated in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles still unfolds.
Collapse
Affiliation(s)
- Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Demetrios A Arvanitis
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Despina Sanoudou
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece; 4th Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
7
|
Abstract
The discovery of substantial myocardial improvement following the mechanical unloading afforded by left ventricular assist device (LVAD) therapy challenged the dogma of heart failure being irreversible. Since then, a significant experience with the use of LVAD therapy as a bridge to recovery has accumulated. The discovery of substantial structural and functional changes (reverse remodeling) in the myocardium has resulted in an intensive effort to define the biologic determinants of the reversibility of these changes. Herein the scientific foundations, clinical practice, and future of the use of LVADs as a bridge to recovery are reviewed.
Collapse
Affiliation(s)
- Michael Ibrahim
- Department of Cardiothoracic Surgery, Heart Science Centre, Harefield Hospital, National Heart and Lung Institute, Hill End Road, London UB9 6JH, UK
| | | |
Collapse
|
8
|
Solovyova O, Katsnelson LB, Konovalov PV, Kursanov AG, Vikulova NA, Kohl P, Markhasin VS. The cardiac muscle duplex as a method to study myocardial heterogeneity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:115-28. [PMID: 25106702 PMCID: PMC4210666 DOI: 10.1016/j.pbiomolbio.2014.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/25/2014] [Indexed: 12/14/2022]
Abstract
This paper reviews the development and application of paired muscle preparations, called duplex, for the investigation of mechanisms and consequences of intra-myocardial electro-mechanical heterogeneity. We illustrate the utility of the underlying combined experimental and computational approach for conceptual development and integration of basic science insight with clinically relevant settings, using previously published and new data. Directions for further study are identified.
Collapse
Affiliation(s)
- O Solovyova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, 106 Pervomayskaya Str, Ekaterinburg 620049, Russia; Ural Federal University, 19 Mira Str, Ekaterinburg 620002, Russia.
| | - L B Katsnelson
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, 106 Pervomayskaya Str, Ekaterinburg 620049, Russia
| | - P V Konovalov
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, 106 Pervomayskaya Str, Ekaterinburg 620049, Russia
| | - A G Kursanov
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, 106 Pervomayskaya Str, Ekaterinburg 620049, Russia; Ural Federal University, 19 Mira Str, Ekaterinburg 620002, Russia
| | - N A Vikulova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, 106 Pervomayskaya Str, Ekaterinburg 620049, Russia
| | - P Kohl
- National Heart and Lung Institute, Imperial College of London, Heart Science Centre, Harefield Hospital, Hill End Road, Harefield UB9 6JH, UK; Department of Computer Sciences, University of Oxford, UK
| | - V S Markhasin
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, 106 Pervomayskaya Str, Ekaterinburg 620049, Russia; Ural Federal University, 19 Mira Str, Ekaterinburg 620002, Russia
| |
Collapse
|
9
|
Vafiadaki E, Arvanitis DA, Papalouka V, Terzis G, Roumeliotis TI, Spengos K, Garbis SD, Manta P, Kranias EG, Sanoudou D. Muscle lim protein isoform negatively regulates striated muscle actin dynamics and differentiation. FEBS J 2014; 281:3261-79. [PMID: 24860983 DOI: 10.1111/febs.12859] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 05/14/2014] [Accepted: 05/22/2014] [Indexed: 11/28/2022]
Abstract
Muscle lim protein (MLP) has emerged as a critical regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, have been directly associated with human cardiomyopathies, whereas aberrant expression patterns are reported in human cardiac and skeletal muscle diseases. Increasing evidence suggests that MLP has an important role in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles has not been delineated. We report the discovery of an alternative splice variant of MLP, designated as MLP-b, showing distinct expression in neuromuscular disease and direct roles in actin dynamics and muscle differentiation. This novel isoform originates by alternative splicing of exons 3 and 4. At the protein level, it contains the N-terminus first half LIM domain of MLP and a unique sequence of 22 amino acids. Physiologically, it is expressed during early differentiation, whereas its overexpression reduces C2C12 differentiation and myotube formation. This may be mediated through its inhibition of MLP/cofilin-2-mediated F-actin dynamics. In differentiated striated muscles, MLP-b localizes to the sarcomeres and binds directly to Z-disc components, including α-actinin, T-cap and MLP. The findings of the present study unveil a novel player in muscle physiology and pathophysiology that is implicated in myogenesis as a negative regulator of myotube formation, as well as in differentiated striated muscles as a contributor to sarcomeric integrity.
Collapse
Affiliation(s)
- Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Buyandelger B, Mansfield C, Knöll R. Mechano-signaling in heart failure. Pflugers Arch 2014; 466:1093-9. [PMID: 24531746 PMCID: PMC4033803 DOI: 10.1007/s00424-014-1468-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 02/07/2023]
Abstract
Mechanosensation and mechanotransduction are fundamental aspects of biology, but the link between physical stimuli and biological responses remains not well understood. The perception of mechanical stimuli, their conversion into biochemical signals, and the transmission of these signals are particularly important for dynamic organs such as the heart. Various concepts have been introduced to explain mechanosensation at the molecular level, including effects on signalosomes, tensegrity, or direct activation (or inactivation) of enzymes. Striated muscles, including cardiac myocytes, differ from other cells in that they contain sarcomeres which are essential for the generation of forces and which play additional roles in mechanosensation. The majority of cardiomyopathy causing candidate genes encode structural proteins among which titin probably is the most important one. Due to its elastic elements, titin is a length sensor and also plays a role as a tension sensor (i.e., stress sensation). The recent discovery of titin mutations being a major cause of dilated cardiomyopathy (DCM) also underpins the importance of mechanosensation and mechanotransduction in the pathogenesis of heart failure. Here, we focus on sarcomere-related mechanisms, discuss recent findings, and provide a link to cardiomyopathy and associated heart failure.
Collapse
Affiliation(s)
- Byambajav Buyandelger
- Imperial College, British Heart Foundation-Centre for Research Excellence, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | | | | |
Collapse
|
11
|
Vikhlyantsev IM, Podlubnaya ZA. New titin (connectin) isoforms and their functional role in striated muscles of mammals: facts and suppositions. BIOCHEMISTRY (MOSCOW) 2013; 77:1515-35. [PMID: 23379526 DOI: 10.1134/s0006297912130093] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review summarizes results of our studies on titin isoform composition in vertebrate striated muscles under normal conditions, during hibernation, real and simulated microgravity, and under pathological conditions (stiff-person syndrome, post-apoplectic spasticity, dilated cardiomyopathy, cardiac hypertrophy). Experimental evidence for the existence in mammalian striated muscles of higher molecular weight isoforms of titin (NT-isoforms) in addition to the known N2A-, N2BA-, and N2B-titin isoforms was obtained. Comparative studies of changes in titin isoform composition and structure-functional properties of human and animal striated muscles during adaptive and pathological processes led to a conclusion about the key role of NT-isoforms of titin in maintenance of sarcomere structure and contractile function of these muscles.
Collapse
Affiliation(s)
- I M Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
12
|
Hooper CL, Paudyal A, Dash PR, Boateng SY. Modulation of stretch-induced myocyte remodeling and gene expression by nitric oxide: a novel role for lipoma preferred partner in myofibrillogenesis. Am J Physiol Heart Circ Physiol 2013; 304:H1302-13. [PMID: 23504181 DOI: 10.1152/ajpheart.00004.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prolonged hemodynamic load as a result of hypertension eventually leads to maladaptive cardiac adaptation and heart failure. The signaling pathways that underlie these changes are still poorly understood. The adaptive response to mechanical load is mediated by mechanosensors that convert the mechanical stimuli into a biological response. We examined the effect of cyclic mechanical stretch on myocyte adaptation using neonatal rat ventricular myocytes with 10% (adaptive) or 20% (maladaptive) maximum strain at 1 Hz for 48 h to mimic in vivo mechanical stress. Cells were also treated with and without nitro-L-arginine methyl ester (L-NAME), a general nitric oxide synthase (NOS) inhibitor to suppress NO production. Maladaptive 20% mechanical stretch led to a significant loss of intact sarcomeres that were rescued by L-NAME (P < 0.05; n ≥ 5 cultures). We hypothesized that the mechanism was through NO-induced alteration of myocyte gene expression. L-NAME upregulated the mechanosensing proteins muscle LIM protein (MLP; by 100%; P < 0.05; n = 5 cultures) and lipoma preferred partner (LPP), a novel cardiac protein (by 80%; P < 0.05; n = 4 cultures). L-NAME also significantly altered the subcellular localization of LPP and MLP in a manner that favored growth and adaptation. These findings suggest that NO participates in stretch-mediated adaptation. The use of isoform selective NOS inhibitors indicated a complex interaction between inducible NOS and neuronal NOS isoforms regulate gene expression. LPP knockdown by small intefering RNA led to formation of α-actinin aggregates and Z bodies showing that myofibrillogenesis was impaired. There was an upregulation of E3 ubiquitin ligase (MUL1) by 75% (P < 0.05; n = 5 cultures). This indicates that NO contributes to stretch-mediated adaptation via the upregulation of proteins associated with mechansensing and myofibrillogenesis, thereby presenting potential therapeutic targets during the progression of heart failure.
Collapse
Affiliation(s)
- Charlotte L Hooper
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | | | | | | |
Collapse
|
13
|
Leung MC, Hitchen PG, Ward DG, Messer AE, Marston SB. Z-band alternatively spliced PDZ motif protein (ZASP) is the major O-linked β-N-acetylglucosamine-substituted protein in human heart myofibrils. J Biol Chem 2012; 288:4891-8. [PMID: 23271734 DOI: 10.1074/jbc.m112.410316] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We studied O-linked β-N-acetylglucosamine (O-GlcNAc) modification of contractile proteins in human heart using SDS-PAGE and three detection methods: specific enzymatic conjugation of O-GlcNAc with UDP-N-azidoacetylgalactosamine (UDP-GalNAz) that is then linked to a tetramethylrhodamine fluorescent tag and CTD110.6 and RL2 monoclonal antibodies to O-GlcNAc. All three methods showed that O-GlcNAc modification was predominantly in a group of bands ~90 kDa that did not correspond to any of the major myofibrillar proteins. MALDI-MS/MS identified the 90-kDa band as the protein ZASP (Z-band alternatively spliced PDZ motif protein), a minor component of the Z-disc (about 1 per 400 α-actinin) important for myofibrillar development and mechanotransduction. This was confirmed by the co-localization of O-GlcNAc and ZASP in Western blotting and by immunofluorescence microscopy. O-GlcNAcylation of ZASP increased in diseased heart, being 49 ± 5% of all O-GlcNAc in donor, 68 ± 9% in end-stage failing heart, and 76 ± 6% in myectomy muscle samples (donor versus myectomy p < 0.05). ZASP is only 22% of all O-GlcNAcylated proteins in mouse heart myofibrils.
Collapse
Affiliation(s)
- Man-Ching Leung
- Myocardial Function Section, National Heart and Lung Institute, Imperial College London, London W12 0NN, United Kingdom
| | | | | | | | | |
Collapse
|
14
|
Abstract
Current concepts of mechanosensation are general and applicable to almost every cell type. However, striated muscle cells are distinguished by their ability to generate strong forces via actin/myosin interaction, and this process is fine-tuned for optimum contractility. This aspect, unique for actively contracting cells, may be defined as "sensing of the magnitude and dynamics of contractility," as opposed to the well-known concepts of the "perception of extracellular mechanical stimuli." The acto/myosin interaction, by producing changes in ATP, ADP, Pi, and force on a millisecond timescale, may be regarded as a novel and previously unappreciated mechanosensory mechanism. In addition, sarcomeric mechanosensory structures, such as the Z-disc, are directly linked to autophagy, survival, and cell death-related pathways. One emerging example is telethonin and its ability to interfere with p53 metabolism and hence apoptosis (mechanoptosis). In this article, we introduce contractility per se as an important mechanosensory mechanism, and we differentiate extracellular from intracellular mechanosensory effects.
Collapse
Affiliation(s)
- Ralph Knöll
- Heart Science Section, National Heart & Lung Institute, Imperial College, London W12 0NN, UK.
| | | |
Collapse
|
15
|
Kojic S, Radojkovic D, Faulkner G. Muscle ankyrin repeat proteins: their role in striated muscle function in health and disease. Crit Rev Clin Lab Sci 2011; 48:269-94. [DOI: 10.3109/10408363.2011.643857] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|