1
|
Gentile F, Orlando G, Montuoro S, Ferrari Chen YF, Macefield V, Passino C, Giannoni A, Emdin M. Treating heart failure by targeting the vagus nerve. Heart Fail Rev 2024; 29:1201-1215. [PMID: 39117958 PMCID: PMC11455679 DOI: 10.1007/s10741-024-10430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 08/10/2024]
Abstract
Increased sympathetic and reduced parasympathetic nerve activity is associated with disease progression and poor outcomes in patients with chronic heart failure. The demonstration that markers of autonomic imbalance and vagal dysfunction, such as reduced heart rate variability and baroreflex sensitivity, hold prognostic value in patients with chronic heart failure despite modern therapies encourages the research for neuromodulation strategies targeting the vagus nerve. However, the approaches tested so far have yielded inconclusive results. This review aims to summarize the current knowledge about the role of the parasympathetic nervous system in chronic heart failure, describing the pathophysiological background, the methods of assessment, and the rationale, limits, and future perspectives of parasympathetic stimulation either by drugs or bioelectronic devices.
Collapse
Affiliation(s)
- Francesco Gentile
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy.
- Cardiology and Cardiovascular Medicine Division, Fondazione Monasterio, Via G. Moruzzi 1, 56124, Pisa, Italy.
| | - Giulia Orlando
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
| | - Sabrina Montuoro
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
| | - Yu Fu Ferrari Chen
- Cardiology and Cardiovascular Medicine Division, Fondazione Monasterio, Via G. Moruzzi 1, 56124, Pisa, Italy
| | | | - Claudio Passino
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Cardiology and Cardiovascular Medicine Division, Fondazione Monasterio, Via G. Moruzzi 1, 56124, Pisa, Italy
| | - Alberto Giannoni
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Cardiology and Cardiovascular Medicine Division, Fondazione Monasterio, Via G. Moruzzi 1, 56124, Pisa, Italy
| | - Michele Emdin
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri Della Libertà 33, 56127, Pisa, Italy
- Cardiology and Cardiovascular Medicine Division, Fondazione Monasterio, Via G. Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
2
|
Herring N, Ajijola OA, Foreman RD, Gourine AV, Green AL, Osborn J, Paterson DJ, Paton JFR, Ripplinger CM, Smith C, Vrabec TL, Wang HJ, Zucker IH, Ardell JL. Neurocardiology: translational advancements and potential. J Physiol 2024. [PMID: 39340173 DOI: 10.1113/jp284740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Collapse
Affiliation(s)
- N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - O A Ajijola
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - R D Foreman
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - A V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - A L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - J Osborn
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - D J Paterson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - C M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - C Smith
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - T L Vrabec
- Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - H J Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - I H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - J L Ardell
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
3
|
Giannino G, Nocera L, Andolfatto M, Braia V, Giacobbe F, Bruno F, Saglietto A, Angelini F, De Filippo O, D'Ascenzo F, De Ferrari GM, Dusi V. Vagal nerve stimulation in myocardial ischemia/reperfusion injury: from bench to bedside. Bioelectron Med 2024; 10:22. [PMID: 39267134 PMCID: PMC11395864 DOI: 10.1186/s42234-024-00153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/31/2024] [Indexed: 09/14/2024] Open
Abstract
The identification of acute cardioprotective strategies against myocardial ischemia/reperfusion (I/R) injury that can be applied in the catheterization room is currently an unmet clinical need and several interventions evaluated in the past at the pre-clinical level have failed in translation. Autonomic imbalance, sustained by an abnormal afferent signalling, is a key component of I/R injury. Accordingly, there is a strong rationale for neuromodulation strategies, aimed at reducing sympathetic activity and/or increasing vagal tone, in this setting. In this review we focus on cervical vagal nerve stimulation (cVNS) and on transcutaneous auricular vagus nerve stimulation (taVNS); the latest has the potential to overcome several of the issues of invasive cVNS, including the possibility of being used in an acute setting, while retaining its beneficial effects. First, we discuss the pathophysiology of I/R injury, that is mostly a consequence of the overproduction of reactive oxygen species. Second, we describe the functional anatomy of the parasympathetic branch of the autonomic nervous system and the most relevant principles of bioelectronic medicine applied to electrical vagal modulation, with a particular focus on taVNS. Then, we provide a detailed and comprehensive summary of the most relevant pre-clinical studies of invasive and non-invasive VNS that support its strong cardioprotective effect whenever there is an acute or chronic cardiac injury and specifically in the setting of myocardial I/R injury. The potential benefit in the emerging field of post cardiac arrest syndrome (PCAS) is also mentioned. Indeed, electrical cVNS has a strong anti-adrenergic, anti-inflammatory, antioxidants, anti-apoptotic and pro-angiogenic effect; most of the involved molecular pathways were already directly confirmed to take place at the cardiac level for taVNS. Pre-clinical data clearly show that the sooner VNS is applied, the better the outcome, with the possibility of a marked infarct size reduction and almost complete left ventricular reverse remodelling when VNS is applied immediately before and during reperfusion. Finally, we describe in detail the limited but very promising clinical experience of taVNS in I/R injury available so far.
Collapse
Affiliation(s)
- Giuseppe Giannino
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Lorenzo Nocera
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Maria Andolfatto
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Valentina Braia
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Federico Giacobbe
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Francesco Bruno
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Andrea Saglietto
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Filippo Angelini
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Ovidio De Filippo
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Fabrizio D'Ascenzo
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Gaetano Maria De Ferrari
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Veronica Dusi
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy.
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy.
| |
Collapse
|
4
|
Jeong SH, Lee HG, Kim G, Kwon S, Cho SY, Jung WS, Park SU, Moon SK, Park JM, Ko CN. Combination therapy of acupuncture and herbal medicine for heart failure: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e39061. [PMID: 39093749 PMCID: PMC11296463 DOI: 10.1097/md.0000000000039061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Heart failure (HF) is characterized by functional or structural dysfunction of the heart, resulting in impaired blood ejection or ventricular filling. Conventional Western Medicine (CWM) remains the mainstay of treatment for HF; however, the occurrence of adverse events (AEs) necessitates the exploration of alternative treatments. Herbal medicine and acupuncture are adjunctive therapies for HF and have shown potential for improving heart function. This systematic review and meta-analysis aimed to assess the effectiveness and safety of acupuncture and herbal medicine in treating HF. METHODS PubMed, Embase, Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure, Citation Information by National Institute of Informatics, KoreaMed, Research Information Sharing Service, and DBpia were searched for randomized controlled trials (RCTs) evaluating the effects of acupuncture and herbal medicine along with CWM as adjunctive treatments for HF, published from inception to May 31, 2024. Treatment effectiveness was determined by evaluating the left ventricular ejection fraction as the primary metric, along with the measurement of the total effective rate, brain natriuretic peptide level, N-terminal prohormone of brain natriuretic peptide level, left ventricular end-diastolic volume, and left ventricular end-systolic volume; the administration of the Minnesota Living with Heart Failure Questionnaire; and the conduct of a 6-minute walk test. Treatment safety was evaluated based on the incidence of AEs. The methodological quality of all included RCTs was assessed using the Cochrane risk of bias tool. A meta-analysis was performed using Review Manager, version 5.4.1. RESULTS Of the 133 publications identified, 8 RCTs met the inclusion criteria. The meta-analysis showed significant improvements in left ventricular ejection fraction, brain natriuretic peptide levels, N-terminal prohormone of brain natriuretic peptide levels, left ventricular end-systolic volume, left ventricular end-diastolic volume, and 6-minute walk test results. Additionally, significant differences were observed in the total effective rate and Minnesota Living with Heart Failure Questionnaire responses. No significant medication-related AEs occurred in the intervention group. Conversely, 7 control patients developed well-known AEs associated with CWM. CONCLUSION Acupuncture combined with herbal medicine and CWM is more effective than CWM alone, indicating a safe treatment approach. Consequently, the proactive administration of acupuncture alongside herbal medicine to patients with HF can be undertaken without concerns regarding AEs.
Collapse
Affiliation(s)
- Seong Hoon Jeong
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Han-Gyul Lee
- Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Gyeongmuk Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Seungwon Kwon
- Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Seung-Yeon Cho
- Stroke and Neurological Disorders Center, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Woo-Sang Jung
- Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Seong-Uk Park
- Stroke and Neurological Disorders Center, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Sang-Kwan Moon
- Department of Cardiology and Neurology, Kyung Hee University College of Korean Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Jung-Mi Park
- Stroke and Neurological Disorders Center, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Chang-Nam Ko
- Stroke and Neurological Disorders Center, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| |
Collapse
|
5
|
Wu Z, Liao J, Liu Q, Zhou S, Chen M. Chronic vagus nerve stimulation in patients with heart failure: challenge or failed translation? Front Cardiovasc Med 2023; 10:1052471. [PMID: 37534273 PMCID: PMC10390725 DOI: 10.3389/fcvm.2023.1052471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 05/31/2023] [Indexed: 08/04/2023] Open
Abstract
Autonomic imbalance between the sympathetic and parasympathetic nervous systems contributes to the progression of chronic heart failure (HF). Preclinical studies have demonstrated that various neuromodulation strategies may exert beneficial cardioprotective effects in preclinical models of HF. Based on these encouraging experimental data, vagus nerve stimulation (VNS) has been assessed in patients with HF with a reduced ejection fraction. Nevertheless, the main trials conducted thus far have yielded conflicting findings, questioning the clinical efficacy of VNS in this context. This review will therefore focus on the role of the autonomic nervous system in HF pathophysiology and VNS therapy, highlighting the potential reasons behind the discrepancy between preclinical and clinical studies.
Collapse
Affiliation(s)
- Zhihong Wu
- Department of Cardiovascular, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiaying Liao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiming Liu
- Department of Cardiovascular, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shenghua Zhou
- Department of Cardiovascular, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mingxian Chen
- Department of Cardiovascular, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
6
|
Ji N, Li Y, Wei J, Chen F, Xu L, Li G, Lin WH. Autonomic modulation by low-intensity focused ultrasound stimulation of the vagus nerve. J Neural Eng 2022; 19. [PMID: 36541473 DOI: 10.1088/1741-2552/aca8cd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Objective.Our previous study has shown that low-intensity focused ultrasound stimulation (FUS) of the vagus nerve could modulate blood pressure (BP), but its underlying mechanisms remain unclear. We hypothesized that low-intensity FUS of the vagus nerve would regulate autonomic function and thus BP.Approach.17 anesthetized spontaneously hypertensive rats were treated with low-intensity FUS of the left vagus nerve for 15 min each trial. Continuous BP, heart rate, respiration rate (RR), and core body temperature were simultaneously recorded to evaluate the effects on BP and other physiological parameters. Heart rate variability (HRV), systolic BP variability, and baroreflex sensitivity were computed to evaluate the autonomic modulation function. A Control-sham group without stimulation and another Control-FUS group with non-target stimulation were also examined to exclude the influence of potential confounding factors on autonomic modulation.Main results.A prolonged significant decrease in BP, pulse pressure, RR, the normalized low-frequency power of HRV, and the low-to-high frequency power ratio of HRV were found after the low-intensity FUS of the left vagus nerve in comparison with the baseline and those of the control groups, demonstrating that activities of the sympathetic nervous system were inhibited. The prolonged significant increase of the normalized high-frequency power of HRV suggested the activation of parasympathetic activity.Significance.Low-intensity FUS of the left vagus nerve effectively improved the autonomic function by activating parasympathetic efferent and inhibiting sympathetic efferent, which contributes to BP reduction. The findings shed light on the hypotensive mechanism underlying FUS.
Collapse
Affiliation(s)
- Ning Ji
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, People's Republic of China.,CAS Key Lab of Human-Machine Intelligence-Synergy Systems and Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, People's Republic of China
| | - Yuanheng Li
- CAS Key Lab of Human-Machine Intelligence-Synergy Systems and Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, People's Republic of China
| | - Jingjing Wei
- CAS Key Lab of Human-Machine Intelligence-Synergy Systems and Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, People's Republic of China.,Department of Human Anatomy, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, People's Republic of China
| | - Fei Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Lisheng Xu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, People's Republic of China
| | - Guanglin Li
- CAS Key Lab of Human-Machine Intelligence-Synergy Systems and Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, People's Republic of China
| | - Wan-Hua Lin
- CAS Key Lab of Human-Machine Intelligence-Synergy Systems and Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, People's Republic of China
| |
Collapse
|
7
|
Terol Espinosa de los Monteros C, van der Palen RL, Nederend I, de Geus EJ, Kuipers IM, Hazekamp MG, Blom NA, ten Harkel AD. Cardiac autonomic nervous activity in patients with transposition of the great arteries after arterial switch operation. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2022; 10:100417. [PMID: 39713594 PMCID: PMC11658539 DOI: 10.1016/j.ijcchd.2022.100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background A chronic imbalance of the autonomic nervous system(ANS) may contribute to long term complications in different congenital heart diseases. The purpose of this study was to determine whether the ANS plays a role in the long-term outcome of patients with Transposition of great arteries(TGA) after arterial switch operation(ASO) as its contribution is as yet not clear. Methods The ANS activity was evaluated non-invasively in 26 TGA patients and 52 age-appropriate healthy subjects combining impedance cardiography and electrocardiography. Heart rate, pre-ejection period(sympathetic activity parameter) and respiratory sinus arrhythmia and the root of the mean square of successive normal-to-normal interval differences(parasympathetic activity parameter) were measured during 5 different daily activities(sleep, sitting, active sitting, light and moderate/vigorous physical activity). Whether the ANS activity was related to ventricular function, exercise test performance or clinical outcome in the patient group was also analyzed. Results Compared to healthy subjects: heart rate was significantly lower in TGA patients at rest and during quiet and active sitting; sympathetic activity was significantly reduced in patients during physical activity; and the parasympathetic activity was higher in TGA patients while quiet and active sitting. In the patient group a significant positive correlation between 4-chamber longitudinal strain and parasympathetic activity during 3 different daily activities was found. Conclusions The sympathetic nervous system response to physical activity is reduced in TGA patients after ASO. Additionally, we observed a positive correlation between better left ventricular function and higher parasympathetic activity that could be in line with the known protective effect of a higher vagal activity.
Collapse
Affiliation(s)
| | - Roel L.F. van der Palen
- Department of Pediatrics, Division of Pediatric Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ineke Nederend
- Department of Pediatrics, Division of Pediatric Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Eco J.C. de Geus
- Department of Biological Psychology, Human Behavioral and Movement Sciences, Vrije University, Amsterdam, the Netherlands
| | - Irene M. Kuipers
- Department of Pediatrics, Division of Pediatric Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Mark G. Hazekamp
- Department of Pediatric Cardiac Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Nico A. Blom
- Department of Pediatrics, Division of Pediatric Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pediatrics, Division of Pediatric Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Arend D.J. ten Harkel
- Department of Pediatrics, Division of Pediatric Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
8
|
Limonova AS, Germanova KN, Gantman MV, Nazarova MA, Davtyan KV, Novikov PA, Sukmanova AA, Tarasov AV, Kharlap MS, Ershova AI, Drapkina OM. Neurovisceral interactions within the brain-heart axis as the basis of neurocardiology. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2022. [DOI: 10.15829/1728-8800-2022-3435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The use of a systematic approach to the study of the etiology of a certain pathology makes it possible to improve the understanding of its pathogenesis, as well as to develop more effective diagnostic and therapeutic approaches, including improving the prediction of its risk. Within this review, we will consider such an area of interdisciplinary research as neurocardiology, which studies the brain-heart axis. Examples of cardiovascular diseases associated with organic and functional disorders of this axis will be considered, as well as the prospects for research in this area and their translational significance for clinical medicine.
Collapse
Affiliation(s)
- A. S. Limonova
- National Medical Research Center for Therapy and Preventive Medicine
| | - K. N. Germanova
- National Medical Research Center for Therapy and Preventive Medicine; National Research University Higher School of Economics
| | - M. V. Gantman
- National Research University Higher School of Economics
| | - M. A. Nazarova
- National Research University Higher School of Economics; Harvard Medical School
| | - K. V. Davtyan
- National Medical Research Center for Therapy and Preventive Medicine
| | - P. A. Novikov
- National Research University Higher School of Economics
| | - A. A. Sukmanova
- National Medical Research Center for Therapy and Preventive Medicine; National Research University Higher School of Economics
| | - A. V. Tarasov
- National Medical Research Center for Therapy and Preventive Medicine
| | - M. S. Kharlap
- National Medical Research Center for Therapy and Preventive Medicine
| | - A. I. Ershova
- National Medical Research Center for Therapy and Preventive Medicine
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| |
Collapse
|
9
|
Abstract
Autonomic imbalance with a sympathetic dominance is acknowledged to be a critical determinant of the pathophysiology of chronic heart failure with reduced ejection fraction (HFrEF), regardless of the etiology. Consequently, therapeutic interventions directly targeting the cardiac autonomic nervous system, generally referred to as neuromodulation strategies, have gained increasing interest and have been intensively studied at both the pre-clinical level and the clinical level. This review will focus on device-based neuromodulation in the setting of HFrEF. It will first provide some general principles about electrical neuromodulation and discuss specifically the complex issue of dose-response with this therapeutic approach. The paper will thereafter summarize the rationale, the pre-clinical and the clinical data, as well as the future prospectives of the three most studied form of device-based neuromodulation in HFrEF. These include cervical vagal nerve stimulation (cVNS), baroreflex activation therapy (BAT), and spinal cord stimulation (SCS). BAT has been approved by the Food and Drug Administration for use in patients with HfrEF, while the other two approaches are still considered investigational; VNS is currently being investigated in a large phase III Study.
Collapse
Affiliation(s)
- Veronica Dusi
- Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza, University of Turin , Corso Bramante 88, 10126 Turin , Italy
| | - Filippo Angelini
- Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza, University of Turin , Corso Bramante 88, 10126 Turin , Italy
| | - Michael R Zile
- Division of Cardiology, Department of Medicine, Medical University of South Carolina and RHJ Department of Veteran's Affairs Medical Center , Charleston, SC , USA
| | - Gaetano Maria De Ferrari
- Division of Cardiology, Cardiovascular and Thoracic Department, Città della Salute e della Scienza, University of Turin , Corso Bramante 88, 10126 Turin , Italy
| |
Collapse
|
10
|
Kittipibul V, Fudim M. Tackling Inflammation in Heart Failure With Preserved Ejection Fraction: Resurrection of Vagus Nerve Stimulation? J Am Heart Assoc 2022; 11:e024481. [PMID: 35023352 PMCID: PMC9238495 DOI: 10.1161/jaha.121.024481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Marat Fudim
- Division of Cardiology Duke University Medical Center Durham NC.,Duke Clinical Research Institute Durham NC
| |
Collapse
|
11
|
Diedrich A, Urechie V, Shiffer D, Rigo S, Minonzio M, Cairo B, Smith EC, Okamoto LE, Barbic F, Bisoglio A, Porta A, Biaggioni I, Furlan R. Transdermal auricular vagus stimulation for the treatment of postural tachycardia syndrome. Auton Neurosci 2021; 236:102886. [PMID: 34634682 PMCID: PMC8939715 DOI: 10.1016/j.autneu.2021.102886] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/26/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Postural Tachycardia Syndrome (POTS) is a chronic disorder characterized by symptoms of orthostatic intolerance such as fatigue, lightheadedness, dizziness, palpitations, dyspnea, chest discomfort and remarkable tachycardia upon standing. Non-invasive transdermal vagal stimulators have been applied for the treatment of epilepsy, anxiety, depression, headache, and chronic pain syndromes. Anti-inflammatory and immunomodulating effects after transdermal vagal stimulation raised interest for applications in other diseases. Patients with sympathetic overactivity, reduced cardiac vagal drive and presence of systemic inflammation like POTS may benefit from tVNS. This article will address crucial methodological aspects of tVNS and provide preliminary results of its acute and chronic use in POTS, with regards to its potential effectiveness on autonomic symptoms reduction and heart rate modulation.
Collapse
Affiliation(s)
- André Diedrich
- Vanderbilt Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Vasile Urechie
- Vanderbilt Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dana Shiffer
- Department of Biomedical Sciences, Humanitas University, Internal Medicine, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Stefano Rigo
- Humanitas University School of Medicine, Rozzano, Italy; Virgilio Research Project, Pieve Emanuele, Milan, Italy
| | - Maura Minonzio
- Department of Biomedical Sciences, Humanitas University, Internal Medicine, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Emily C Smith
- Vanderbilt Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Luis E Okamoto
- Vanderbilt Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Franca Barbic
- Department of Biomedical Sciences, Humanitas University, Internal Medicine, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy
| | - Andrea Bisoglio
- Humanitas University School of Medicine, Rozzano, Italy; Virgilio Research Project, Pieve Emanuele, Milan, Italy
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Italo Biaggioni
- Vanderbilt Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raffaello Furlan
- Department of Biomedical Sciences, Humanitas University, Internal Medicine, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy
| |
Collapse
|
12
|
Abstract
Vagal nerve stimulation (VNS) has a strong pathophysiological rationale as a potentially beneficial treatment for heart failure with reduced ejection fraction. Despite several promising preclinical studies and pilot clinical studies, the two large, controlled trials—NECTAR-HF and INOVATE-HF—failed to demonstrate the expected benefit. It is likely that clinical application of VNS in phase III studies was performed before a sufficient degree of understanding of the complex pathophysiology of autonomic electrical modulation had been achieved, therefore leading to an underestimation of its potential benefit. More knowledge on the complex dose–response issue of VNS (i.e., pulse amplitude, frequency, duration and duty cycle) has been gathered since these trials and a new randomized study is currently underway with an adaptive design and a refined approach in an attempt to deliver the proper dose to a more selected group of patients.
Collapse
Affiliation(s)
- Veronica Dusi
- Division of Cardiology, Department of Medical Sciences, Citta della Salute e della Scienza Hospital, University of Turin, Corso Bramante 88, 10126, Turin, Italy.
| | - Gaetano Maria De Ferrari
- Division of Cardiology, Department of Medical Sciences, Citta della Salute e della Scienza Hospital, University of Turin, Corso Bramante 88, 10126, Turin, Italy
| |
Collapse
|
13
|
Kenig A, Kolben Y, Asleh R, Amir O, Ilan Y. Improving Diuretic Response in Heart Failure by Implementing a Patient-Tailored Variability and Chronotherapy-Guided Algorithm. Front Cardiovasc Med 2021; 8:695547. [PMID: 34458334 PMCID: PMC8385752 DOI: 10.3389/fcvm.2021.695547] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/21/2021] [Indexed: 01/12/2023] Open
Abstract
Heart failure is a major public health problem, which is associated with significant mortality, morbidity, and healthcare expenditures. A substantial amount of the morbidity is attributed to volume overload, for which loop diuretics are a mandatory treatment. However, the variability in response to diuretics and development of diuretic resistance adversely affect the clinical outcomes. Morevoer, there exists a marked intra- and inter-patient variability in response to diuretics that affects the clinical course and related adverse outcomes. In the present article, we review the mechanisms underlying the development of diuretic resistance. The role of the autonomic nervous system and chronobiology in the pathogenesis of congestive heart failure and response to therapy are also discussed. Establishing a novel model for overcoming diuretic resistance is presented based on a patient-tailored variability and chronotherapy-guided machine learning algorithm that comprises clinical, laboratory, and sensor-derived inputs, including inputs from pulmonary artery measurements. Inter- and intra-patient signatures of variabilities, alterations of biological clock, and autonomic nervous system responses are embedded into the algorithm; thus, it may enable a tailored dose regimen in a continuous manner that accommodates the highly dynamic complex system.
Collapse
Affiliation(s)
- Ariel Kenig
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Yotam Kolben
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Rabea Asleh
- Department of Cardiology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Offer Amir
- Department of Cardiology, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Yaron Ilan
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
14
|
Cavalcante GL, Brognara F, Oliveira LVDC, Lataro RM, Durand MDT, Oliveira AP, Nóbrega ACL, Salgado HC, Sabino JPJ. Benefits of pharmacological and electrical cholinergic stimulation in hypertension and heart failure. Acta Physiol (Oxf) 2021; 232:e13663. [PMID: 33884761 DOI: 10.1111/apha.13663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Systemic arterial hypertension and heart failure are cardiovascular diseases that affect millions of individuals worldwide. They are characterized by a change in the autonomic nervous system balance, highlighted by an increase in sympathetic activity associated with a decrease in parasympathetic activity. Most therapeutic approaches seek to treat these diseases by medications that attenuate sympathetic activity. However, there is a growing number of studies demonstrating that the improvement of parasympathetic function, by means of pharmacological or electrical stimulation, can be an effective tool for the treatment of these cardiovascular diseases. Therefore, this review aims to describe the advances reported by experimental and clinical studies that addressed the potential of cholinergic stimulation to prevent autonomic and cardiovascular imbalance in hypertension and heart failure. Overall, the published data reviewed demonstrate that the use of central or peripheral acetylcholinesterase inhibitors is efficient to improve the autonomic imbalance and hemodynamic changes observed in heart failure and hypertension. Of note, the baroreflex and the vagus nerve activation have been shown to be safe and effective approaches to be used as an alternative treatment for these cardiovascular diseases. In conclusion, pharmacological and electrical stimulation of the parasympathetic nervous system has the potential to be used as a therapeutic tool for the treatment of hypertension and heart failure, deserving to be more explored in the clinical setting.
Collapse
Affiliation(s)
- Gisele L. Cavalcante
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
- Department of Pharmacology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Fernanda Brognara
- Department of Physiology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Lucas Vaz de C. Oliveira
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| | - Renata M. Lataro
- Department of Physiological Sciences Center of Biological Sciences Federal University of Santa Catarina Florianópolis SP Brazil
| | | | - Aldeidia P. Oliveira
- Graduate Program in Pharmacology Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| | | | - Helio C. Salgado
- Department of Physiology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - João Paulo J. Sabino
- Graduate Program in Pharmaceutical Sciences Department of Biophysics and Physiology Federal University of Piaui Teresina PI Brazil
| |
Collapse
|
15
|
Vagus nerve stimulation affects inflammatory response and anti-apoptosis reactions via regulating miR-210 in epilepsy rat model. Neuroreport 2021; 32:783-791. [PMID: 33994524 DOI: 10.1097/wnr.0000000000001655] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Studies have shown that vagus nerve stimulation (VNS) significantly reduces the frequency of seizures. MicroRNAs (miRNAs) in cerebrospinal fluid are expected to become a new biomarker of epilepsy. Therefore, studying the interaction mechanism between the VNS and miRNAs is hopeful of bringing a new therapeutic direction for the treatment of epilepsy. METHODS Kainic acid was used to induce the Sprague-Dawley rat epilepsy model, and the rats were treated with VNS. The miR-210 expression was determined by quantitative reverse transcription PCR (qRT-PCR). Racine score was adopted to evaluate the performance of behavioral seizures, whereas qRT-PCR and ELISA were employed to test inflammatory factors. Western blotting was implemented to testify the inflammatory and apoptotic proteins. RESULTS Kainic acid-induced the Sprague-Dawley rat epilepsy model and upregulated the expression of miR-210, inflammatory response, inflammation and apoptosis-related proteins in brain tissues. In addition, compared with the epilepsy model group, miR-210 in the hippocampus of the epilepsy model rats treated with VNS was downregulated, and the expression of apoptosis-related proteins and inflammatory factors was reduced. Moreover, after further inhibiting the expression of miR-210, the inhibition of VNS on epilepsy, inflammation and apoptosis were significantly enhanced. SUMMARY VNS relieves the inflammatory response and apoptosis of epileptic rats via inhibiting miR-210.
Collapse
|
16
|
Hadaya J, Ardell JL. Autonomic Modulation for Cardiovascular Disease. Front Physiol 2020; 11:617459. [PMID: 33414727 PMCID: PMC7783451 DOI: 10.3389/fphys.2020.617459] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Dysfunction of the autonomic nervous system has been implicated in the pathogenesis of cardiovascular disease, including congestive heart failure and cardiac arrhythmias. Despite advances in the medical and surgical management of these entities, progression of disease persists as does the risk for sudden cardiac death. With improved knowledge of the dynamic relationships between the nervous system and heart, neuromodulatory techniques such as cardiac sympathetic denervation and vagal nerve stimulation (VNS) have emerged as possible therapeutic approaches for the management of these disorders. In this review, we present the structure and function of the cardiac nervous system and the remodeling that occurs in disease states, emphasizing the concept of increased sympathoexcitation and reduced parasympathetic tone. We review preclinical evidence for vagal nerve stimulation, and early results of clinical trials in the setting of congestive heart failure. Vagal nerve stimulation, and other neuromodulatory techniques, may improve the management of cardiovascular disorders, and warrant further study.
Collapse
Affiliation(s)
- Joseph Hadaya
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, United States.,UCLA Neurocardiology Research Program of Excellence, UCLA, Los Angeles, CA, United States.,Molecular, Cellular, and Integrative Physiology Program, UCLA, Los Angeles, CA, United States
| | - Jeffrey L Ardell
- University of California, Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, United States.,UCLA Neurocardiology Research Program of Excellence, UCLA, Los Angeles, CA, United States
| |
Collapse
|
17
|
Affiliation(s)
- Veronica Dusi
- Cardiac Intensive Care Unit, Arrhythmia and Electrophysiology and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gaetano Maria De Ferrari
- Division of Cardiology, Department of Internal Medicine, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Douglas L. Mann
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
18
|
Díaz HS, Toledo C, Andrade DC, Marcus NJ, Del Rio R. Neuroinflammation in heart failure: new insights for an old disease. J Physiol 2020; 598:33-59. [PMID: 31671478 DOI: 10.1113/jp278864] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 08/25/2023] Open
Abstract
Heart failure (HF) is a complex clinical syndrome affecting roughly 26 million people worldwide. Increased sympathetic drive is a hallmark of HF and is associated with disease progression and higher mortality risk. Several mechanisms contribute to enhanced sympathetic activity in HF, but these pathways are still incompletely understood. Previous work suggests that inflammation and activation of the renin-angiotensin system (RAS) increases sympathetic drive. Importantly, chronic inflammation in several brain regions is commonly observed in aged populations, and a growing body of evidence suggests neuroinflammation plays a crucial role in HF. In animal models of HF, central inhibition of RAS and pro-inflammatory cytokines normalizes sympathetic drive and improves cardiac function. The precise molecular and cellular mechanisms that lead to neuroinflammation and its effect on HF progression remain undetermined. This review summarizes the most recent advances in the field of neuroinflammation and autonomic control in HF. In addition, it focuses on cellular and molecular mediators of neuroinflammation in HF and in particular on brain regions involved in sympathetic control. Finally, we will comment on what is known about neuroinflammation in the context of preserved vs. reduced ejection fraction HF.
Collapse
Affiliation(s)
- Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
19
|
Ardell JL, Foreman RD, Armour JA, Shivkumar K. Cardiac sympathectomy and spinal cord stimulation attenuate reflex-mediated norepinephrine release during ischemia preventing ventricular fibrillation. JCI Insight 2019; 4:131648. [PMID: 31671074 DOI: 10.1172/jci.insight.131648] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
The purpose of this study was to define the mechanism by which cardiac neuraxial decentralization or spinal cord stimulation (SCS) reduces ischemia-induced ventricular fibrillation (VF). Direct measurements of norepinephrine (NE) levels in the left ventricular interstitial fluid (ISF) by microdialysis, in response to transient (15-minute) coronary artery occlusion (CAO), were performed in anesthetized canines. Responses were studied in animals with intact neuraxes and were compared with those in which the intrathoracic component of the cardiac neuraxes (stellate ganglia) or the intrinsic cardiac neuronal (ICN) system was surgically delinked from the central nervous system and those with intact neuraxes with preemptive SCS (T1-T3). With intact neuraxes, animals with exaggerated NE release due to CAO were at increased risk for VF. During CAO, there was a 152% increase in NE when the neuraxes were intact compared with 114% following stellate decentralization and 16% following ICN decentralization. During SCS, CAO NE levels increased by 59%. Risk for CAO-induced VF was 38% in controls, 8% following decentralization, and 11% following SCS. These data indicate that ischemia-related afferent neuronal transmission differentially engages central and intrathoracic sympathetic reflexes and amplifies sympathoexcitation. Differences in regional ventricular NE release are associated with increased risk for VF. Surgical decentralization or SCS reduced NE release and VF.
Collapse
Affiliation(s)
- Jeffrey L Ardell
- UCLA Cardiac Arrhythmia Center, UCLA Health System, Los Angeles, California, USA.,Neurocardiology Research Program of Excellence and.,Molecular Cellular and Integrative Physiology, UCLA, Los Angeles, California, USA.,Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Robert D Foreman
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - J Andrew Armour
- UCLA Cardiac Arrhythmia Center, UCLA Health System, Los Angeles, California, USA.,Neurocardiology Research Program of Excellence and
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center, UCLA Health System, Los Angeles, California, USA.,Neurocardiology Research Program of Excellence and.,Molecular Cellular and Integrative Physiology, UCLA, Los Angeles, California, USA.,Neuroscience Interdepartmental Programs, UCLA, Los Angeles, California, USA
| |
Collapse
|
20
|
|
21
|
YANG FW, FENG R, WANG HC, PANG WT, ZOU JH, LI XM, GE L, TIAN JH, ZHANG JH. Acupuncture and related therapies used as add-on to conventional treatments for heart failure: A systematic review of pairwise and network meta-analyses. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2018. [DOI: 10.1016/j.wjam.2018.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Shivkumar K, Ardell JL. Cardiac autonomic control in health and disease. J Physiol 2018; 594:3851-2. [PMID: 27417670 DOI: 10.1113/jp272580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/19/2016] [Indexed: 12/16/2022] Open
Affiliation(s)
- Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, Los Angeles, CA, USA
| | - Jeffrey L Ardell
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, Los Angeles, CA, USA
| |
Collapse
|
23
|
Fialho GL, Pagani AG, Wolf P, Walz R, Lin K. Echocardiographic risk markers of sudden death in patients with temporal lobe epilepsy. Epilepsy Res 2018; 140:192-197. [PMID: 29414527 DOI: 10.1016/j.eplepsyres.2018.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/18/2017] [Accepted: 01/13/2018] [Indexed: 01/22/2023]
Abstract
Patients with epilepsy (PWE) have an increased risk for sudden unexpected death compared to the general population. Echocardiography can analyze structural and functional heart changes that have impact on outcomes, including sudden cardiac and all-cause death. Our hypothesis is that subtle heart abnormalities occur in PWE. Thirty patients with temporal lobe epilepsy without any known cardiovascular disease, followed for at least 1 year, were enrolled between July 2015 and July 2016 and submitted to a 12-lead electrocardiogram, treadmill test and transthoracic echocardiogram. PWE were matched with individuals without epilepsy by sex, age and body mass index. A literature review of studies comparing echocardiographic findings in PWE and individuals without epilepsy was performed. PWE had a higher left ventricle stiffness (β= 5.97 ± 0.05 × 5.94 ± 0.03; p = 0.02), left ventricle filling pressures (9.7 ± 1.3 mmHg × 9 ± 0.8; p = 0.02) and a greater left atrial volume (44.7 ± 13.6 ml × 34.1 ± 9.6 ml; p = 0.003). Seventeen (56.6%) PWE had a total of 22 of six known echocardiographic markers related to increased risk for sudden death in the general population, versus 11 (36.7%) controls with 12 markers (p = 0.07). Stiffness is related to fibrosis through extracellular matrix deposition, which promotes systolic and diastolic dysfunction and arrhythmogenesis. Subtle echocardiographic findings in PWE could help to explain why this population has an increased risk to die suddenly.
Collapse
Affiliation(s)
- Guilherme L Fialho
- Cardiology Division, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Medical Sciences Post-Graduate Program, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Arthur G Pagani
- School of Medicine, Graduation Program, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Peter Wolf
- Medical Sciences Post-Graduate Program, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Neurology Division, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Danish Epilepsy Centre, Dianalund, Denmark.
| | - Roger Walz
- Medical Sciences Post-Graduate Program, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Neurology Division, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Applied Neurosciences Center (CeNAp), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Katia Lin
- Medical Sciences Post-Graduate Program, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Neurology Division, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Danish Epilepsy Centre, Dianalund, Denmark.
| |
Collapse
|
24
|
Abstract
Heart failure (HF) is associated with significant morbidity and mortality. The disease is characterised by autonomic imbalance with increased sympathetic activity and withdrawal of parasympathetic activity. Despite the use of medical therapies that target, in part, the neurohormonal axis, rates of HF progression, morbidity and mortality remain high. Emerging therapies centred on neuromodulation of autonomic control of the heart provide an alternative device-based approach to restoring sympathovagal balance. Preclinical studies have proven favourable, while clinical trials have had mixed results. This article highlights the importance of understanding structural/functional organisation of the cardiac nervous system as mechanistic-based neuromodulation therapies evolve.
Collapse
Affiliation(s)
- Peter Hanna
- David Geffen School of Medicine, University of California Los Angeles (UCLA) Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- David Geffen School of Medicine, University of California Los Angeles (UCLA) Los Angeles, CA, USA
| | - Jeffrey L Ardell
- David Geffen School of Medicine, University of California Los Angeles (UCLA) Los Angeles, CA, USA
| |
Collapse
|
25
|
|
26
|
Neuromodulation Therapies for Cardiac Disease. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
|
28
|
Ardell JL, Nier H, Hammer M, Southerland EM, Ardell CL, Beaumont E, KenKnight BH, Armour JA. Defining the neural fulcrum for chronic vagus nerve stimulation: implications for integrated cardiac control. J Physiol 2017; 595:6887-6903. [PMID: 28862330 PMCID: PMC5685838 DOI: 10.1113/jp274678] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS The evoked cardiac response to bipolar cervical vagus nerve stimulation (VNS) reflects a dynamic interaction between afferent mediated decreases in central parasympathetic drive and suppressive effects evoked by direct stimulation of parasympathetic efferent axons to the heart. The neural fulcrum is defined as the operating point, based on frequency-amplitude-pulse width, where a null heart rate response is reproducibly evoked during the on-phase of VNS. Cardiac control, based on the principal of the neural fulcrum, can be elicited from either vagus. Beta-receptor blockade does not alter the tachycardia phase to low intensity VNS, but can increase the bradycardia to higher intensity VNS. While muscarinic cholinergic blockade prevented the VNS-induced bradycardia, clinically relevant doses of ACE inhibitors, beta-blockade and the funny channel blocker ivabradine did not alter the VNS chronotropic response. While there are qualitative differences in VNS heart control between awake and anaesthetized states, the physiological expression of the neural fulcrum is maintained. ABSTRACT Vagus nerve stimulation (VNS) is an emerging therapy for treatment of chronic heart failure and remains a standard of therapy in patients with treatment-resistant epilepsy. The objective of this work was to characterize heart rate (HR) responses (HRRs) during the active phase of chronic VNS over a wide range of stimulation parameters in order to define optimal protocols for bidirectional bioelectronic control of the heart. In normal canines, bipolar electrodes were chronically implanted on the cervical vagosympathetic trunk bilaterally with anode cephalad to cathode (n = 8, 'cardiac' configuration) or with electrode positions reversed (n = 8, 'epilepsy' configuration). In awake state, HRRs were determined for each combination of pulse frequency (2-20 Hz), intensity (0-3.5 mA) and pulse widths (130-750 μs) over 14 months. At low intensities and higher frequency VNS, HR increased during the VNS active phase owing to afferent modulation of parasympathetic central drive. When functional effects of afferent and efferent fibre activation were balanced, a null HRR was evoked (defined as 'neural fulcrum') during which HRR ≈ 0. As intensity increased further, HR was reduced during the active phase of VNS. While qualitatively similar, VNS delivered in the epilepsy configuration resulted in more pronounced HR acceleration and reduced HR deceleration during VNS. At termination, under anaesthesia, transection of the vagi rostral to the stimulation site eliminated the augmenting response to VNS and enhanced the parasympathetic efferent-mediated suppressing effect on electrical and mechanical function of the heart. In conclusion, VNS activates central then peripheral aspects of the cardiac nervous system. VNS control over cardiac function is maintained during chronic therapy.
Collapse
Affiliation(s)
- Jeffrey L. Ardell
- UCLA Neurocardiology Research Center of Excellence and UCLA Cardiac Arrhythmia Center, Los AngelesLos AngelesCAUSA
| | - Heath Nier
- Biomedical SciencesEast Tennessee State UniversityJohnson CityTNUSA
| | - Matthew Hammer
- UCLA Neurocardiology Research Center of Excellence and UCLA Cardiac Arrhythmia Center, Los AngelesLos AngelesCAUSA
| | | | | | - Eric Beaumont
- Biomedical SciencesEast Tennessee State UniversityJohnson CityTNUSA
| | | | - J. Andrew Armour
- UCLA Neurocardiology Research Center of Excellence and UCLA Cardiac Arrhythmia Center, Los AngelesLos AngelesCAUSA
| |
Collapse
|
29
|
Interfacing with the nervous system: a review of current bioelectric technologies. Neurosurg Rev 2017; 42:227-241. [PMID: 29063229 DOI: 10.1007/s10143-017-0920-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/15/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023]
Abstract
The aim of this study is to discuss the state of the art with regard to established or promising bioelectric therapies meant to alter or control neurologic function. We present recent reports on bioelectric technologies that interface with the nervous system at three potential sites-(1) the end organ, (2) the peripheral nervous system, and (3) the central nervous system-while exploring practical and clinical considerations. A literature search was executed on PubMed, IEEE, and Web of Science databases. A review of the current literature was conducted to examine functional and histomorphological effects of neuroprosthetic interfaces with a focus on end-organ, peripheral, and central nervous system interfaces. Innovations in bioelectric technologies are providing increasing selectivity in stimulating distinct nerve fiber populations in order to activate discrete muscles. Significant advances in electrode array design focus on increasing selectivity, stability, and functionality of implantable neuroprosthetics. The application of neuroprosthetics to paretic nerves or even directly stimulating or recording from the central nervous system holds great potential in advancing the field of nerve and tissue bioelectric engineering and contributing to clinical care. Although current physiotherapeutic and surgical treatments seek to restore function, structure, or comfort, they bear significant limitations in enabling cosmetic or functional recovery. Instead, the introduction of bioelectric technology may play a role in the restoration of function in patients with neurologic deficits.
Collapse
|
30
|
Carlson GM, Libbus I, Amurthur B, KenKnight BH, Verrier RL. Novel method to assess intrinsic heart rate recovery in ambulatory ECG recordings tracks cardioprotective effects of chronic autonomic regulation therapy in patients enrolled in the ANTHEM-HF study. Ann Noninvasive Electrocardiol 2017; 22:e12436. [PMID: 28213914 PMCID: PMC6931843 DOI: 10.1111/anec.12436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/13/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Postexercise heart rate recovery (HRR) is a powerful and independent predictor of mortality. Autonomic regulation therapy (ART) with chronic vagus nerve stimulation (VNS) has been shown to improve ventricular function in patients with chronic heart failure. However, the effect of ART on HRR in patients with heart failure remains unknown. METHODS A new measure involving quantification of intrinsic HRR was developed for 24-hr ambulatory ECG (AECG) recordings based on spontaneous heart rate changes observed during daily activity in patients with symptomatic heart failure and reduced ejection fraction. Intrinsic HRR values were compared in 21 patients enrolled in the ANTHEM-HF study (NCT01823887) before and after 12 months of chronic ART (10 Hz, 250 μs pulse width, 18% duty cycle, maximum tolerable current amplitude after 10 weeks of titration) and to values from normal subjects (PhysioNet database, n = 54). RESULTS With chronic ART, average intrinsic HRR was improved as indicated by a shortening of the rate-recovery time constant by 8.9% (from 12.3 ± 0.1 at baseline to 11.2 ± 0.1 s, p < .0001) among patients receiving high-intensity stimuli (≥2 mA). In addition, mean heart rate decreased by 8.5 bpm (from 75.9 ± 2.6 to 67.4 ± 2.9 bpm, p = .005) and left ventricular ejection fraction (LVEF) increased by 4.7% (from 32.6 ± 2.0% to 37.3 ± 1.9%, p < .005). CONCLUSION Using a new technique adapted for 24-hr AECG recordings, intrinsic HRR was found to be impaired in patients with symptomatic HF compared to normal subjects. Chronic ART significantly improved intrinsic HRR, indicating an improvement in autonomic function.
Collapse
|
31
|
De Ferrari GM, Stolen C, Tuinenburg AE, Wright DJ, Brugada J, Butter C, Klein H, Neuzil P, Botman C, Castel MA, D'Onofrio A, de Borst GJ, Solomon S, Stein KM, Schubert B, Stalsberg K, Wold N, Ruble S, Zannad F. Long-term vagal stimulation for heart failure: Eighteen month results from the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) trial. Int J Cardiol 2017; 244:229-234. [PMID: 28663046 DOI: 10.1016/j.ijcard.2017.06.036] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/19/2017] [Accepted: 06/09/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND The NECTAR-HF study evaluated safety and feasibility of vagal nerve stimulation (VNS) for the treatment of heart failure patients. The first six-month randomized phase of the study did not show improvement in left ventricular remodelling in response to VNS. This study reports the 18-month results and provides novel findings aiming to understand the lack of efficacy of VNS, including a new technique assessing the effects of VNS. METHODS Ninety-six patients were randomized 2:1 to active or inactive VNS for 6months, thereafter VNS was activated for all patients. The primary safety endpoint was 18-month all-cause mortality. RESULTS Ninety-one patients continued in the long-term evaluation with active VNS. The on-therapy survival estimate at 18months was 95% with a 95% one-sided lower confidence limit of 91%, (better than the predefined criterion). Left ventricular systolic volume decreased in the crossover group (VNS OFF→ON; 144±37 to 139±40, p<0.05) after VNS activation; LVESD (5.02±0.77 to 4.96±0.82, p>0.05) and LVEF (33.2±4.9 to 33.3±6.5, p>0.05) did not change. A new technique to detect subtle heart rate changes during Holter recordings, i.e. "heat maps", revealed that VNS evoked heart rate response in only 13/106 studies (12%) at 6 and 12months with active VNS. CONCLUSIONS Although a favourable long-term safety profile was found, improvements in the efficacy endpoints were not seen with VNS. A new technique for detecting acute heart rate responses to VNS suggests that the recruitment of nerve fibres responsible for heart rate changes were substantially lower in NECTAR-HF than in pre-clinical models.
Collapse
Affiliation(s)
- Gaetano M De Ferrari
- Coronary Care Unit - Laboratory of Clinical and Experimental Cardiology - and Cardiovascular Clinical Research Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy.
| | - Craig Stolen
- Boston Scientific Corporation, St. Paul, MN, United States
| | - Anton E Tuinenburg
- Department of Cardiology, University Medical Center, Utrecht, The Netherlands
| | - D Jay Wright
- Department of Cardiology, Liverpool Heart and Chest, Liverpool, UK
| | | | | | - Helmut Klein
- Division of Cardiology, Otto-von-Guericke Universität Magdeburg, Germany
| | - Petr Neuzil
- Department of Cardiology, Homolka Hospital, Prague, Czech Republic
| | - Cornelis Botman
- Department of Cardiology, Catharina Hospital, Eindhoven, The Netherlands
| | | | | | - Gert J de Borst
- Department of Cardiology, University Medical Center, Utrecht, The Netherlands
| | - Scott Solomon
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | | | | | | | - Nicholas Wold
- Boston Scientific Corporation, St. Paul, MN, United States
| | - Stephen Ruble
- Boston Scientific Corporation, St. Paul, MN, United States
| | - Faiez Zannad
- Inserm, CIC 1433, Centre Hospitalier Universitaire, Department of Cardiology, Nancy University, Université de Lorraine, Nancy, France
| |
Collapse
|
32
|
Ojeda D, Le Rolle V, Romero-Ugalde HM, Gallet C, Bonnet JL, Henry C, Bel A, Mabo P, Carrault G, Hernández AI. Sensitivity Analysis of Vagus Nerve Stimulation Parameters on Acute Cardiac Autonomic Responses: Chronotropic, Inotropic and Dromotropic Effects. PLoS One 2016; 11:e0163734. [PMID: 27690312 PMCID: PMC5045213 DOI: 10.1371/journal.pone.0163734] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/13/2016] [Indexed: 11/18/2022] Open
Abstract
Although the therapeutic effects of Vagus Nerve Stimulation (VNS) have been recognized in pre-clinical and pilot clinical studies, the effect of different stimulation configurations on the cardiovascular response is still an open question, especially in the case of VNS delivered synchronously with cardiac activity. In this paper, we propose a formal mathematical methodology to analyze the acute cardiac response to different VNS configurations, jointly considering the chronotropic, dromotropic and inotropic cardiac effects. A latin hypercube sampling method was chosen to design a uniform experimental plan, composed of 75 different VNS configurations, with different values for the main parameters (current amplitude, number of delivered pulses, pulse width, interpulse period and the delay between the detected cardiac event and VNS onset). These VNS configurations were applied to 6 healthy, anesthetized sheep, while acquiring the associated cardiovascular response. Unobserved VNS configurations were estimated using a Gaussian process regression (GPR) model. In order to quantitatively analyze the effect of each parameter and their combinations on the cardiac response, the Sobol sensitivity method was applied to the obtained GPR model and inter-individual sensitivity markers were estimated using a bootstrap approach. Results highlight the dominant effect of pulse current, pulse width and number of pulses, which explain respectively 49.4%, 19.7% and 6.0% of the mean global cardiovascular variability provoked by VNS. More interestingly, results also quantify the effect of the interactions between VNS parameters. In particular, the interactions between current and pulse width provoke higher cardiac effects than the changes on the number of pulses alone (between 6 and 25% of the variability). Although the sensitivity of individual VNS parameters seems similar for chronotropic, dromotropic and inotropic responses, the interacting effects of VNS parameters provoke significantly different cardiac responses, showing the feasibility of a parameter-based functional selectivity. These results are of primary importance for the optimal, subject-specific definition of VNS parameters for a given therapy and may lead to new closed-loop methods allowing for the optimal adaptation of VNS therapy through time.
Collapse
Affiliation(s)
- David Ojeda
- INSERM, U1099, Rennes, France
- Université de Rennes 1, LTSI, Rennes, France
| | - Virginie Le Rolle
- INSERM, U1099, Rennes, France
- Université de Rennes 1, LTSI, Rennes, France
| | | | - Clément Gallet
- INSERM, U1099, Rennes, France
- Université de Rennes 1, LTSI, Rennes, France
| | | | | | - Alain Bel
- INSERM, UMR970 Paris Cardio-vascular Research Center, Paris, France
- Assistance Publique-Hôpitaux de Paris, Department of Cardiology, Hôpital Européen Georges Pompidou, Paris, France
- Paris Descartes University, PRES Paris Sorbonne, Paris, France
| | - Philippe Mabo
- INSERM, U1099, Rennes, France
- Université de Rennes 1, LTSI, Rennes, France
- CHU Rennes, Department of Cardiology, Rennes, France
- INSERM, CIC-IT 1414, Rennes, France
| | - Guy Carrault
- INSERM, U1099, Rennes, France
- Université de Rennes 1, LTSI, Rennes, France
| | - Alfredo I. Hernández
- INSERM, U1099, Rennes, France
- Université de Rennes 1, LTSI, Rennes, France
- * E-mail:
| |
Collapse
|
33
|
Ho HT, Belevych AE, Liu B, Bonilla IM, Radwański PB, Kubasov IV, Valdivia HH, Schober K, Carnes CA, Györke S. Muscarinic Stimulation Facilitates Sarcoplasmic Reticulum Ca Release by Modulating Ryanodine Receptor 2 Phosphorylation Through Protein Kinase G and Ca/Calmodulin-Dependent Protein Kinase II. Hypertension 2016; 68:1171-1178. [PMID: 27647848 DOI: 10.1161/hypertensionaha.116.07666] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 08/21/2016] [Indexed: 01/01/2023]
Abstract
Although the effects and the underlying mechanism of sympathetic stimulation on cardiac Ca handling are relatively well established both in health and disease, the modes of action and mechanisms of parasympathetic modulation are poorly defined. Here, we demonstrate that parasympathetic stimulation initiates a novel mode of excitation-contraction coupling that enhances the efficiency of cardiac sarcoplasmic reticulum Ca store utilization. This efficient mode of excitation-contraction coupling involves reciprocal changes in the phosphorylation of ryanodine receptor 2 at Ser-2808 and Ser-2814. Specifically, Ser-2808 phosphorylation was mediated by muscarinic receptor subtype 2 and activation of PKG (protein kinase G), whereas dephosphorylation of Ser-2814 involved activation of muscarinic receptor subtype 3 and decreased reactive oxygen species-dependent activation of CaMKII (Ca/calmodulin-dependent protein kinase II). The overall effect of these changes in phosphorylation of ryanodine receptor 2 is an increase in systolic Ca release at the low sarcoplasmic reticulum Ca content and a paradoxical reduction in aberrant Ca leak. Accordingly, cholinergic stimulation of cardiomyocytes isolated from failing hearts improved Ca cycling efficiency by restoring altered ryanodine receptor 2 phosphorylation balance.
Collapse
Affiliation(s)
- Hsiang-Ting Ho
- From the Department of Physiology and Cell Biology (H.-T.H., A.E.B., B.L., P.B.R., S.G.), College of Pharmacy (I.M.B., P.B.R., C.A.C.), and College of Veterinary Medicine (K.S.), The Ohio State University, Columbus; Davis Heart and Lung Research Institute, Columbus, OH (H.-T.H., A.E.B., B.L., I.M.B., P.B.R., C.A.C., S.G.); Department of Medicine, Duke University, Durham, NC (H.-T.H.); Laboratory of Neuromuscular Physiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Petersburg, Russia (I.V.K.); and Center for Arrhythmia Research, Cardiovascular Division of the Department of Internal Medicine, University of Michigan, Ann Arbor (H.H.V.)
| | - Andriy E Belevych
- From the Department of Physiology and Cell Biology (H.-T.H., A.E.B., B.L., P.B.R., S.G.), College of Pharmacy (I.M.B., P.B.R., C.A.C.), and College of Veterinary Medicine (K.S.), The Ohio State University, Columbus; Davis Heart and Lung Research Institute, Columbus, OH (H.-T.H., A.E.B., B.L., I.M.B., P.B.R., C.A.C., S.G.); Department of Medicine, Duke University, Durham, NC (H.-T.H.); Laboratory of Neuromuscular Physiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Petersburg, Russia (I.V.K.); and Center for Arrhythmia Research, Cardiovascular Division of the Department of Internal Medicine, University of Michigan, Ann Arbor (H.H.V.)
| | - Bin Liu
- From the Department of Physiology and Cell Biology (H.-T.H., A.E.B., B.L., P.B.R., S.G.), College of Pharmacy (I.M.B., P.B.R., C.A.C.), and College of Veterinary Medicine (K.S.), The Ohio State University, Columbus; Davis Heart and Lung Research Institute, Columbus, OH (H.-T.H., A.E.B., B.L., I.M.B., P.B.R., C.A.C., S.G.); Department of Medicine, Duke University, Durham, NC (H.-T.H.); Laboratory of Neuromuscular Physiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Petersburg, Russia (I.V.K.); and Center for Arrhythmia Research, Cardiovascular Division of the Department of Internal Medicine, University of Michigan, Ann Arbor (H.H.V.)
| | - Ingrid M Bonilla
- From the Department of Physiology and Cell Biology (H.-T.H., A.E.B., B.L., P.B.R., S.G.), College of Pharmacy (I.M.B., P.B.R., C.A.C.), and College of Veterinary Medicine (K.S.), The Ohio State University, Columbus; Davis Heart and Lung Research Institute, Columbus, OH (H.-T.H., A.E.B., B.L., I.M.B., P.B.R., C.A.C., S.G.); Department of Medicine, Duke University, Durham, NC (H.-T.H.); Laboratory of Neuromuscular Physiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Petersburg, Russia (I.V.K.); and Center for Arrhythmia Research, Cardiovascular Division of the Department of Internal Medicine, University of Michigan, Ann Arbor (H.H.V.)
| | - Przemysław B Radwański
- From the Department of Physiology and Cell Biology (H.-T.H., A.E.B., B.L., P.B.R., S.G.), College of Pharmacy (I.M.B., P.B.R., C.A.C.), and College of Veterinary Medicine (K.S.), The Ohio State University, Columbus; Davis Heart and Lung Research Institute, Columbus, OH (H.-T.H., A.E.B., B.L., I.M.B., P.B.R., C.A.C., S.G.); Department of Medicine, Duke University, Durham, NC (H.-T.H.); Laboratory of Neuromuscular Physiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Petersburg, Russia (I.V.K.); and Center for Arrhythmia Research, Cardiovascular Division of the Department of Internal Medicine, University of Michigan, Ann Arbor (H.H.V.)
| | - Igor V Kubasov
- From the Department of Physiology and Cell Biology (H.-T.H., A.E.B., B.L., P.B.R., S.G.), College of Pharmacy (I.M.B., P.B.R., C.A.C.), and College of Veterinary Medicine (K.S.), The Ohio State University, Columbus; Davis Heart and Lung Research Institute, Columbus, OH (H.-T.H., A.E.B., B.L., I.M.B., P.B.R., C.A.C., S.G.); Department of Medicine, Duke University, Durham, NC (H.-T.H.); Laboratory of Neuromuscular Physiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Petersburg, Russia (I.V.K.); and Center for Arrhythmia Research, Cardiovascular Division of the Department of Internal Medicine, University of Michigan, Ann Arbor (H.H.V.)
| | - Héctor H Valdivia
- From the Department of Physiology and Cell Biology (H.-T.H., A.E.B., B.L., P.B.R., S.G.), College of Pharmacy (I.M.B., P.B.R., C.A.C.), and College of Veterinary Medicine (K.S.), The Ohio State University, Columbus; Davis Heart and Lung Research Institute, Columbus, OH (H.-T.H., A.E.B., B.L., I.M.B., P.B.R., C.A.C., S.G.); Department of Medicine, Duke University, Durham, NC (H.-T.H.); Laboratory of Neuromuscular Physiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Petersburg, Russia (I.V.K.); and Center for Arrhythmia Research, Cardiovascular Division of the Department of Internal Medicine, University of Michigan, Ann Arbor (H.H.V.)
| | - Karsten Schober
- From the Department of Physiology and Cell Biology (H.-T.H., A.E.B., B.L., P.B.R., S.G.), College of Pharmacy (I.M.B., P.B.R., C.A.C.), and College of Veterinary Medicine (K.S.), The Ohio State University, Columbus; Davis Heart and Lung Research Institute, Columbus, OH (H.-T.H., A.E.B., B.L., I.M.B., P.B.R., C.A.C., S.G.); Department of Medicine, Duke University, Durham, NC (H.-T.H.); Laboratory of Neuromuscular Physiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Petersburg, Russia (I.V.K.); and Center for Arrhythmia Research, Cardiovascular Division of the Department of Internal Medicine, University of Michigan, Ann Arbor (H.H.V.)
| | - Cynthia A Carnes
- From the Department of Physiology and Cell Biology (H.-T.H., A.E.B., B.L., P.B.R., S.G.), College of Pharmacy (I.M.B., P.B.R., C.A.C.), and College of Veterinary Medicine (K.S.), The Ohio State University, Columbus; Davis Heart and Lung Research Institute, Columbus, OH (H.-T.H., A.E.B., B.L., I.M.B., P.B.R., C.A.C., S.G.); Department of Medicine, Duke University, Durham, NC (H.-T.H.); Laboratory of Neuromuscular Physiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Petersburg, Russia (I.V.K.); and Center for Arrhythmia Research, Cardiovascular Division of the Department of Internal Medicine, University of Michigan, Ann Arbor (H.H.V.)
| | - Sándor Györke
- From the Department of Physiology and Cell Biology (H.-T.H., A.E.B., B.L., P.B.R., S.G.), College of Pharmacy (I.M.B., P.B.R., C.A.C.), and College of Veterinary Medicine (K.S.), The Ohio State University, Columbus; Davis Heart and Lung Research Institute, Columbus, OH (H.-T.H., A.E.B., B.L., I.M.B., P.B.R., C.A.C., S.G.); Department of Medicine, Duke University, Durham, NC (H.-T.H.); Laboratory of Neuromuscular Physiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Petersburg, Russia (I.V.K.); and Center for Arrhythmia Research, Cardiovascular Division of the Department of Internal Medicine, University of Michigan, Ann Arbor (H.H.V.).
| |
Collapse
|
34
|
Abstract
Cardiac control is mediated via a series of reflex control networks involving somata in the (i) intrinsic cardiac ganglia (heart), (ii) intrathoracic extracardiac ganglia (stellate, middle cervical), (iii) superior cervical ganglia, (iv) spinal cord, (v) brainstem, and (vi) higher centers. Each of these processing centers contains afferent, efferent, and local circuit neurons, which interact locally and in an interdependent fashion with the other levels to coordinate regional cardiac electrical and mechanical indices on a beat-to-beat basis. This control system is optimized to respond to normal physiological stressors (standing, exercise, and temperature); however, it can be catastrophically disrupted by pathological events such as myocardial ischemia. In fact, it is now recognized that autonomic dysregulation is central to the evolution of heart failure and arrhythmias. Autonomic regulation therapy is an emerging modality in the management of acute and chronic cardiac pathologies. Neuromodulation-based approaches that target select nexus points of this hierarchy for cardiac control offer unique opportunities to positively affect therapeutic outcomes via improved efficacy of cardiovascular reflex control. As such, understanding the anatomical and physiological basis for such control is necessary to implement effectively novel neuromodulation therapies. © 2016 American Physiological Society. Compr Physiol 6:1635-1653, 2016.
Collapse
Affiliation(s)
- Jeffrey L Ardell
- Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, California, USA
| | - John Andrew Armour
- Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, California, USA
| |
Collapse
|
35
|
Salavatian S, Beaumont E, Longpré JP, Armour JA, Vinet A, Jacquemet V, Shivkumar K, Ardell JL. Vagal stimulation targets select populations of intrinsic cardiac neurons to control neurally induced atrial fibrillation. Am J Physiol Heart Circ Physiol 2016; 311:H1311-H1320. [PMID: 27591222 DOI: 10.1152/ajpheart.00443.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/30/2016] [Indexed: 12/30/2022]
Abstract
Mediastinal nerve stimulation (MNS) reproducibly evokes atrial fibrillation (AF) by excessive and heterogeneous activation of intrinsic cardiac (IC) neurons. This study evaluated whether preemptive vagus nerve stimulation (VNS) impacts MNS-induced evoked changes in IC neural network activity to thereby alter susceptibility to AF. IC neuronal activity in the right atrial ganglionated plexus was directly recorded in anesthetized canines (n = 8) using a linear microelectrode array concomitant with right atrial electrical activity in response to: 1) epicardial touch or great vessel occlusion vs. 2) stellate or vagal stimulation. From these stressors, post hoc analysis (based on the Skellam distribution) defined IC neurons so recorded as afferent, efferent, or convergent (afferent and efferent inputs) local circuit neurons (LCN). The capacity of right-sided MNS to modify IC activity in the induction of AF was determined before and after preemptive right (RCV)- vs. left (LCV)-sided VNS (15 Hz, 500 μs; 1.2× bradycardia threshold). Neuronal (n = 89) activity at baseline (0.11 ± 0.29 Hz) increased during MNS-induced AF (0.51 ± 1.30 Hz; P < 0.001). Convergent LCNs were preferentially activated by MNS. Preemptive RCV reduced MNS-induced changes in LCN activity (by 70%) while mitigating MNS-induced AF (by 75%). Preemptive LCV reduced LCN activity by 60% while mitigating AF potential by 40%. IC neuronal synchrony increased during neurally induced AF, a local neural network response mitigated by preemptive VNS. These antiarrhythmic effects persisted post-VNS for, on average, 26 min. In conclusion, VNS preferentially targets convergent LCNs and their interactive coherence to mitigate the potential for neurally induced AF. The antiarrhythmic properties imposed by VNS exhibit memory.
Collapse
Affiliation(s)
- Siamak Salavatian
- Faculty of Medicine, Department of Physiology, Université de Montréal, Quebec, Canada.,Centre de Recherche, Hôpital du Sacré-Coeur, Montréal, Quebec, Canada.,Neurocardiology Research Center of Excellence, University of California Los Angeles, Los Angeles, California; and
| | - Eric Beaumont
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Jean-Philippe Longpré
- Faculty of Medicine, Department of Physiology, Université de Montréal, Quebec, Canada.,Centre de Recherche, Hôpital du Sacré-Coeur, Montréal, Quebec, Canada
| | - J Andrew Armour
- Neurocardiology Research Center of Excellence, University of California Los Angeles, Los Angeles, California; and.,Cardiac Arrhythmia Center, University of California Los Angeles, Los Angeles, California
| | - Alain Vinet
- Faculty of Medicine, Department of Physiology, Université de Montréal, Quebec, Canada.,Centre de Recherche, Hôpital du Sacré-Coeur, Montréal, Quebec, Canada
| | - Vincent Jacquemet
- Faculty of Medicine, Department of Physiology, Université de Montréal, Quebec, Canada.,Centre de Recherche, Hôpital du Sacré-Coeur, Montréal, Quebec, Canada
| | - Kalyanam Shivkumar
- Neurocardiology Research Center of Excellence, University of California Los Angeles, Los Angeles, California; and.,Cardiac Arrhythmia Center, University of California Los Angeles, Los Angeles, California
| | - Jeffrey L Ardell
- Neurocardiology Research Center of Excellence, University of California Los Angeles, Los Angeles, California; and .,Cardiac Arrhythmia Center, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
36
|
Lee H, Kim TH, Leem J. Acupuncture for heart failure: A systematic review of clinical studies. Int J Cardiol 2016; 222:321-331. [PMID: 27500758 DOI: 10.1016/j.ijcard.2016.07.195] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 07/28/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Acupuncture has been used for treating heart failure mainly in combination with conventional treatments, but evidence for its effectiveness and safety has not been well established. Our aim was to review randomized controlled trials (RCTs) on acupuncture for heart failure and assess the clinical evidence. METHODS Electronic databases such as Medline, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL) and certain Chinese & Korean databases were searched until October 2015. The main outcomes assessed were mortality, New York Heart Association (NYHA) function classifications, and acupuncture-related adverse events. The details of acupuncture intervention were also investigated. RESULTS Among 4107 publications, seven RCTs were included; most of them showed considerable methodological flaws. We could not conduct a meta-analysis because of the heterogeneity of the included studies. In one acute heart failure study, acupuncture shortened intensive care unit (ICU) stay by 2.2days (95% CI 1.26, 3.14) and reduced the risk ratio of re-admission to 0.53 (95% CI 0.28, 0.99). However, mortality was not affected. Hemodynamic parameters also showed improvement. Another study reported an improved left ventricular ejection fraction by 9.95% (95% CI 3.24, 16.66). In five chronic heart failure studies, acupuncture improved exercise capacity, quality of life, hemodynamic parameters, and time domain heart rate variability parameters. Acupuncture decreased NT-pro BNP levels by 292.20 (95% CI -567.36, -17.04). No adverse effects were reported. CONCLUSIONS The effectiveness of acupuncture as a therapy for heart failure is currently inconclusive. Further large and rigorous clinical trials are needed to establish its clinical utility.
Collapse
Affiliation(s)
- Hojung Lee
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University,23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital,23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Tae-Hun Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University,23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital,23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Jungtae Leem
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University,23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital,23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
37
|
Shivkumar K, Ajijola OA, Anand I, Armour JA, Chen PS, Esler M, De Ferrari GM, Fishbein MC, Goldberger JJ, Harper RM, Joyner MJ, Khalsa SS, Kumar R, Lane R, Mahajan A, Po S, Schwartz PJ, Somers VK, Valderrabano M, Vaseghi M, Zipes DP. Clinical neurocardiology defining the value of neuroscience-based cardiovascular therapeutics. J Physiol 2016; 594:3911-54. [PMID: 27114333 PMCID: PMC4945719 DOI: 10.1113/jp271870] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/08/2016] [Indexed: 12/13/2022] Open
Abstract
The autonomic nervous system regulates all aspects of normal cardiac function, and is recognized to play a critical role in the pathophysiology of many cardiovascular diseases. As such, the value of neuroscience-based cardiovascular therapeutics is increasingly evident. This White Paper reviews the current state of understanding of human cardiac neuroanatomy, neurophysiology, pathophysiology in specific disease conditions, autonomic testing, risk stratification, and neuromodulatory strategies to mitigate the progression of cardiovascular diseases.
Collapse
Affiliation(s)
- Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, Los Angeles, CA, USA
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, Los Angeles, CA, USA
| | - Inder Anand
- Department of Cardiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - J Andrew Armour
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, Los Angeles, CA, USA
| | - Peng-Sheng Chen
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Murray Esler
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jeffrey J Goldberger
- Division of Cardiology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ronald M Harper
- Department of Neurobiology and the Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Michael J Joyner
- Division of Cardiovascular Diseases, Mayo Clinic and Mayo Foundation, Rochester, MN, USA
| | | | - Rajesh Kumar
- Departments of Anesthesiology and Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Richard Lane
- Department of Psychiatry, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Aman Mahajan
- Department of Anesthesia, UCLA, Los Angeles, CA, USA
| | - Sunny Po
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- University of Tulsa Oxley College of Health Sciences, Tulsa, OK, USA
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, IRCCS Instituto Auxologico Italiano, c/o Centro Diagnostico e di Ricerrca San Carlo, Milan, Italy
| | - Virend K Somers
- Division of Cardiovascular Diseases, Mayo Clinic and Mayo Foundation, Rochester, MN, USA
| | - Miguel Valderrabano
- Methodist DeBakey Heart and Vascular Center and Methodist Hospital Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, Los Angeles, CA, USA
| | - Douglas P Zipes
- Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
38
|
Ardell JL, Andresen MC, Armour JA, Billman GE, Chen PS, Foreman RD, Herring N, O'Leary DS, Sabbah HN, Schultz HD, Sunagawa K, Zucker IH. Translational neurocardiology: preclinical models and cardioneural integrative aspects. J Physiol 2016; 594:3877-909. [PMID: 27098459 DOI: 10.1113/jp271869] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Neuronal elements distributed throughout the cardiac nervous system, from the level of the insular cortex to the intrinsic cardiac nervous system, are in constant communication with one another to ensure that cardiac output matches the dynamic process of regional blood flow demand. Neural elements in their various 'levels' become differentially recruited in the transduction of sensory inputs arising from the heart, major vessels, other visceral organs and somatic structures to optimize neuronal coordination of regional cardiac function. This White Paper will review the relevant aspects of the structural and functional organization for autonomic control of the heart in normal conditions, how these systems remodel/adapt during cardiac disease, and finally how such knowledge can be leveraged in the evolving realm of autonomic regulation therapy for cardiac therapeutics.
Collapse
Affiliation(s)
- J L Ardell
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - M C Andresen
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| | - J A Armour
- University of California - Los Angeles (UCLA) Cardiac Arrhythmia Center, David Geffen School of Medicine, Los Angeles, CA, USA.,UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - G E Billman
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - P-S Chen
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R D Foreman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - D S O'Leary
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - H N Sabbah
- Department of Medicine, Henry Ford Hospital, Detroit, MI, USA
| | - H D Schultz
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - K Sunagawa
- Department of Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - I H Zucker
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
39
|
Rousselet L, Le Rolle V, Ojeda D, Guiraud D, Hagége A, Bel A, Bonnet JL, Mabo P, Carrault G, Hernández AI. Influence of Vagus Nerve Stimulation parameters on chronotropism and inotropism in heart failure. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2014:526-9. [PMID: 25570012 DOI: 10.1109/embc.2014.6943644] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vagus Nerve Stimulation (VNS) has been shown to be useful in heart failure patients, including antiarrhythmic effects, improvement of cardiac function and reduction of the mortality. However, the optimal configuration of VNS can be a difficult task, since there are several adjustable parameters, such as current amplitude (mA), pulse width (ms), burst frequency (Hz), number of pulses and, in the case of cardiac-triggered VNS, the delay (ms) between the R-wave and the beginning of the stimulation. The objective of this paper is to analyse the effect of these parameters, and their interaction, on the chronotropic and inotropic responses to vagal stimulation. 306 VNS sequences were tested on 12 sheep with induced heart failure. Autonomic markers of the chronotropic (changes in RR interval) and inotropic (changes in dP/dtmax) effects were extracted from the observed data. In order to analyse the influence of stimulation parameters on these markers, a sensitivity analysis method was applied. Results illustrate the strong interaction between the delay and the others parameters. The number of pulses, the current and the frequency seem to be particularly influent on chronotropism and inotropism although the effect of the frequency is highly non-linear or it depends on other parameters.
Collapse
|
40
|
Xu M, Bi X, He X, Yu X, Zhao M, Zang W. Inhibition of the mitochondrial unfolded protein response by acetylcholine alleviated hypoxia/reoxygenation-induced apoptosis of endothelial cells. Cell Cycle 2016; 15:1331-43. [PMID: 27111378 DOI: 10.1080/15384101.2016.1160985] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The mitochondrial unfolded protein response (UPR(mt)) is involved in numerous diseases that have the common feature of mitochondrial dysfunction. However, its pathophysiological relevance in the context of hypoxia/reoxygenation (H/R) in endothelial cells remains elusive. Previous studies have demonstrated that acetylcholine (ACh) protects against cardiomyocyte injury by suppressing generation of mitochondrial reactive oxygen species (mtROS). This study aimed to explore the role of UPR(mt) in endothelial cells during H/R and to clarify the beneficial effects of ACh. Our results demonstrated that H/R triggered UPR(mt) in endothelial cells, as evidenced by the elevation of heat shock protein 60 and LON protease 1 protein levels, and resulted in release of mitochondrial pro-apoptotic proteins, including cytochrome C, Omi/high temperature requirement protein A 2 and second mitochondrial activator of caspases/direct inhibitor of apoptosis-binding protein with low PI, from the mitochondria to cytosol. ACh administration markedly decreased UPR(mt) by inhibiting mtROS and alleviating the mitonuclear protein imbalance. Consequently, ACh alleviated the release of pro-apoptotic proteins and restored mitochondrial ultrastructure and function, thereby reducing the number of terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling (TUNEL)-positive cells. Intriguingly, 4-diphenylacetoxy-N-methylpiperidine methiodide, a type-3 muscarinic ACh receptor (M3AChR) inhibitor, abolished the ACh-elicited attenuation of UPR(mt) and TUNEL positive cells, indicating that the salutary effects of ACh were likely mediated by M3AChR in endothelial cells. In conclusion, our studies demonstrated that UPR(mt) might be essential for triggering the mitochondrion-associated apoptotic pathway during H/R. ACh markedly suppressed UPR(mt) by inhibiting mtROS and alleviating the mitonuclear protein imbalance, presumably through M3AChR.
Collapse
Affiliation(s)
- Man Xu
- a Department of Pharmacology , School of Basic Medical Sciences , Xian Jiaotong University Health Science Center , Xi'an , P.R. China
| | - Xueyuan Bi
- a Department of Pharmacology , School of Basic Medical Sciences , Xian Jiaotong University Health Science Center , Xi'an , P.R. China
| | - Xi He
- a Department of Pharmacology , School of Basic Medical Sciences , Xian Jiaotong University Health Science Center , Xi'an , P.R. China
| | - Xiaojiang Yu
- a Department of Pharmacology , School of Basic Medical Sciences , Xian Jiaotong University Health Science Center , Xi'an , P.R. China
| | - Ming Zhao
- a Department of Pharmacology , School of Basic Medical Sciences , Xian Jiaotong University Health Science Center , Xi'an , P.R. China
| | - Weijin Zang
- a Department of Pharmacology , School of Basic Medical Sciences , Xian Jiaotong University Health Science Center , Xi'an , P.R. China
| |
Collapse
|
41
|
Abstract
Autonomic regulation therapy (ART) is a rapidly emerging therapy in the management of congestive heart failure secondary to systolic dysfunction. Modulation of the cardiac neuronal hierarchy can be achieved with bioelectronics modulation of the spinal cord, cervical vagus, baroreceptor, or renal nerve ablation. This review will discuss relevant preclinical and clinical research in ART for systolic heart failure. Understanding mechanistically what is being stimulated within the autonomic nervous system by such device-based therapy and how the system reacts to such stimuli is essential for optimizing stimulation parameters and for the future development of effective ART.
Collapse
|
42
|
Agarwal R, Mokelke E, Ruble SB, Stolen CM. Vagal Nerve Stimulation Evoked Heart Rate Changes and Protection from Cardiac Remodeling. J Cardiovasc Transl Res 2016; 9:67-76. [PMID: 26746408 DOI: 10.1007/s12265-015-9668-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022]
Abstract
This study investigated whether vagal nerve stimulation (VNS) leads to improvements in ischemic heart failure via heart rate modulation. At 7 ± 1 days post left anterior descending artery (LAD) ligation, 63 rats with myocardial infarctions (MI) were implanted with ECG transmitters and VNS devices (MI + VNS, N = 44) or just ECG transmitters (MI, N = 17). VNS stimulation was active from 14 ± 1 days to 8 ± 1 weeks post MI. The average left ventricular (LV) end diastolic volumes at 8 ± 1 weeks were MI = 672.40 μl and MI + VNS = 519.35 μl, p = 0.03. The average heart weights, normalized to body weight (± std) at 14 ± 1 weeks were MI = 3.2 ± 0.6 g*kg(-1) and MI + VNS = 2.9 ± 0.3 g*kg(-1), p = 0.03. The degree of cardiac remodeling was correlated with the magnitude of acute VNS-evoked heart rate (HR) changes. Further research is required to determine if the acute heart rate response to VNS activation is useful as a heart failure biomarker or as a tool for VNS therapy characterization.
Collapse
Affiliation(s)
- Rahul Agarwal
- Boston Scientific Corporation, 4100 Hamline Ave. North, St. Paul, MN, 55112, USA
| | - Eric Mokelke
- Boston Scientific Corporation, 4100 Hamline Ave. North, St. Paul, MN, 55112, USA
| | - Stephen B Ruble
- Boston Scientific Corporation, 4100 Hamline Ave. North, St. Paul, MN, 55112, USA
| | - Craig M Stolen
- Boston Scientific Corporation, 4100 Hamline Ave. North, St. Paul, MN, 55112, USA.
| |
Collapse
|
43
|
Premchand RK, Sharma K, Mittal S, Monteiro R, Dixit S, Libbus I, DiCarlo LA, Ardell JL, Rector TS, Amurthur B, KenKnight BH, Anand IS. Extended Follow-Up of Patients With Heart Failure Receiving Autonomic Regulation Therapy in the ANTHEM-HF Study. J Card Fail 2015; 22:639-42. [PMID: 26576716 DOI: 10.1016/j.cardfail.2015.11.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Evaluate the effects of a novel autonomic regulation therapy (ART) via vagus nerve stimulation (VNS) in patients with chronic heart failure (HF) and reduced left ventricular ejection fraction during a 12-month follow-up period. METHODS The Autonomic Regulation Therapy for the Improvement of Left Ventricular Function and Heart Failure Symptoms (ANTHEM-HF) study enrolled 60 subjects with New York Heart Association class II-III HF and low left ventricular ejection fraction (≤40%), who received open-loop ART using VNS randomized to left or right cervical vagus nerve placement and followed for 6 months after titration to a therapeutic output current (2.0 ± 0.6 mA). Patients received chronic stimulation at a frequency of 10 Hz and pulse duration of 250 µsec. Forty-nine subjects consented to participate in an extended follow-up study for an additional 6 months (12 months total posttitration) to determine whether the effects of therapy were maintained. RESULTS During the 6-month extended follow-up period, there were no device malfunctions or device-related serious adverse effects. There were 7 serious adverse effects unrelated to the device, including 3 deaths (2 sudden cardiac deaths, 1 worsening HF death). There were 5 nonserious adverse events that were adjudicated to be device-related. Safety and tolerability were similar, and there were no significant differences in efficacy between left- and right-sided ART. Overall, mean efficacy measure values at 12 months were not significantly different from mean values at 6 months. CONCLUSIONS Chronic open-loop ART via left- or right-sided VNS continued to be feasible and well-tolerated in patients with HF with reduced EF. Improvements in cardiac function and HF symptoms seen after 6 months of ART were maintained at 12 months.
Collapse
Affiliation(s)
| | - Kamal Sharma
- Sanjivani Super Specialty Hospitals, Ahmedabad, India
| | | | | | | | | | | | - Jeffrey L Ardell
- University of California at Los Angeles, Los Angeles, California
| | | | | | | | | |
Collapse
|
44
|
Barbato E, Barton PJ, Bartunek J, Huber S, Ibanez B, Judge DP, Lara-Pezzi E, Stolen CM, Taylor A, Hall JL. Review and Updates in Regenerative and Personalized Medicine, Preclinical Animal Models, and Clinical Care in Cardiovascular Medicine. J Cardiovasc Transl Res 2015; 8:466-74. [DOI: 10.1007/s12265-015-9657-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022]
|
45
|
Beaumont E, Southerland EM, Hardwick JC, Wright GL, Ryan S, Li Y, KenKnight BH, Armour JA, Ardell JL. Vagus nerve stimulation mitigates intrinsic cardiac neuronal and adverse myocyte remodeling postmyocardial infarction. Am J Physiol Heart Circ Physiol 2015; 309:H1198-206. [PMID: 26276818 PMCID: PMC4666924 DOI: 10.1152/ajpheart.00393.2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/10/2015] [Indexed: 12/13/2022]
Abstract
This paper aims to determine whether chronic vagus nerve stimulation (VNS) mitigates myocardial infarction (MI)-induced remodeling of the intrinsic cardiac nervous system (ICNS), along with the cardiac tissue it regulates. Guinea pigs underwent VNS implantation on the right cervical vagus. Two weeks later, MI was produced by ligating the ventral descending coronary artery. VNS stimulation started 7 days post-MI (20 Hz, 0.9 ± 0.2 mA, 14 s on, 48 s off; VNS-MI, n = 7) and was compared with time-matched MI animals with sham VNS (MI n = 7) vs. untreated controls (n = 8). Echocardiograms were performed before and at 90 days post-MI. At termination, IC neuronal intracellular voltage recordings were obtained from whole-mount neuronal plexuses. MI increased left ventricular end systolic volume (LVESV) 30% (P = 0.027) and reduced LV ejection fraction (LVEF) 6.5% (P < 0.001) at 90 days post-MI compared with baseline. In the VNS-MI group, LVESV and LVEF did not differ from baseline. IC neurons showed depolarization of resting membrane potentials and increased input resistance in MI compared with VNS-MI and sham controls (P < 0.05). Neuronal excitability and sensitivity to norepinephrine increased in MI and VNS-MI groups compared with controls (P < 0.05). Synaptic efficacy, as determined by evoked responses to stimulating input axons, was reduced in VNS-MI compared with MI or controls (P < 0.05). VNS induced changes in myocytes, consistent with enhanced glycogenolysis, and blunted the MI-induced increase in the proapoptotic Bcl-2-associated X protein (P < 0.05). VNS mitigates MI-induced remodeling of the ICNS, correspondingly preserving ventricular function via both neural and cardiomyocyte-dependent actions.
Collapse
Affiliation(s)
- Eric Beaumont
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Elizabeth M Southerland
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | | | - Gary L Wright
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Shannon Ryan
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Ying Li
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | | | - J Andrew Armour
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Medicine, University of California Los Angeles Health System, Los Angeles, California
| | - Jeffrey L Ardell
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Medicine, University of California Los Angeles Health System, Los Angeles, California
| |
Collapse
|
46
|
Grimonprez A, Raedt R, De Taeye L, Larsen LE, Delbeke J, Boon P, Vonck K. A Preclinical Study of Laryngeal Motor-Evoked Potentials as a Marker Vagus Nerve Activation. Int J Neural Syst 2015; 25:1550034. [PMID: 26510476 DOI: 10.1142/s0129065715500343] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vagus nerve stimulation (VNS) is a treatment for refractory epilepsy and depression. Previous studies using invasive recording electrodes showed that VNS induces laryngeal motor-evoked potentials (LMEPs) through the co-activation of the recurrent laryngeal nerve and subsequent contractions of the laryngeal muscles. The present study investigates the feasibility of recording LMEPs in chronically VNS-implanted rats, using a minimally-invasive technique, to assess effective current delivery to the nerve and to determine optimal VNS output currents for vagal fiber activation. Three weeks after VNS electrode implantation, signals were recorded using an electromyography (EMG) electrode in the proximity of the laryngeal muscles and a reference electrode on the skull. The VNS output current was gradually ramped up from 0.1 to 1.0 mA in 0.1 mA steps. In 13/27 rats, typical LMEPs were recorded at low VNS output currents (median 0.3 mA, IQR 0.2-0.3 mA). In 11/27 rats, significantly higher output currents were required to evoke electrophysiological responses (median 0.7 mA, IQR 0.5-0.7 mA, p < 0.001). The latencies of these responses deviated significantly from LMEPs (p < 0.05). In 3/27 rats, no electrophysiological responses to simulation were recorded. Minimally invasive LMEP recordings are feasible to assess effective current delivery to the vagus nerve. Furthermore, our results suggest that low output currents are sufficient to activate vagal fibers.
Collapse
Affiliation(s)
- Annelies Grimonprez
- 1 Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Robrecht Raedt
- 1 Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Leen De Taeye
- 1 Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Lars Emil Larsen
- 1 Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Jean Delbeke
- 1 Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Paul Boon
- 1 Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Kristl Vonck
- 1 Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
47
|
Schwartz PJ, La Rovere MT, De Ferrari GM, Mann DL. Autonomic Modulation for the Management of Patients with Chronic Heart Failure. Circ Heart Fail 2015; 8:619-28. [DOI: 10.1161/circheartfailure.114.001964] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Peter J. Schwartz
- From the Center for Cardiac Arrhythmias of Genetic Origin, IRCCS Istituto Auxologico Italiano, Milan, Italy (P.J.S.); Department of Cardiology, Fondazione “Salvatore Maugeri”, IRCCS Istituto Scientifico di Montescano, Montescano, Pavia, Italy (M.T.L.R.); Department of Cardiology and Cardiovascular Clinical Research Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (G.M.D.F.); Department of Molecular Medicine, University of Pavia, Pavia, Italy (G.M.D.F.); and Cardiovascular Division,
| | - Maria Teresa La Rovere
- From the Center for Cardiac Arrhythmias of Genetic Origin, IRCCS Istituto Auxologico Italiano, Milan, Italy (P.J.S.); Department of Cardiology, Fondazione “Salvatore Maugeri”, IRCCS Istituto Scientifico di Montescano, Montescano, Pavia, Italy (M.T.L.R.); Department of Cardiology and Cardiovascular Clinical Research Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (G.M.D.F.); Department of Molecular Medicine, University of Pavia, Pavia, Italy (G.M.D.F.); and Cardiovascular Division,
| | - Gaetano M. De Ferrari
- From the Center for Cardiac Arrhythmias of Genetic Origin, IRCCS Istituto Auxologico Italiano, Milan, Italy (P.J.S.); Department of Cardiology, Fondazione “Salvatore Maugeri”, IRCCS Istituto Scientifico di Montescano, Montescano, Pavia, Italy (M.T.L.R.); Department of Cardiology and Cardiovascular Clinical Research Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (G.M.D.F.); Department of Molecular Medicine, University of Pavia, Pavia, Italy (G.M.D.F.); and Cardiovascular Division,
| | - Douglas L. Mann
- From the Center for Cardiac Arrhythmias of Genetic Origin, IRCCS Istituto Auxologico Italiano, Milan, Italy (P.J.S.); Department of Cardiology, Fondazione “Salvatore Maugeri”, IRCCS Istituto Scientifico di Montescano, Montescano, Pavia, Italy (M.T.L.R.); Department of Cardiology and Cardiovascular Clinical Research Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy (G.M.D.F.); Department of Molecular Medicine, University of Pavia, Pavia, Italy (G.M.D.F.); and Cardiovascular Division,
| |
Collapse
|
48
|
Gao M, Zhang L, Scherlag BJ, Huang B, Stavrakis S, Hou YM, Hou Y, Po SS. Low-level vagosympathetic trunk stimulation inhibits atrial fibrillation in a rabbit model of obstructive sleep apnea. Heart Rhythm 2014; 12:818-24. [PMID: 25533582 DOI: 10.1016/j.hrthm.2014.12.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is highly associated with obstructive sleep apnea (OSA) in which AF is triggered by hyperactivity of the cardiac autonomic nervous system. Previous studies showed that low-level vagosympathetic trunk stimulation (LLVS), at voltages not slowing sinus rate or AV conduction, inhibits AF by suppressing the cardiac autonomic nervous system. OBJECTIVE The purpose of this study was to investigate whether LLVS delivered at the right vagosympathetic trunk suppresses AF in a rabbit model of OSA. METHODS Eleven rabbits received a tracheostomy under general anesthesia. The endotracheal tube was clamped at end expiration for 1 minute to simulate OSA. Over a period of 4 hours, OSA was delivered every 6 minutes. Effective refractory period (ERP), blood pressure, intraesophageal pressure, and blood gases (O2, CO2, pH) were measured before and after each episode of OSA. AF duration and ERP were measured by programmed stimulation. Group 1 rabbits (n = 6) received LLVS (50% below that which slowed the sinus rate) in the first 3 hours. Group 2 rabbits (n = 5) only received OSA. RESULTS Group 1 ERP began to lengthen progressively from the second hour compared to group 2. AF duration increased in the first hour for both groups but began to shorten progressively after the first hour in group 1 rabbits. Blood pH, O2 or CO2 level, intraesophageal pressure, and hypertensive response during OSA were not different between the 2 groups. CONCLUSION LLVS is capable of suppressing ERP shortening and AF induced by OSA. LLVS may serve as a new therapeutic approach to treat OSA-induced AF.
Collapse
Affiliation(s)
- Mei Gao
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Ling Zhang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Benjamin J Scherlag
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Bing Huang
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stavros Stavrakis
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yue-Mei Hou
- Department of Cardiovascular Diseases, the 6th People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yinglong Hou
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Sunny S Po
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
49
|
Autonomic Regulation Therapy via Left or Right Cervical Vagus Nerve Stimulation in Patients With Chronic Heart Failure: Results of the ANTHEM-HF Trial. J Card Fail 2014; 20:808-16. [DOI: 10.1016/j.cardfail.2014.08.009] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 01/12/2023]
|
50
|
De Ferrari GM, Sanzo A, Castelli GM, Turco A, Ravera A, Badilini F, Schwartz PJ. Rapid recovery of baroreceptor reflexes in acute myocardial infarction is a marker of effective tissue reperfusion. J Cardiovasc Transl Res 2014; 7:553-9. [PMID: 25070681 DOI: 10.1007/s12265-014-9578-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/15/2014] [Indexed: 11/25/2022]
Abstract
Baroreflex sensitivity (BRS) measured several days after myocardial infarction (MI) is a powerful predictor of cardiovascular mortality. No information is available on BRS in the early hours of MI. The possibility to reliably assess BRS in the acute phase of MI and its clinical correlates were evaluated in 45 patients treated with primary percutaneous coronary intervention (pPCI). BRS (sequence method) was assessed 1, 3, 6, and 12 h after PCI. ST resolution (STRes) was considered present if ST had decreased ≥70 % 3 h after PCI. BRS was 10.7 ± 6.2 1 h after PCI; at 12 h it was 15.4 ± 5.2 and 8.4 ± 4.8 ms/mmHg in patients with and without STRes, respectively (p < 0.001). STRes was an independent predictor of 12 h BRS (p = 0.005) and of 1-12 h BRS difference (p = 0.002). BRS can be reliably assessed in the first hours of MI; it shows a rapid recovery in patients with STRes and a significant depression in patients without STres.
Collapse
Affiliation(s)
- Gaetano M De Ferrari
- Department of Cardiology, Fondazione IRCCS Policlinico San Matteo, Viale Golgi, 19, 27100, Pavia, Italy,
| | | | | | | | | | | | | |
Collapse
|