1
|
Gorjipour F, Bohloolighashghaei S, Sotoudeheian M, Pazoki Toroudi H. Fetal adnexa-derived allogeneic mesenchymal stem cells for cardiac regeneration: the future trend of cell-based therapy for age-related adverse conditions. Hum Cell 2025; 38:61. [PMID: 39998714 DOI: 10.1007/s13577-025-01190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Heart failure is known as the leading cause of mortality and morbidity in adults, not only in USA but worldwide. Since the world's population is aging, the burden of cardiovascular disorders is increasing. Mesenchymal stem/stromal cells (MSCs) from a patient's bone marrow or other tissues have been widely used as the primary source of stem cells for cellular cardiomyoplasty. The incongruencies that exist between various cell-therapy approaches for cardiac diseases could be attributed to variations in cell processing methods, quality of the process, and cell donors. Off-the-shelf preparations of MSCs, enabled by batch processing of the cells and controlled cell processing factories in regulated facilities, may offer opportunities to overcome these problems. In this study, for the first time, we focused on the fetal membranes and childbirth byproducts as a promising source of cells for regenerative medicine. While many studies have described the advantages of cells derived from these organs, their advantage as a source of younger cells has not been sufficiently covered by the literature. Thus, herein, we highlight challenges that may arise from the impairment of the regenerative capacity of MSCs due to donor age and how allograft cells from fetal adnexa can be a promising substitute for the aged patients' stem cells for myocardial regeneration. Moreover, obstacles to the use of off-the-shelf cell-therapy preparations in regenerative medicine are briefly summarized here.
Collapse
Affiliation(s)
- Fazel Gorjipour
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Hamidreza Pazoki Toroudi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Zhang JJ, Pogwizd SM, Fukuda K, Zimmermann WH, Fan C, Hare JM, Bolli R, Menasché P. Trials and tribulations of cell therapy for heart failure: an update on ongoing trials. Nat Rev Cardiol 2024:10.1038/s41569-024-01098-8. [PMID: 39548233 DOI: 10.1038/s41569-024-01098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Heart failure (HF) remains a leading cause of mortality, responsible for 13% of all deaths worldwide. The prognosis for patients with HF is poor, with only a 50% survival rate within 5 years. A major challenge of ischaemia-driven HF is the loss of cardiomyocytes, compounded by the minimal regenerative capacity of the adult heart. To date, replacement of irreversibly damaged heart muscle can only be achieved by complete heart transplantation. In the past 20 years, cell therapy has emerged and evolved as a promising avenue for cardiac repair and regeneration. During this time, cell therapy for HF has encountered substantial barriers in both preclinical studies and clinical trials but the field continues to progress and evolve from lessons learned from such research. In this Review, we provide an overview of ongoing trials of cell-based and cell product-based therapies for the treatment of HF. Findings from these trials will facilitate the clinical translation of cardiac regenerative and reparative therapies not only by evaluating the safety and efficacy of specific cell-based therapeutics but also by establishing the feasibility of novel or underexplored treatment protocols such as repeated intravenous dosing, personalized patient selection based on pharmacogenomics, systemic versus intramural cell delivery, and epicardial engraftment of engineered tissue products.
Collapse
Affiliation(s)
- Jianyi Jay Zhang
- Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA.
- Division of Cardiovascular Disease, Department of Medicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Steven M Pogwizd
- Division of Cardiovascular Disease, Department of Medicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen - Georg-August-University, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Lower Saxony, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Joshua M Hare
- Department of Medicine, Interdisciplinary Stem Cell Institute (ISCI), University of Miami, Miami, FL, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Université de Paris, PARCC, INSERM, Paris, France
| |
Collapse
|
3
|
Paresishvili T, Kakabadze Z. Freeze-Dried Mesenchymal Stem Cells: From Bench to Bedside. Review. Adv Biol (Weinh) 2024; 8:e2300155. [PMID: 37990389 DOI: 10.1002/adbi.202300155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Indexed: 11/23/2023]
Abstract
This review describes the freeze-dried mesenchymal stem cells (MSCs) and their ability to restore damaged tissues and organs. An analysis of the literature shows that after the lyophilization MSCs retain >80% of paracrine factors and that the mechanism of their action on the restoration of damaged tissues and organs is similar to the mechanism of action of paracrine factors in fresh and cryopreserved mesenchymal stem cells. Based on the own materials, the use of paracrine factors of freeze-dried MSCs in vivo and in vitro for the treatment of various diseases of organs and tissues has shown to be effective. The study also discusses about the advantages and disadvantages of freeze-dried MSCs versus cryopreserved MSCs. However, for the effective use of freeze-dried MSCs in clinical practice, a more detailed study of the mechanism of interaction of paracrine factors of freeze-dried MSCs with target cells and tissues is required. It is also necessary to identify possible other specific paracrine factors of freeze-dried MSCs. In addition, develop new therapeutic strategies for the use of freeze-dried MSCs in regenerative medicine and tissue bioengineering.
Collapse
Affiliation(s)
- Teona Paresishvili
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, 0186, Georgia
| | - Zurab Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, 0186, Georgia
| |
Collapse
|
4
|
Szydlak R. Mesenchymal stem cells in ischemic tissue regeneration. World J Stem Cells 2023; 15:16-30. [PMID: 36909782 PMCID: PMC9993139 DOI: 10.4252/wjsc.v15.i2.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 01/19/2023] [Indexed: 02/21/2023] Open
Abstract
Diseases caused by ischemia are one of the leading causes of death in the world. Current therapies for treating acute myocardial infarction, ischemic stroke, and critical limb ischemia do not complete recovery. Regenerative therapies opens new therapeutic strategy in the treatment of ischemic disorders. Mesenchymal stem cells (MSCs) are the most promising option in the field of cell-based therapies, due to their secretory and immunomodulatory abilities, that contribute to ease inflammation and promote the regeneration of damaged tissues. This review presents the current knowledge of the mechanisms of action of MSCs and their therapeutic effects in the treatment of ischemic diseases, described on the basis of data from in vitro experiments and preclinical animal studies, and also summarize the effects of using these cells in clinical trial settings. Since the obtained therapeutic benefits are not always satisfactory, approaches aimed at enhancing the effect of MSCs in regenerative therapies are presented at the end.
Collapse
Affiliation(s)
- Renata Szydlak
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków 31-034, Poland
| |
Collapse
|
5
|
Miloradovic D, Miloradovic D, Ljujic B, Jankovic MG. Optimal Delivery Route of Mesenchymal Stem Cells for Cardiac Repair: The Path to Good Clinical Practice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022:83-100. [PMID: 35389200 DOI: 10.1007/5584_2022_709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Research has shown that mesenchymal stem cells (MSCs) could be a promising therapy for treating progressive heart disease. However, translation into clinics efficiently and successfully has proven to be much more complicated. Many questions remain for optimizing treatment. Application method influences destiny of MSCs and afterwards impacts results of procedure, yet there is no general agreement about most suitable method of MSC delivery in the clinical setting. Herein, we explain principle of most-frequent MSCs delivery techniques in cardiology. This chapter summarizes crucial translational obstacles of clinical employment of MSCs for cardiac repair when analysed trough a prism of latest research centred on different techniques of MSCs application.
Collapse
Affiliation(s)
- Dragica Miloradovic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Miloradovic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic Jankovic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia.
| |
Collapse
|
6
|
Vicinanza C, Lombardi E, Da Ros F, Marangon M, Durante C, Mazzucato M, Agostini F. Modified mesenchymal stem cells in cancer therapy: A smart weapon requiring upgrades for wider clinical applications. World J Stem Cells 2022; 14:54-75. [PMID: 35126828 PMCID: PMC8788179 DOI: 10.4252/wjsc.v14.i1.54] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/06/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem stromal cells (MSC) are characterized by the intriguing capacity to home toward cancer cells after systemic administration. Thus, MSC can be harnessed as targeted delivery vehicles of cytotoxic agents against tumors. In cancer patients, MSC based advanced cellular therapies were shown to be safe but their clinical efficacy was limited. Indeed, the amount of systemically infused MSC actually homing to human cancer masses is insufficient to reduce tumor growth. Moreover, induction of an unequivocal anticancer cytotoxic phenotype in expanded MSC is necessary to achieve significant therapeutic efficacy. Ex vivo cell modifications are, thus, required to improve anti-cancer properties of MSC. MSC based cellular therapy products must be handled in compliance with good manufacturing practice (GMP) guidelines. In the present review we include MSC-improving manipulation approaches that, even though actually tested at preclinical level, could be compatible with GMP guidelines. In particular, we describe possible approaches to improve MSC homing on cancer, including genetic engineering, membrane modification and cytokine priming. Similarly, we discuss appropriate modalities aimed at inducing a marked cytotoxic phenotype in expanded MSC by direct chemotherapeutic drug loading or by genetic methods. In conclusion, we suggest that, to configure MSC as a powerful weapon against cancer, combinations of clinical grade compatible modification protocols that are currently selected, should be introduced in the final product. Highly standardized cancer clinical trials are required to test the efficacy of ameliorated MSC based cell therapies.
Collapse
Affiliation(s)
- Carla Vicinanza
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Elisabetta Lombardi
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Francesco Da Ros
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Miriam Marangon
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Cristina Durante
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Mario Mazzucato
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Francesco Agostini
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| |
Collapse
|
7
|
Machino T, Sato A, Murakoshi N, Ieda M. Phase I investigator-initiated study of the safety of MTC001 in patients with chronic ischemic heart failure. Medicine (Baltimore) 2021; 100:e28372. [PMID: 34941159 PMCID: PMC8702272 DOI: 10.1097/md.0000000000028372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND : Heart failure (HF) is a global pandemic most commonly caused by coronary artery disease. Despite coronary revascularization, the infarcted myocardium can develop into an irreversible scar toward chronic ischemic HF. This is due to the limited regenerative capacity of the adult human heart. Recently, the vascular cell adhesion molecule 1 positive cardiac fibroblast (VCF) has been shown to directly improve cardiac contractility in addition to promoting myocardial growth in preclinical studies. This clinical trial aims to explore the safety and, in part, the efficacy of autologous VCF therapy for chronic ischemic HF. METHODS : This first-in-human trial is an open-label, single-arm, phase 1 study conducted at a single center. This study will include 6 patients with chronic ischemic HF in stage C and NYHA class II or III despite receiving the standard of care, including coronary revascularization. Participants will undergo cardiac biopsy to manufacture autologous VCFs expressing CD90 and CD106. Under electro-anatomical mapping guidance, participants will receive a transendocardial injection of VCF in a modified 3 + 3 design. The first 3 patients will receive a standard dose (2 × 107 cells) of VCF with a 4-week interval for safety assessment before subsequent enrollment. In the absence of safety issues, the final 3 patients will receive the standard dose of VCF without a 4-week interval. In the presence of safety issues, the final 3 patients will receive a reduced dose (1.5 × 107 cells) of VCF with the 4-week interval. DISCUSSION This is the first clinical study of cardiac regeneration using VCFs for the treatment of chronic ischemic HF. The study results will contribute to the development of a minimally invasive cell therapy for patients with HF failed by the standard of care. TRIAL REGISTRATION This study was registered with the Japan Registry of Clinical Trials (jRCT2033210078).
Collapse
Affiliation(s)
- Takeshi Machino
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Sato
- Department of Cardiology, University of Yamanashi, Yamanashi, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
8
|
Yu H, Commander CW, Stavas JM. Stem Cell-Based Therapies: What Interventional Radiologists Need to Know. Semin Intervent Radiol 2021; 38:523-534. [PMID: 34853498 DOI: 10.1055/s-0041-1736657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
As the basic units of biological organization, stem cells and their progenitors are essential for developing and regenerating organs and tissue systems using their unique self-renewal capability and differentiation potential into multiple cell lineages. Stem cells are consistently present throughout the entire human development, from the zygote to adulthood. Over the past decades, significant efforts have been made in biology, genetics, and biotechnology to develop stem cell-based therapies using embryonic and adult autologous or allogeneic stem cells for diseases without therapies or difficult to treat. Stem cell-based therapies require optimum administration of stem cells into damaged organs to promote structural regeneration and improve function. Maximum clinical efficacy is highly dependent on the successful delivery of stem cells to the target tissue. Direct image-guided locoregional injections into target tissues offer an option to increase therapeutic outcomes. Interventional radiologists have the opportunity to perform a key role in delivering stem cells more efficiently using minimally invasive techniques. This review discusses the types and sources of stem cells and the current clinical applications of stem cell-based therapies. In addition, the regulatory considerations, logistics, and potential roles of interventional Radiology are also discussed with the review of the literature.
Collapse
Affiliation(s)
- Hyeon Yu
- Division of Vascular and Interventional Radiology, Department of Radiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina.,ProKidney LLC, Winston Salem, North Carolina
| | - Clayton W Commander
- Division of Vascular and Interventional Radiology, Department of Radiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Joseph M Stavas
- Department of Radiology, Creighton University School of Medicine, Omaha, Nebraska
| |
Collapse
|
9
|
Lim SK, Khoo BY. An overview of mesenchymal stem cells and their potential therapeutic benefits in cancer therapy. Oncol Lett 2021; 22:785. [PMID: 34594426 PMCID: PMC8456491 DOI: 10.3892/ol.2021.13046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
There has been increased interest in using stem cells for regenerative medicine and cancer therapy in the past decade. Mesenchymal stem cells (MSCs) are among the most studied stem cells due to their unique characteristics, such as self-renewal and developmental potency to differentiate into numerous cell types. MSC use has fewer ethical challenges compared with other types of stem cells. Although a number of studies have reported the beneficial effects of MSC-based therapies in treating various diseases, their contribution to cancer therapy remains controversial. The behaviour of MSCs is determined by the interaction between intrinsic transcriptional genes and extrinsic environmental factors. Numerous studies continue to emerge, as there is no denying the potential of MSCs to treat a wide variety of human afflictions. Therefore, the present review article provided an overview of MSCs and their differences compared with embryonic stem cells, and described the molecular mechanisms involved in maintaining their stemness. In addition, the article examined the therapeutic application of stem cells in the field of cancer. The present article also discussed the current divergent roles of MSCs in cancer therapy and the future potential in this field.
Collapse
Affiliation(s)
- Shern Kwok Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Boon Yin Khoo
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
10
|
Mathot F, Saffari TM, Rbia N, Nijhuis TH, Bishop AT, Hovius SE, Shin AY. Functional Outcomes of Nerve Allografts Seeded with Undifferentiated and Differentiated Mesenchymal Stem Cells in a Rat Sciatic Nerve Defect Model. Plast Reconstr Surg 2021; 148:354-365. [PMID: 34153019 PMCID: PMC8373640 DOI: 10.1097/prs.0000000000008191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Mesenchymal stem cells have the potential to produce neurotrophic growth factors and establish a supportive microenvironment for neural regeneration. The purpose of this study was to determine the effect of undifferentiated and differentiated mesenchymal stem cells dynamically seeded onto decellularized nerve allografts on functional outcomes when used in peripheral nerve repair. METHODS In 80 Lewis rats, a 10-mm sciatic nerve defect was reconstructed with (1) autograft, (2) decellularized allograft, (3) decellularized allograft seeded with undifferentiated mesenchymal stem cells, or (4) decellularized allograft seeded with mesenchymal stem cells differentiated into Schwann cell-like cells. Nerve regeneration was evaluated over time by cross-sectional tibial muscle ultrasound measurements, and at 12 and 16 weeks by isometric tetanic force measurements, compound muscle action potentials, muscle mass, histology, and immunofluorescence analyses. RESULTS At 12 weeks, undifferentiated mesenchymal stem cells significantly improved isometric tetanic force measurement and compound muscle action potential outcomes compared to decellularized allograft alone, whereas differentiated mesenchymal stem cells significantly improved compound muscle action potential outcomes. The autografts outperformed both stem cell groups histologically at 12 weeks. At 16 weeks, functional outcomes normalized between groups. At both time points, the effect of undifferentiated versus differentiated mesenchymal stem cells was not significantly different. CONCLUSIONS Undifferentiated and differentiated mesenchymal stem cells significantly improved functional outcomes of decellularized allografts at 12 weeks and were similar to autograft results in the majority of measurements. At 16 weeks, outcomes normalized as expected. Although differences between both cell types were not statistically significant, undifferentiated mesenchymal stem cells improved functional outcomes of decellularized nerve allografts to a greater extent and had practical benefits for clinical translation by limiting preparation time and costs.
Collapse
Affiliation(s)
- Femke Mathot
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Plastic, Reconstructive and Hand Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tiam M. Saffari
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nadia Rbia
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tim H.J. Nijhuis
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Allen T. Bishop
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Steven E.R. Hovius
- Department of Plastic, Reconstructive and Hand Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
11
|
Diaz-Navarro R, Urrútia G, Cleland JG, Poloni D, Villagran F, Acosta-Dighero R, Bangdiwala SI, Rada G, Madrid E. Stem cell therapy for dilated cardiomyopathy. Cochrane Database Syst Rev 2021; 7:CD013433. [PMID: 34286511 PMCID: PMC8406792 DOI: 10.1002/14651858.cd013433.pub2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Stem cell therapy (SCT) has been proposed as an alternative treatment for dilated cardiomyopathy (DCM), nonetheless its effectiveness remains debatable. OBJECTIVES To assess the effectiveness and safety of SCT in adults with non-ischaemic DCM. SEARCH METHODS We searched CENTRAL in the Cochrane Library, MEDLINE, and Embase for relevant trials in November 2020. We also searched two clinical trials registers in May 2020. SELECTION CRITERIA Eligible studies were randomized controlled trials (RCT) comparing stem/progenitor cells with no cells in adults with non-ischaemic DCM. We included co-interventions such as the administration of stem cell mobilizing agents. Studies were classified and analysed into three categories according to the comparison intervention, which consisted of no intervention/placebo, cell mobilization with cytokines, or a different mode of SCT. The first two comparisons (no cells in the control group) served to assess the efficacy of SCT while the third (different mode of SCT) served to complement the review with information about safety and other information of potential utility for a better understanding of the effects of SCT. DATA COLLECTION AND ANALYSIS Two review authors independently screened all references for eligibility, assessed trial quality, and extracted data. We undertook a quantitative evaluation of data using random-effects meta-analyses. We evaluated heterogeneity using the I² statistic. We could not explore potential effect modifiers through subgroup analyses as they were deemed uninformative due to the scarce number of trials available. We assessed the certainty of the evidence using the GRADE approach. We created summary of findings tables using GRADEpro GDT. We focused our summary of findings on all-cause mortality, safety, health-related quality of life (HRQoL), performance status, and major adverse cardiovascular events. MAIN RESULTS We included 13 RCTs involving 762 participants (452 cell therapy and 310 controls). Only one study was at low risk of bias in all domains. There were many shortcomings in the publications that did not allow a precise assessment of the risk of bias in many domains. Due to the nature of the intervention, the main source of potential bias was lack of blinding of participants (performance bias). Frequently, the format of the continuous data available was not ideal for use in the meta-analysis and forced us to seek strategies for transforming data in a usable format. We are uncertain whether SCT reduces all-cause mortality in people with DCM compared to no intervention/placebo (mean follow-up 12 months) (risk ratio (RR) 0.84, 95% confidence interval (CI) 0.54 to 1.31; I² = 0%; studies = 7, participants = 361; very low-certainty evidence). We are uncertain whether SCT increases the risk of procedural complications associated with cells injection in people with DCM (data could not be pooled; studies = 7; participants = 361; very low-certainty evidence). We are uncertain whether SCT improves HRQoL (standardized mean difference (SMD) 0.62, 95% CI 0.01 to 1.23; I² = 72%; studies = 5, participants = 272; very low-certainty evidence) and functional capacity (6-minute walk test) (mean difference (MD) 70.12 m, 95% CI -5.28 to 145.51; I² = 87%; studies = 5, participants = 230; very low-certainty evidence). SCT may result in a slight functional class (New York Heart Association) improvement (data could not be pooled; studies = 6, participants = 398; low-certainty evidence). None of the included studies reported major adverse cardiovascular events as defined in our protocol. SCT may not increase the risk of ventricular arrhythmia (data could not be pooled; studies = 8, participants = 504; low-certainty evidence). When comparing SCT to cell mobilization with granulocyte-colony stimulating factor (G-CSF), we are uncertain whether SCT reduces all-cause mortality (RR 0.46, 95% CI 0.16 to 1.31; I² = 39%; studies = 3, participants = 195; very low-certainty evidence). We are uncertain whether SCT increases the risk of procedural complications associated with cells injection (studies = 1, participants = 60; very low-certainty evidence). SCT may not improve HRQoL (MD 4.61 points, 95% CI -5.62 to 14.83; studies = 1, participants = 22; low-certainty evidence). SCT may improve functional capacity (6-minute walk test) (MD 140.14 m, 95% CI 119.51 to 160.77; I² = 0%; studies = 2, participants = 155; low-certainty evidence). None of the included studies reported MACE as defined in our protocol or ventricular arrhythmia. The most commonly reported outcomes across studies were based on physiological measures of cardiac function where there were some beneficial effects suggesting potential benefits of SCT in people with non-ischaemic DCM. However, it is unclear if this intermediate effects translates into clinical benefits for these patients. With regard to specific aspects related to the modality of cell therapy and its delivery, uncertainties remain as subgroup analyses could not be performed as planned, making it necessary to wait for the publication of several studies that are currently in progress before any firm conclusion can be reached. AUTHORS' CONCLUSIONS We are uncertain whether SCT in people with DCM reduces the risk of all-cause mortality and procedural complications, improves HRQoL, and performance status (exercise capacity). SCT may improve functional class (NYHA), compared to usual care (no cells). Similarly, when compared to G-CSF, we are also uncertain whether SCT in people with DCM reduces the risk of all-cause mortality although some studies within this comparison observed a favourable effect that should be interpreted with caution. SCT may not improve HRQoL but may improve to some extent performance status (exercise capacity). Very low-quality evidence reflects uncertainty regarding procedural complications. These suggested beneficial effects of SCT, although uncertain due to the very low certainty of the evidence, are accompanied by favourable effects on some physiological measures of cardiac function. Presently, the most effective mode of administration of SCT and the population that could benefit the most is unclear. Therefore, it seems reasonable that use of SCT in people with DCM is limited to clinical research settings. Results of ongoing studies are likely to modify these conclusions.
Collapse
Affiliation(s)
- Rienzi Diaz-Navarro
- Department of Internal Medicine, School of Medicine, Universidad de Valparaiso, Vina del Mar, Chile
| | - Gerard Urrútia
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - John Gf Cleland
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniel Poloni
- Department of Internal Medicine, School of Medicine, Universidad de Valparaiso, Vina del Mar, Chile
| | - Francisco Villagran
- Department of Internal Medicine, School of Medicine, Universidad de Valparaiso, Vina del Mar, Chile
| | - Roberto Acosta-Dighero
- Cochrane Chile Associate Centre, Universidad de Valparaíso, Valparaíso, Chile
- School of Physiotherapy, Faculty of Health Sciences, Universidad San Sebastian, Santiago, Chile
| | - Shrikant I Bangdiwala
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Gabriel Rada
- Department of Internal Medicine and Evidence-Based Healthcare Program, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eva Madrid
- Interdisciplinary Centre for Health Studies CIESAL, Universidad de Valparaíso, Viña del Mar, Chile
- Cochrane Chile Associate Centre, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
12
|
Mathot F, Rbia N, Thaler R, Dietz AB, van Wijnen AJ, Bishop AT, Shin AY. Gene expression profiles of human adipose-derived mesenchymal stem cells dynamically seeded on clinically available processed nerve allografts and collagen nerve guides. Neural Regen Res 2021; 16:1613-1621. [PMID: 33433492 PMCID: PMC8323683 DOI: 10.4103/1673-5374.303031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It was hypothesized that mesenchymal stem cells (MSCs) could provide necessary trophic factors when seeded onto the surfaces of commonly used nerve graft substitutes. We aimed to determine the gene expression of MSCs when influenced by Avance® Nerve Grafts or NeuraGen® Nerve Guides. Human adipose-derived MSCs were cultured and dynamically seeded onto 30 Avance® Nerve Grafts and 30 NeuraGen® Nerve Guides for 12 hours. At six time points after seeding, quantitative polymerase chain reaction analyses were performed for five samples per group. Neurotrophic [nerve growth factor (NGF), glial cell line-derived neurotrophic factor (GDNF), pleiotrophin (PTN), growth associated protein 43 (GAP43) and brain-derived neurotrophic factor (BDNF)], myelination [peripheral myelin protein 22 (PMP22) and myelin protein zero (MPZ)], angiogenic [platelet endothelial cell adhesion molecule 1 (PECAM1/CD31) and vascular endothelial cell growth factor alpha (VEGFA)], extracellular matrix (ECM) [collagen type alpha I (COL1A1), collagen type alpha III (COL3A1), Fibulin 1 (FBLN1) and laminin subunit beta 2 (LAMB2)] and cell surface marker cluster of differentiation 96 (CD96) gene expression was quantified. Unseeded Avance® Nerve Grafts and NeuraGen® Nerve Guides were used to evaluate the baseline gene expression, and unseeded MSCs provided the baseline gene expression of MSCs. The interaction of MSCs with the Avance® Nerve Grafts led to a short-term upregulation of neurotrophic (NGF, GDNF and BDNF), myelination (PMP22 and MPZ) and angiogenic genes (CD31 and VEGFA) and a long-term upregulation of BDNF, VEGFA and COL1A1. The interaction between MSCs and the NeuraGen® Nerve Guide led to short term upregulation of neurotrophic (NGF, GDNF and BDNF) myelination (PMP22 and MPZ), angiogenic (CD31 and VEGFA), ECM (COL1A1) and cell surface (CD96) genes and long-term upregulation of neurotrophic (GDNF and BDNF), angiogenic (CD31 and VEGFA), ECM genes (COL1A1, COL3A1, and FBLN1) and cell surface (CD96) genes. Analysis demonstrated MSCs seeded onto NeuraGen® Nerve Guides expressed significantly higher levels of neurotrophic (PTN), angiogenic (VEGFA) and ECM (COL3A1, FBLN1) genes in the long term period compared to MSCs seeded onto Avance® Nerve Grafts. Overall, the interaction between human MSCs and both nerve graft substitutes resulted in a significant upregulation of the expression of numerous genes important for nerve regeneration over time. The in vitro interaction of MSCs with the NeuraGen® Nerve Guide was more pronounced, particularly in the long term period (> 14 days after seeding). These results suggest that MSC-seeding has potential to be applied in a clinical setting, which needs to be confirmed in future in vitro and in vivo research.
Collapse
Affiliation(s)
- Femke Mathot
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Plastic Surgery, Radboudumc, Nijmegen, The Netherlands
| | - Nadia Rbia
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Dermatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Roman Thaler
- Department of Orthopedic Surgery; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Andre J van Wijnen
- Department of Orthopedic Surgery; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Allen T Bishop
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Florea V, Rieger AC, Natsumeda M, Tompkins BA, Banerjee MN, Schulman IH, Premer C, Khan A, Valasaki K, Heidecker B, Mantero A, Balkan W, Mitrani RD, Hare JM. The impact of patient sex on the response to intramyocardial mesenchymal stem cell administration in patients with non-ischaemic dilated cardiomyopathy. Cardiovasc Res 2020; 116:2131-2141. [PMID: 32053144 PMCID: PMC7584465 DOI: 10.1093/cvr/cvaa004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 10/31/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
AIMS Sex differences impact the occurrence, presentation, prognosis, and response to therapy in heart disease. Particularly, the phenotypic presentation of patients with non-ischaemic dilated cardiomyopathy (NIDCM) differs between men and women. However, whether the response to mesenchymal stem cell (MSC) therapy is influenced by sex remains unknown. We hypothesize that males and females with NIDCM respond similarly to MSC therapy. METHODS AND RESULTS Male (n = 24) and female (n = 10) patients from the POSEIDON-DCM trial who received MSCs via transendocardial injections were evaluated over 12 months. Endothelial function was measured at baseline and 3 months post-transendocardial stem cell injection (TESI). At baseline, ejection fraction (EF) was lower (P = 0.004) and end-diastolic volume (EDV; P = 0.0002) and end-systolic volume (ESV; P = 0.0002) were higher in males vs. females. In contrast, baseline demographic characteristics, Minnesota Living with Heart Failure Questionnaire (MLHFQ), and 6-min walk test (6MWT) were similar between groups. EF improved in males by 6.2 units (P = 0.04) and in females by 8.6 units (P = 0.04; males vs. females, P = 0.57). EDV and ESV were unchanged over time. The MLHFQ score, New York Heart Association (NYHA) class, endothelial progenitor cell-colony forming units, and serum tumour necrosis factor alpha improved similarly in both groups. CONCLUSION Despite major differences in phenotypic presentation of NIDCM in males and females, this study is the first of its kind to demonstrate that MSC therapy improves a variety of parameters in NIDCM irrespective of patient sex. These findings have important clinical and pathophysiologic implications regarding the impact of sex on responses to cell-based therapy for NIDCM.
Collapse
Affiliation(s)
- Victoria Florea
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
| | - Angela C Rieger
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
| | - Makoto Natsumeda
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
| | - Bryon A Tompkins
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Monisha N Banerjee
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ivonne H Schulman
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Courtney Premer
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
| | - Krystalenia Valasaki
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
| | - Bettina Heidecker
- Department of Cardiology, Charite Berlin University of Medicine, Berlin, Germany
| | - Alejandro Mantero
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Raul D Mitrani
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
14
|
Rodríguez-Fuentes DE, Fernández-Garza LE, Samia-Meza JA, Barrera-Barrera SA, Caplan AI, Barrera-Saldaña HA. Mesenchymal Stem Cells Current Clinical Applications: A Systematic Review. Arch Med Res 2020; 52:93-101. [PMID: 32977984 DOI: 10.1016/j.arcmed.2020.08.006] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/16/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Human Mesenchymal Stem Cells (hMSCs) are multipotent stem cells capable of renewing themselves and differentiation in vitro into different kinds of tissues. In vivo hMSCs are sources of trophic factors modulating the immune system and inducing intrinsic stem cells to repair damaged tissues. Currently, there are multiple clinical trials (CT) using hMSCs for therapeutic purposes in a large number of clinical settings. MATERIAL AND METHODS The search strategy on clinicaltrials.gov has focused on the key term "Mesenchymal Stem Cells", and the inclusion and exclusion criteria were separated into two stages. Stage 1, CT on phases 1-4: location, the field of application, phase, and status. For stage 2, CT that have published outcome results: field of application, treatment, intervention model, source, preparation methods, and results. RESULTS By July 2020, there were a total of 1,138 registered CT. Most studies belong to either phase 2 (61.0%) or phase 1 (30.8%); most of them focused in the fields of traumatology, neurology, cardiology, and immunology. Only 18 clinical trials had published results: the most common source of isolation was bone marrow; the treatment varied from 1-200 M hMSCs; all of them have similar preparation methods; all of them have positive results with no serious adverse effects. CONCLUSIONS There appears to be a broad potential for the clinical use of hMSCs with no reported serious adverse events. There are many trials in progress, their future results will help to explore the therapeutic potential of these promising cellular sources of medicinal signals.
Collapse
Affiliation(s)
| | - Luis E Fernández-Garza
- Innbiogem SC en el Laboratorio Nacional de Servicios Especializados de Investigación, Desarrollo e Innovación en Medicamentos Químicos y Biotecnológicos CONACyT, Monterrey, NL, México
| | - John A Samia-Meza
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, NL, México
| | | | - Arnold I Caplan
- Skeletal Research Center, Department of Biology Case Western Reserve University, Cleveland, Ohio, USA
| | - Hugo A Barrera-Saldaña
- Innbiogem SC en el Laboratorio Nacional de Servicios Especializados de Investigación, Desarrollo e Innovación en Medicamentos Químicos y Biotecnológicos CONACyT, Monterrey, NL, México.
| |
Collapse
|
15
|
Xu JY, Qian HY, Huang PS, Xu J, Xiong YY, Jiang WY, Xu Y, Leng WX, Li XD, Chen GH, Tang RJ, Huang CR, Hu MJ, Jin C, Wu Y, Zhang J, Qian J, Xu B, Zhao SH, Lu MJ, Shen R, Fang W, Wu WC, Chen X, Wang Y, Li W, Lu XF, Jiang XF, Ma CC, Li JW, Geng YJ, Qiao SB, Gao RL, Yang YJ. Transplantation efficacy of autologous bone marrow mesenchymal stem cells combined with atorvastatin for acute myocardial infarction (TEAM-AMI): rationale and design of a randomized, double-blind, placebo-controlled, multi-center, Phase II TEAM-AMI trial. Regen Med 2019; 14:1077-1087. [PMID: 31829095 DOI: 10.2217/rme-2019-0024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: To determine the efficacy and safety of intracoronary infusion of autologous bone marrow mesenchymal stem cells (MSCINJ) in combination with intensive atorvastatin (ATV) treatment for patients with anterior ST-segment elevation myocardial infarction-elevation myocardial infarction. Patients & methods: The trial enrolls a total of 100 patients with anterior ST-elevation myocardial infarction. The subjects are randomly assigned (1:1:1:1) to receive routine ATV (20 mg/d) with placebo or MSCsINJ and intensive ATV (80 mg/d) with placebo or MSCsINJ. The primary end point is the absolute change of left ventricular ejection fraction within 12 months. The secondary end points include parameters in cardiac function, remodeling and regeneration, quality of life, biomarkers and clinical outcomes. Results & conclusion: The trial will implicate the essential of cardiac micro-environment improvement (‘fertilizing’) for cell-based therapy. Clinical Trial Registration: NCT03047772.
Collapse
Affiliation(s)
- Jun-Yan Xu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Hai-Yan Qian
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Pei-Sen Huang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Jun Xu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Yu-Yan Xiong
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Wen-Yang Jiang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Yi Xu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Wen-Xiu Leng
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Xiang-Dong Li
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Gui-Hao Chen
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Rui-Jie Tang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Cun-Rong Huang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Meng-Jin Hu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Chen Jin
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Yuan Wu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Jun Zhang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Jie Qian
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Bo Xu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Shi-Hua Zhao
- Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Min-Jie Lu
- Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Rui Shen
- Department of Nuclear Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Wei Fang
- Department of Nuclear Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Wei-Chun Wu
- Department of Echocardiography, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Xi Chen
- Center of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Yang Wang
- Medical Research & Biometrics Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Wei Li
- Medical Research & Biometrics Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Xiang-Feng Lu
- Department of Epidemiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Xi-Feng Jiang
- Hebei Better Cell Biological Technology Co., Ltd, Hebei 050000, China
| | - Chun-Cheng Ma
- Hebei Better Cell Biological Technology Co., Ltd, Hebei 050000, China
| | - Jian-Wen Li
- Hebei Better Cell Biological Technology Co., Ltd, Hebei 050000, China
| | - Yong-Jian Geng
- The Center for Cardiovascular Biology & Atherosclerosis Research, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Shu-Bin Qiao
- Hebei Better Cell Biological Technology Co., Ltd, Hebei 050000, China
| | - Run-Lin Gao
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | - Yue-Jin Yang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
16
|
Premer C, Wanschel A, Porras V, Balkan W, Legendre-Hyldig T, Saltzman RG, Dong C, Schulman IH, Hare JM. Mesenchymal Stem Cell Secretion of SDF-1α Modulates Endothelial Function in Dilated Cardiomyopathy. Front Physiol 2019; 10:1182. [PMID: 31616309 PMCID: PMC6769040 DOI: 10.3389/fphys.2019.01182] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/02/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Endothelial dysfunction contributes to the pathophysiology of dilated cardiomyopathy (DCM). Allogeneic but not autologous mesenchymal stem cells (MSCs) improve endothelial function in DCM patients. We hypothesized that these effects are modulated by release of stromal derived factor-1α (SDF-1α). METHODS Plasma TNFα and endothelial progenitor cell-colony forming units (EPC-CFUs) were assessed at baseline and 3-months post-injection in a subset of POSEIDON-DCM patients that received autologous (n = 11) or allogeneic (n = 10) MSCs. SDF-1α secretion by MSCs, endothelial cell (EC) TNFα mRNA expression, and levels of reactive oxygen species (ROS) in response to SDF-1α were measured in vitro. RESULTS As previously shown, DCM patients (n = 21) had reduced EPC-CFUs at baseline (3 ± 3), which were restored to normal by allogeneic MSCs 3-months post-treatment (Δ10 ± 4). DCM patients had elevated baseline plasma TNFα (n = 15, 22 ± 9.4 pg/mL). Allogeneic MSCs (n = 8) decreased, and autologous MSCs (n = 7) increased, plasma TNFα (-7.1 ± 3.1 vs. 22.2 ± 17.1 pg/mL, respectively; P = 0.0005). In culture, autologous MSCs (n = 11) secreted higher levels of SDF-1α than allogeneic MSCs (n = 6) [76.0 (63.7, 100.9) vs. 22.8 (7.2, 43.5) pg/mL, P = 0.0002]. SDF-1α and plasma TNFα negatively correlated with EPC-CFUs in both treatment groups (R = -0.7, P = 0.0004). ECs treated with 20 ng SDF-1α expressed lower levels of TNFα mRNA than cells treated with 100 ng (0.7 ± 0.2 vs. 2.1 ± 0.3, P = 0.0008). SDF-1α at low but not high concentration inhibited the generation of ROS. CONCLUSION MSC secretion of SDF-1α inversely correlates with EPC-CFU production in DCM patients and therefore may be a modulator of MSC therapeutic effect in this clinical setting. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT01392625, identifier NCT01392625.
Collapse
Affiliation(s)
- Courtney Premer
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Amarylis Wanschel
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Valeria Porras
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Tatiana Legendre-Hyldig
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Russell G. Saltzman
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Chunming Dong
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ivonne Hernandez Schulman
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
- Katz Family Division of Nephrology and Hypertension, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
17
|
Wang C, Li J, Zhang B, Li Y. Safety and efficacy of bone marrow-derived cells therapy on cardiomyopathy: a meta-analysis. Stem Cell Res Ther 2019; 10:137. [PMID: 31109372 PMCID: PMC6528271 DOI: 10.1186/s13287-019-1238-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Controversial results still existed on the clinical utility of bone marrow-derived cells (BMCs) for cardiomyopathy (CMP). This study aims to reveal the true power of this promising approach by synthesizing all the available data on this subject matter. METHODS Twenty studies including 1418 patients were identified from systematic search. Weighted mean differences for changes in left ventricular ejection fraction (LVEF), left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV), 6-min walk distance, and NYHA functional class were estimated with a random-effects model. Major adverse cardiovascular event (MACE), rehospitalization, all-cause mortality, and patients' quality of life were also calculated. RESULTS Compared with the control group, BMC therapy resulted in greater LVEF (3.72%, 95% CI 2.31 to 5.13, P < 0.0001), 6-min walk distance (53.16, 95% CI 25.17 to 81.10, P = 0.0002), NYHA functional class (- 0.48, 95% CI - 0.65 to - 0.31, P < 0.0001), and smaller LVESV (- 16.79, 95% CI - 27.21 to - 6.38, P = 0.002). BMC treatment significantly reduced the mortality rate and improved patients' quality of life. No significant difference was found between the BMCs and control group in LVEDV, MACE, and rehospitalization rate. However, the outcomes showed a clear trend in favor of the BMC group. Subgroup analysis showed that LVEF improved greater in a subgroup of intracoronary infusion, BMSC, or higher cell dose. CONCLUSION The results of the current meta-analysis suggest that BMC treatment for CMP is safe and feasible. This therapy was associated with persistent improvements in LV function, LV remodeling, functional class, patients' survival, and quality of life. Intracoronary infusion of high-dose (> 108) BMSC might be a better therapeutic option for CMP patients. Further evidences are needed to verify our results.
Collapse
Affiliation(s)
- Chao Wang
- Department of Cardiology, Tianjin Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin, China.
| | - Jingzhao Li
- Department of Cardiology, Tianjin Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin, China
| | - Boya Zhang
- Department of Cardiology, Tianjin Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin, China
| | - Yongjian Li
- Department of Cardiology, Tianjin Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin, China
| |
Collapse
|
18
|
Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z, Rokni H, Mohtaram NK, Poorebrahim M, Masoom A, Toback M, Sareen N, Saravanan S, Jassal DS, Hashemi M, Marzban H, Schaafsma D, Singal P, Wigle JT, Czubryt MP, Akbari M, Dixon IM, Ghavami S, Gordon JW, Dhingra S. Myocardial Cell Signaling During the Transition to Heart Failure. Compr Physiol 2018; 9:75-125. [DOI: 10.1002/cphy.c170053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Kandaswamy E, Zuo L. Recent Advances in Treatment of Coronary Artery Disease: Role of Science and Technology. Int J Mol Sci 2018; 19:ijms19020424. [PMID: 29385089 PMCID: PMC5855646 DOI: 10.3390/ijms19020424] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/06/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022] Open
Abstract
Coronary artery disease (CAD) is one of the most common causes of death worldwide. In the last decade, significant advancements in CAD treatment have been made. The existing treatment is medical, surgical or a combination of both depending on the extent, severity and clinical presentation of CAD. The collaboration between different science disciplines such as biotechnology and tissue engineering has led to the development of novel therapeutic strategies such as stem cells, nanotechnology, robotic surgery and other advancements (3-D printing and drugs). These treatment modalities show promising effects in managing CAD and associated conditions. Research on stem cells focuses on studying the potential for cardiac regeneration, while nanotechnology research investigates nano-drug delivery and percutaneous coronary interventions including stent modifications and coatings. This article aims to provide an update on the literature (in vitro, translational, animal and clinical) related to these novel strategies and to elucidate the rationale behind their potential treatment of CAD. Through the extensive and continued efforts of researchers and clinicians worldwide, these novel strategies hold the promise to be effective alternatives to existing treatment modalities.
Collapse
Affiliation(s)
- Eswar Kandaswamy
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
| |
Collapse
|
20
|
Mattila M, Koskenvuo J, Söderström M, Eerola K, Savontaus M. Intramyocardial injection of SERCA2a-expressing lentivirus improves myocardial function in doxorubicin-induced heart failure. J Gene Med 2018; 18:124-33. [PMID: 27203155 DOI: 10.1002/jgm.2885] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 04/19/2016] [Accepted: 05/17/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Doxorubicin is an effective anticancer drug. The major limitation to its use is the induction of dose-dependent cardiomyopathy. No specific treatment exists for doxorubicin-induced cardiomyopathy and treatments used for other forms of heart failure have only limited beneficial effects. The contraction-relaxation cycle of the heart is controlled by cytosolic calcium concentrations, which, in turn, are critically regulated by the activity of the sarcoplasmic reticulum Ca(2) (+) ATPase (SERCA2a) pump. We hypothesized that SERCA2a gene transfer would ameliorate doxorubicin-induced cardiomyopathy. METHODS Lentiviral vectors LV-SERCA2a-GFP and LV-GFP were constructed and in vitro gene transfer of LV-SERCA2a-GFP confirmed SERCA2a expression by western blot analysis. Heart failure was induced by giving a single intraperitoneal injection of doxorubicin. LV-SERCA2a-GFP, LV-GFP vectors and phosphate-buffered saline (PBS) were injected under echocardiographic control to the anterior wall of the left ventricle. RESULTS Echocardiography analyses were performed on the injection day and 28 days postinjection. On the injection day, there were no significant differences in the average ejection fractions (EFs) among SERCA2a (40.0%), GFP (41.1%) and PBS (39.4%) injected animals. On day 28, EF in the SERCA2a group had increased by 16.6 ± 6.7% to 46.4 ± 2.1%. By contrast, EFs in the GFP (40.2 ± 1.3%) and PBS (40.6 ± 1.4%) groups remained at pre-injection levels. In addition, end systolic and end diastolic left ventricle volumes were significantly smaller in the SERCA2a group compared to controls. CONCLUSIONS SERCA2a gene transfer significantly improves left ventricle function and dimensions in doxorubicin-induced cardiomyopathy, thus making LV-SERCA2a gene transfer an attractive treatment modality for doxorubicin-induced heart failure. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Minttu Mattila
- Turku Centre for Biotechnology, University of Turku, Turku, Finland.,Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland.,Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland.,Drug Research Doctoral Program, University of Turku, Turku, Finland
| | - Juha Koskenvuo
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Mirva Söderström
- Department of Pathology, Turku University Hospital, University of Turku, Turku, Finland
| | - Kim Eerola
- Turku Centre for Biotechnology, University of Turku, Turku, Finland.,Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland.,Drug Research Doctoral Program, University of Turku, Turku, Finland
| | - Mikko Savontaus
- Turku Centre for Biotechnology, University of Turku, Turku, Finland.,Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland.,Heart Centre, Turku University Hospital, University of Turku, Turku, Finland
| |
Collapse
|
21
|
Turnbull IC, Mayourian J, Murphy JF, Stillitano F, Ceholski DK, Costa KD. Cardiac Tissue Engineering Models of Inherited and Acquired Cardiomyopathies. Methods Mol Biol 2018; 1816:145-159. [PMID: 29987817 PMCID: PMC6561092 DOI: 10.1007/978-1-4939-8597-5_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The lack of biomimetic in vitro models of the human heart has posed a critical barrier to progress in the field of modeling cardiac disease. Human engineered cardiac tissues (hECTs)-autonomous, beating structures that recapitulate key aspects of native cardiac muscle physiology-offer an attractive alternative to traditional in vitro models. Here we describe the use of hECTs to advance our understanding and modeling of cardiac diseases in order to test therapeutic interventions, with a focus on contractile dysfunction in the setting of inherited and acquired forms of cardiomyopathies. Four major procedures are discussed in this chapter: (1) preparation of hECTs from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) on single-tissue and multitissue bioreactors; (2) data acquisition of hECT contractile function on both of these platforms; (3) hECT modeling of hereditary phospholamban-R14 deletion-dilated cardiomyopathy; and (4) cryo-injury and doxorubicin-induced hECT models of acquired cardiomyopathy.
Collapse
Affiliation(s)
- Irene C Turnbull
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Mayourian
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack F Murphy
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Stillitano
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Delaine K Ceholski
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin D Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
22
|
Broglie L, Margolis D, Medin JA. Yin and Yang of mesenchymal stem cells and aplastic anemia. World J Stem Cells 2017; 9:219-226. [PMID: 29321823 PMCID: PMC5746642 DOI: 10.4252/wjsc.v9.i12.219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/14/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023] Open
Abstract
Acquired aplastic anemia (AA) is a bone marrow failure syndrome characterized by peripheral cytopenias and bone marrow hypoplasia. It is ultimately fatal without treatment, most commonly from infection or hemorrhage. Current treatments focus on suppressing immune-mediated destruction of bone marrow stem cells or replacing hematopoietic stem cells (HSCs) by transplantation. Our incomplete understanding of the pathogenesis of AA has limited development of targeted treatment options. Mesenchymal stem cells (MSCs) play a vital role in HSC proliferation; they also modulate immune responses and maintain an environment supportive of hematopoiesis. Some of the observed clinical manifestations of AA can be explained by mesenchymal dysfunction. MSC infusions have been shown to be safe and may offer new approaches for the treatment of this disorder. Indeed, infusions of MSCs may help suppress auto-reactive, T-cell mediated HSC destruction and help restore an environment that supports hematopoiesis. Small pilot studies using MSCs as monotherapy or as adjuncts to HSC transplantation have been attempted as treatments for AA. Here we review the current understanding of the pathogenesis of AA and the function of MSCs, and suggest that MSCs should be a target for further research and clinical trials in this disorder.
Collapse
Affiliation(s)
- Larisa Broglie
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | - David Margolis
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Jeffrey A Medin
- Departments of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| |
Collapse
|
23
|
Fernández-Avilés F, Sanz-Ruiz R, Climent AM, Badimon L, Bolli R, Charron D, Fuster V, Janssens S, Kastrup J, Kim HS, Lüscher TF, Martin JF, Menasché P, Simari RD, Stone GW, Terzic A, Willerson JT, Wu JC. Global position paper on cardiovascular regenerative medicine. Eur Heart J 2017; 38:2532-2546. [PMID: 28575280 PMCID: PMC5837698 DOI: 10.1093/eurheartj/ehx248] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/13/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Francisco Fernández-Avilés
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Ricardo Sanz-Ruiz
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Andreu M Climent
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Lina Badimon
- CIBERCV, ISCIII, Madrid, Spain
- Cardiovascular Research Center (CSIC-ICCC), Hospital de la Santa Creu i Sant Pau (HSCSP), Barcelona, Spain
| | - Roberto Bolli
- Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - Dominique Charron
- LabEx TRANSPLANTEX; HLA & Médecine "Jean Dausset" Laboratory Network, Hôpital Saint-Louis AP-HP, Université Paris Diderot, 75013, France
| | - Valentin Fuster
- CIBERCV, ISCIII, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of medicine at Mount Sinai, New York, NY, USA
| | - Stefan Janssens
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Jens Kastrup
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hyo-Soo Kim
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Thomas F Lüscher
- Department of Cardiology, University Heart Center Zurich, Zurich, Switzerland; Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | | | - Philippe Menasché
- Department of Cardiovascular Surgery Hôpital Européen Georges Pompidou; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Robert D Simari
- School of Medicine, University of Kansas, 3901 Rainbow Boulevard, Kansas City, KS, USA
| | - Gregg W Stone
- Center for Clinical Trials, Cardiovascular Research Foundation, New York, New York; Center for Clinical Trials, NewYork-Presbyterian Hospital, Columbia University Medical Center, New York, NY, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Department of Cardiovascular Diseases, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, NY, USA
| | - James T Willerson
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, TX, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Division of Cardiovascular Medicine, Department of Medicine and Department of Radiology, Stanford University School of Medicine, CA, USA
| |
Collapse
|
24
|
Carmona MD, Cañadillas S, Romero M, Blanco A, Nogueras S, Herrera C. Intramyocardial bone marrow mononuclear cells versus bone marrow-derived and adipose mesenchymal cells in a rat model of dilated cardiomyopathy. Cytotherapy 2017; 19:947-961. [PMID: 28673775 DOI: 10.1016/j.jcyt.2017.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Effects of cell therapy on dilated cardiomyopathy (DCM) have been investigated in pre-clinical models using distinct cellular types in each study. A single study that compares the effectiveness of different cells is lacking. METHODS We have compared the effects of intramyocardial injection (IMI) of bone marrow (BM)-derived mononuclear cells (MNCs), BM and adipose tissue (AT) mesenchymal stromal cells (BM-MSCs and AT-MSCs) on heart function, histological changes and myocardial ultrastructure in a rat model of DCM. Isogenic Wistar rats were used to isolate the different cell types and to induce DCM by autoimmune myocarditis. Animals were randomly assigned to receive BM-MNCs, BM-MSCs, AT-MSCs or placebo at day 42 by IMI. Serial echocardiography was used to assess cardiac function and hearts obtained after sacrifice at day 70, were used for histological and ultrastructural analysis. Serum levels of type B-natriuretic peptide (BNP) and vascular endothelial growth-factor (VEGF) were determined at different time points. RESULTS BM-MSC treatment induced significant improvement in ejection fraction (EF), fractional shortening (FS), left ventricular systolic diameter (LVESD) and systolic volume (LVESV). In contrast, changes in echocardiographic parameters with respect to pre-treatment values in animals receiving placebo, AT-MSCs or BM-MNCs were not statistically significant. EF and FS in animals receiving AT-MSCs were superior to those receiving placebo. BM-MSC transplantation induced also improvement in cardiac fibers organization and capillary density, fibrotic tissue reduction, increase in final VEGF concentration and BNP decrease. DISCUSSION IMI of BM or AT-MSCs improves LV function and induces more angiogenesis processes than BM-MNCs. In addition, BM-MSCs showed more anti-fibrotic effects and more ability to reorganize myocardial tissue compared with the other cell types.
Collapse
Affiliation(s)
- M Dolores Carmona
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; Cellular Therapy Unit, Reina Sofia University Hospital, Cordoba, Spain; University of Cordoba, Spain.
| | - Sagrario Cañadillas
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; Cellular Therapy Unit, Reina Sofia University Hospital, Cordoba, Spain; University of Cordoba, Spain
| | - Miguel Romero
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; University of Cordoba, Spain; Cardiology Department, Reina Sofia University Hospital, Cordoba, Spain
| | - Alfonso Blanco
- Anatomy and Comparative Pathology Department, University of Cordoba, Spain
| | - Sonia Nogueras
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; Cellular Therapy Unit, Reina Sofia University Hospital, Cordoba, Spain; University of Cordoba, Spain
| | - Concha Herrera
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; Cellular Therapy Unit, Reina Sofia University Hospital, Cordoba, Spain; University of Cordoba, Spain; Hematology Department, Reina Sofia University Hospital, Cordoba, Spain
| |
Collapse
|
25
|
Miteva K, Pappritz K, El-Shafeey M, Dong F, Ringe J, Tschöpe C, Van Linthout S. Mesenchymal Stromal Cells Modulate Monocytes Trafficking in Coxsackievirus B3-Induced Myocarditis. Stem Cells Transl Med 2017; 6:1249-1261. [PMID: 28186704 PMCID: PMC5442851 DOI: 10.1002/sctm.16-0353] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cell (MSC) application in Coxsackievirus B3 (CVB3)‐induced myocarditis reduces myocardial inflammation and fibrosis, exerts prominent extra‐cardiac immunomodulation, and improves heart function. Although the abovementioned findings demonstrate the benefit of MSC application, the mechanism of the MSC immunomodulatory effects leading to a final cardioprotective outcome in viral myocarditis remains poorly understood. Monocytes are known to be a trigger of myocardial tissue inflammation. The present study aims at investigating the direct effect of MSC on the mobilization and trafficking of monocytes to the heart in CVB3‐induced myocarditis. One day post CVB3 infection, C57BL/6 mice were intravenously injected with 1 x 106 MSC and sacrificed 6 days later for molecular biology and flow cytometry analysis. MSC application reduced the severity of myocarditis, and heart and blood pro‐inflammatory Ly6Chigh and Ly6Cmiddle monocytes, while those were retained in the spleen. Anti‐inflammatory Ly6Clow monocytes increased in the blood, heart, and spleen of MSC‐treated CVB3 mice. CVB3 infection induced splenic myelopoiesis, while MSC application slightly diminished the spleen myelopoietic activity in CVB3 mice. Left ventricular (LV) mRNA expression of the chemokines monocyte chemotactic protein‐1 (MCP)−1, MCP‐3, CCL5, the adhesion molecules intercellular adhesion molecule‐1, vascular cell adhesion molecule‐1, the pro‐inflammatory cytokines interleukin‐6, interleukin‐12, tumor necrosis factor‐α, the pro‐fibrotic transforming growth factorβ1, and circulating MCP‐1 and MCP‐3 levels decreased in CVB3 MSC mice, while LV stromal cell‐derived factor‐1α RNA expression and systemic levels of fractalkine were increased in CVB3 MSC mice. MSC application in CVB3‐induced myocarditis modulates monocytes trafficking to the heart and could be a promising strategy for the resolution of cardiac inflammation and prevention of the disease progression. Stem Cells Translational Medicine2017;6:1249–1261
Collapse
Affiliation(s)
- Kapka Miteva
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Kathleen Pappritz
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Muhammad El-Shafeey
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Fengquan Dong
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Jochen Ringe
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany.,Laboratory for Tissue Engineering, Charité, University Medicine Berlin, Berlin, Germany
| | - Carsten Tschöpe
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany.,Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany.,Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow, Berlin, Germany
| |
Collapse
|
26
|
Abstract
Cell therapies have been explored as a potential treatment avenue to treat heart diseases, such as myocardial infarction, doxorubicin-induced cardiomyopathy, and heart failure. Embryonic and adult stem cells (ASCs) have been examined in animal and clinical settings. Unlike embryonic and induced pluripotent stem cells, ASCs do not pose a threat to form teratomas, nor do they have immune system concerns, making them ideal for therapeutic use in humans. In this review, we will investigate different characteristics and sources of adult stem cells and progenitor cells, as well as determine their efficacy in cell transplantation in experimental and clinical trials. In addition, we will propose other research avenues that may promote further understanding and use of ASCs in therapeutic designs.
Collapse
Affiliation(s)
- Taylor A Johnson
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, University of Central Florida, 4110 Libra Dr., Orlando, FL, USA
| | - Dinender K Singla
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, University of Central Florida, 4110 Libra Dr., Orlando, FL, USA.
| |
Collapse
|
27
|
Arbatlı S, Aslan GS, Kocabaş F. Stem Cells in Regenerative Cardiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1079:37-53. [PMID: 29064067 DOI: 10.1007/5584_2017_113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The common prevalence of heart failure and limitations in its treatment are leading cause of attention and interest towards the induction of cardiac regeneration with novel approaches. Recent studies provide growing evidence regarding bona fide cardiac regeneration post genetic manipulations, administration of stimulatory factors and myocardial injuries in animal models and human studies. To this end, stem cells of different sources have been tested to treat heart failure for the development of cellular therapies. Endogenous and exogenous stem cells sources used in regenerative cardiology have provided a proof of concept and applicability of cellular therapies in myocardial improvement. Recent clinical studies, especially, based on the endogenous cardiac progenitor and stem cells highlighted the possibility to regenerate lost cardiomyocytes in the myocardium. This review discusses emerging concepts in cardiac stem cell therapy, their sources and route of administration, and plausibility of de novo cardiomyocyte formation.
Collapse
Affiliation(s)
- Semih Arbatlı
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
- Department of Biotechnology, Institute of Science, Yeditepe University, Istanbul, Turkey
| | - Galip Servet Aslan
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
- Department of Biotechnology, Institute of Science, Yeditepe University, Istanbul, Turkey
| | - Fatih Kocabaş
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey.
- Department of Biotechnology, Institute of Science, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
28
|
Bellio MA, Rodrigues CO, Landin AM, Hatzistergos KE, Kuznetsov J, Florea V, Valasaki K, Khan A, Hare JM, Schulman IH. Physiological and hypoxic oxygen concentration differentially regulates human c-Kit+ cardiac stem cell proliferation and migration. Am J Physiol Heart Circ Physiol 2016; 311:H1509-H1519. [PMID: 27694215 PMCID: PMC5206337 DOI: 10.1152/ajpheart.00449.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/24/2016] [Indexed: 02/07/2023]
Abstract
Cardiac stem cells (CSCs) are being evaluated for their efficacy in the treatment of heart failure. However, numerous factors impair the exogenously delivered cells' regenerative capabilities. Hypoxia is one stress that contributes to inadequate tissue repair. Here, we tested the hypothesis that hypoxia impairs cell proliferation, survival, and migration of human CSCs relative to physiological and room air oxygen concentrations. Human endomyocardial biopsy-derived CSCs were isolated, selected for c-Kit expression, and expanded in vitro at room air (21% O2). To assess the effect on proliferation, survival, and migration, CSCs were transferred to physiological (5%) or hypoxic (0.5%) O2 concentrations. Physiological O2 levels increased proliferation (P < 0.05) but did not affect survival of CSCs. Although similar growth rates were observed in room air and hypoxia, a significant reduction of β-galactosidase activity (-4,203 fluorescent units, P < 0.05), p16 protein expression (0.58-fold, P < 0.001), and mitochondrial content (0.18-fold, P < 0.001) in hypoxia suggests that transition from high (21%) to low (0.5%) O2 reduces senescence and promotes quiescence. Furthermore, physiological O2 levels increased migration (P < 0.05) compared with room air and hypoxia, and treatment with mesenchymal stem cell-conditioned media rescued CSC migration under hypoxia to levels comparable to physiological O2 migration (2-fold, P < 0.05 relative to CSC media control). Our finding that physiological O2 concentration is optimal for in vitro parameters of CSC biology suggests that standard room air may diminish cell regenerative potential. This study provides novel insights into the modulatory effects of O2 concentration on CSC biology and has important implications for refining stem cell therapies.
Collapse
Affiliation(s)
- Michael A Bellio
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Claudia O Rodrigues
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Ana Marie Landin
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | | | - Jeffim Kuznetsov
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Victoria Florea
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Krystalenia Valasaki
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Ivonne Hernandez Schulman
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida; and
- Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
29
|
Hare JM, DiFede DL, Rieger AC, Florea V, Landin AM, El-Khorazaty J, Khan A, Mushtaq M, Lowery MH, Byrnes JJ, Hendel RC, Cohen MG, Alfonso CE, Valasaki K, Pujol MV, Golpanian S, Ghersin E, Fishman JE, Pattany P, Gomes SA, Delgado C, Miki R, Abuzeid F, Vidro-Casiano M, Premer C, Medina A, Porras V, Hatzistergos KE, Anderson E, Mendizabal A, Mitrani R, Heldman AW. Randomized Comparison of Allogeneic Versus Autologous Mesenchymal Stem Cells for Nonischemic Dilated Cardiomyopathy: POSEIDON-DCM Trial. J Am Coll Cardiol 2016; 69:526-537. [PMID: 27856208 DOI: 10.1016/j.jacc.2016.11.009] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although human mesenchymal stem cells (hMSCs) have been tested in ischemic cardiomyopathy, few studies exist in chronic nonischemic dilated cardiomyopathy (NIDCM). OBJECTIVES The authors conducted a randomized comparison of safety and efficacy of autologous (auto) versus allogeneic (allo) bone marrow-derived hMSCs in NIDCM. METHODS Thirty-seven patients were randomized to either allo- or auto-hMSCs in a 1:1 ratio. Patients were recruited between December 2011 and July 2015 at the University of Miami Hospital. Patients received hMSCs (100 million) by transendocardial stem cell injection in 10 left ventricular sites. Treated patients were evaluated at baseline, 30 days, and 3-, 6-, and 12-months for safety (serious adverse events [SAE]), and efficacy endpoints: ejection fraction, Minnesota Living with Heart Failure Questionnaire, 6-min walk test, major adverse cardiac events, and immune biomarkers. RESULTS There were no 30-day treatment-emergent SAEs. Twelve-month SAE incidence was 28.2% with allo-hMSCs versus 63.5% with auto-hMSCs (p = 0.1004 for the comparison). One allo-hMSC patient developed an elevated (>80) donor-specific calculated panel reactive antibody level. The ejection fraction increased in allo-hMSC patients by 8.0 percentage points (p = 0.004) compared with 5.4 with auto-hMSCs (p = 0.116; allo vs. auto p = 0.4887). The 6-min walk test increased with allo-hMSCs by 37.0 m (p = 0.04), but not auto-hMSCs at 7.3 m (p = 0.71; auto vs. allo p = 0.0168). MLHFQ score decreased in allo-hMSC (p = 0.0022) and auto-hMSC patients (p = 0.463; auto vs. allo p = 0.172). The major adverse cardiac event rate was lower, too, in the allo group (p = 0.0186 vs. auto). Tumor necrosis factor-α decreased (p = 0.0001 for each), to a greater extent with allo-hMSCs versus auto-hMSCs at 6 months (p = 0.05). CONCLUSIONS These findings demonstrated safety and clinically meaningful efficacy of allo-hMSC versus auto-hMSC in NIDCM patients. Pivotal trials of allo-hMSCs are warranted based on these results. (Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis in Dilated Cardiomyopathy [PoseidonDCM]; NCT01392625).
Collapse
Affiliation(s)
- Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida; Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida.
| | - Darcy L DiFede
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Angela C Rieger
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Victoria Florea
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Ana M Landin
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Muzammil Mushtaq
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Maureen H Lowery
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - John J Byrnes
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Robert C Hendel
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Mauricio G Cohen
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Carlos E Alfonso
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Krystalenia Valasaki
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Marietsy V Pujol
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Samuel Golpanian
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Eduard Ghersin
- Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida
| | - Joel E Fishman
- Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida
| | - Pradip Pattany
- Department of Radiology, University of Miami Miller School of Medicine, Miami, Florida
| | - Samirah A Gomes
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Cindy Delgado
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Roberto Miki
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Fouad Abuzeid
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Mayra Vidro-Casiano
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Courtney Premer
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Audrey Medina
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Valeria Porras
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | - Raul Mitrani
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Alan W Heldman
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
30
|
Abstract
Bone marrow stromal stem cells (BMSCs) are adult multipotent cells, which have the potential to differentiate into cell types of mesodermal origin, namely osteocytes, adipocytes, and chondrocytes. Due to their accessibility and expansion potential, BMSCs have historically held therapeutic promise in tissue engineering and regenerative medicine applications. More recently, it has been demonstrated that not only can bone marrow stromal stem cells directly participate in tissue regeneration, but they also have the capacity to migrate to distant sites of tissue injury, where they can participate in tissue repair either directly through their differentiation or indirectly through paracrine mechanisms. Additionally, they can elicit various immunomodulatory signals, which can attenuate the inflammatory and immune responses. As such, bone marrow stromal stem cells have been explored clinically for treatment of a wide variety of different conditions including bone defects, graft-vs.-host disease, cardiovascular diseases, autoimmune diseases, diabetes, neurological diseases, and liver and kidney diseases. This review provides an overview of current clinical applications of bone marrow stromal stem cells and discusses their therapeutic properties, while also addressing limitations of their use. PubMed, Ovid, and Google Scholar online databases were searched using several keywords, including "stem cells", "tissue engineering", tissue regeneration" and "clinical trials". Additionally, Clinical trials.gov was used to locate completed clinical trials using bone marrow derived stem cells.
Collapse
Affiliation(s)
- A. Polymeri
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, Michigan, USA
| | - W. V. Giannobile
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, College of Engineering, Ann Arbor, Michigan, USA
| | - D. Kaigler
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, College of Engineering, Ann Arbor, Michigan, USA
| |
Collapse
|
31
|
Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther 2016; 7:82. [PMID: 27259550 PMCID: PMC4893234 DOI: 10.1186/s13287-016-0341-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells have been used for cardiovascular regenerative therapy for decades. These cells have been established as one of the potential therapeutic agents, following several tests in animal models and clinical trials. In the process, various sources of mesenchymal stem cells have been identified which help in cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Although mesenchymal cell therapy has achieved considerable admiration, some challenges still remain that need to be overcome in order to establish it as a successful technique. This in-depth review is an attempt to summarize the major sources of mesenchymal stem cells involved in myocardial regeneration, the significant mechanisms involved in the process with a focus on studies (human and animal) conducted in the last 6 years and the challenges that remain to be addressed.
Collapse
Affiliation(s)
- Aastha Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Abhishek Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Dwaipayan Sen
- School of Bio Sciences and Technology, VIT University, Vellore, India. .,Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
32
|
De Angelis A, Urbanek K, Cappetta D, Piegari E, Ciuffreda LP, Rivellino A, Russo R, Esposito G, Rossi F, Berrino L. Doxorubicin cardiotoxicity and target cells: a broader perspective. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2016; 2:2. [PMID: 33530140 PMCID: PMC7837148 DOI: 10.1186/s40959-016-0012-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/18/2016] [Indexed: 12/12/2022]
Abstract
The cardiotoxicity of doxorubicin is becoming an interdisciplinary point of interest given a growing population of cancer survivors. The complex and not completely understood pathogenesis of this complication makes difficult to design successful preventive or curative measures. Although cardiomyocyte has been considered a classical cellular target, other cells including various types of undifferentiated cells are involved in myocardial homeostasis. Such perspective may shed light on previously unrecognized aspects of cardiotoxicity and promote new experimental and clinical cardioprotective strategies. In this review, different cellular targets of doxorubicin are discussed with the focus on cardiac progenitor cells, oxidative stress, DNA damage, senescence and apoptosis all of which contribute to their compromised functional properties.
Collapse
Affiliation(s)
- Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, via Costantinopoli 16, 80138 Naples, Italy
| | - Konrad Urbanek
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, via Costantinopoli 16, 80138 Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, via Costantinopoli 16, 80138 Naples, Italy
| | - Elena Piegari
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, via Costantinopoli 16, 80138 Naples, Italy
| | - Loreta Pia Ciuffreda
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, via Costantinopoli 16, 80138 Naples, Italy
| | - Alessia Rivellino
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, via Costantinopoli 16, 80138 Naples, Italy
| | - Rosa Russo
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, via Costantinopoli 16, 80138 Naples, Italy
| | - Grazia Esposito
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, via Costantinopoli 16, 80138 Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, via Costantinopoli 16, 80138 Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, via Costantinopoli 16, 80138 Naples, Italy
| |
Collapse
|
33
|
Immunotolerant Properties of Mesenchymal Stem Cells: Updated Review. Stem Cells Int 2015; 2016:1859567. [PMID: 26839557 PMCID: PMC4709780 DOI: 10.1155/2016/1859567] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/03/2015] [Accepted: 10/11/2015] [Indexed: 12/24/2022] Open
Abstract
Stem cell transplantation is a potential therapeutic option to regenerate damaged myocardium and restore function after infarct. Current research is focused on the use of allogeneic mesenchymal stem cells (MSCs) due to their unique immunomodulatory characteristics and ability to be harvested from young and healthy donors. Both animal and human studies support the immunoprivileged state of MSCs and even demonstrate improvements in cardiac function after transplantation. This research continues to be a topic of interest, as advances will ultimately enable the clinical use of these universal cells for therapy after a myocardial infarction. Updated in vitro, in vivo, and clinical trial studies are discussed in detail in the following review.
Collapse
|
34
|
Mohsin S, Troupes CD, Starosta T, Sharp TE, Agra EJ, Smith S, Duran JM, Zalavadia N, Zhou Y, Kubo H, Berretta RM, Houser SR. Unique Features of Cortical Bone Stem Cells Associated With Repair of the Injured Heart. Circ Res 2015; 117:1024-33. [PMID: 26472818 DOI: 10.1161/circresaha.115.307362] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/15/2015] [Indexed: 12/26/2022]
Abstract
RATIONALE Adoptive transfer of multiple stem cell types has only had modest effects on the structure and function of failing human hearts. Despite increasing the use of stem cell therapies, consensus on the optimal stem cell type is not adequately defined. The modest cardiac repair and functional improvement in patients with cardiac disease warrants identification of a novel stem cell population that possesses properties that induce a more substantial improvement in patients with heart failure. OBJECTIVE To characterize and compare surface marker expression, proliferation, survival, migration, and differentiation capacity of cortical bone stem cells (CBSCs) relative to mesenchymal stem cells (MSCs) and cardiac-derived stem cells (CDCs), which have already been tested in early stage clinical trials. METHODS AND RESULTS CBSCs, MSCs, and CDCs were isolated from Gottingen miniswine or transgenic C57/BL6 mice expressing enhanced green fluorescent protein and were expanded in vitro. CBSCs possess a unique surface marker profile, including high expression of CD61 and integrin β4 versus CDCs and MSCs. In addition, CBSCs were morphologically distinct and showed enhanced proliferation capacity versus CDCs and MSCs. CBSCs had significantly better survival after exposure to an apoptotic stimuli when compared with MSCs. ATP and histamine induced a transient increase of intracellular Ca(2+) concentration in CBSCs versus CDCs and MSCs, which either respond to ATP or histamine only further documenting the differences between the 3 cell types. CONCLUSIONS CBSCs are unique from CDCs and MSCs and possess enhanced proliferative, survival, and lineage commitment capacity that could account for the enhanced protective effects after cardiac injury.
Collapse
Affiliation(s)
- Sadia Mohsin
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Constantine D Troupes
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Timothy Starosta
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Thomas E Sharp
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Elorm J Agra
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Shavonn Smith
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Jason M Duran
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Neil Zalavadia
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Yan Zhou
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Hajime Kubo
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Remus M Berretta
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Steven R Houser
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.).
| |
Collapse
|
35
|
Abstract
Despite substantial clinical advances over the past 65 years, cardiovascular disease remains the leading cause of death in America. The past 15 years has witnessed major basic and translational interest in the use of stem and precursor cells as a therapeutic agent for chronically injured organs. Among the cell types under investigation, adult mesenchymal stem cells are widely studied, and in early stage, clinical studies show promise for repair and regeneration of cardiac tissues. The ability of mesenchymal stem cells to differentiate into mesoderm- and nonmesoderm-derived tissues, their immunomodulatory effects, their availability, and their key role in maintaining and replenishing endogenous stem cell niches have rendered them one of the most heavily investigated and clinically tested type of stem cell. Accumulating data from preclinical and early phase clinical trials document their safety when delivered as either autologous or allogeneic forms in a range of cardiovascular diseases, but also importantly define parameters of clinical efficacy that justify further investigation in larger clinical trials. Here, we review the biology of mesenchymal stem cells, their interaction with endogenous molecular and cellular pathways, and their modulation of immune responses. Additionally, we discuss factors that enhance their proliferative and regenerative ability and factors that may hinder their effectiveness in the clinical setting.
Collapse
Affiliation(s)
- Vasileios Karantalis
- From the University of Miami Miller School of Medicine, Interdisciplinary Stem Cell Institute, FL
| | - Joshua M Hare
- From the University of Miami Miller School of Medicine, Interdisciplinary Stem Cell Institute, FL.
| |
Collapse
|
36
|
Premer C, Blum A, Bellio MA, Schulman IH, Hurwitz BE, Parker M, Dermarkarian CR, DiFede DL, Balkan W, Khan A, Hare JM. Allogeneic Mesenchymal Stem Cells Restore Endothelial Function in Heart Failure by Stimulating Endothelial Progenitor Cells. EBioMedicine 2015; 2:467-75. [PMID: 26137590 PMCID: PMC4485912 DOI: 10.1016/j.ebiom.2015.03.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Endothelial dysfunction, characterized by diminished endothelial progenitor cell (EPC) function and flow-mediated vasodilation (FMD), is a clinically significant feature of heart failure (HF). Mesenchymal stem cells (MSCs), which have pro-angiogenic properties, have the potential to restore endothelial function. Accordingly, we tested the hypothesis that MSCs increase EPC function and restore flow-mediated vasodilation (FMD). METHODS Idiopathic dilated and ischemic cardiomyopathy patients were randomly assigned to receive autologous (n = 7) or allogeneic (n = 15) MSCs. We assessed EPC-colony forming units (EPC-CFUs), FMD, and circulating levels of vascular endothelial growth factor (VEGF) in patients before and three months after MSC transendocardial injection (n = 22) and in healthy controls (n = 10). FINDINGS EPC-colony forming units (CFUs) were markedly reduced in HF compared to healthy controls (4 ± 3 vs. 25 ± 16 CFUs, P < 0.0001). Similarly, FMD% was impaired in HF (5.6 ± 3.2% vs. 9.0 ± 3.3%, P = 0.01). Allogeneic, but not autologous, MSCs improved endothelial function three months after treatment (Δ10 ± 5 vs. Δ1 ± 3 CFUs, P = 0.0067; Δ3.7 ± 3% vs. Δ-0.46 ± 3% FMD, P = 0.005). Patients who received allogeneic MSCs had a reduction in serum VEGF levels three months after treatment, while patients who received autologous MSCs had an increase (P = 0.0012), and these changes correlated with the change in EPC-CFUs (P < 0.0001). Lastly, human umbilical vein endothelial cells (HUVECs) with impaired vasculogenesis due to pharmacologic nitric oxide synthase inhibition, were rescued by allogeneic MSC conditioned medium (P = 0.006). INTERPRETATION These findings reveal a novel mechanism whereby allogeneic, but not autologous, MSC administration results in the proliferation of functional EPCs and improvement in vascular reactivity, which in turn restores endothelial function towards normal in patients with HF. These findings have significant clinical and biological implications for the use of MSCs in HF and other disorders associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Courtney Premer
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL, USA
| | - Arnon Blum
- Department of Medicine and Cardiology, Baruch Padeh Poria Hospital, Bar Ilan University, Lower Galilee 15208, Israel
| | - Michael A Bellio
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL, USA
| | | | - Barry E Hurwitz
- Department of Psychology, University of Miami Miller School of Medicine, FL, USA
| | - Meela Parker
- Department of Psychology, University of Miami Miller School of Medicine, FL, USA
| | | | - Darcy L DiFede
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL, USA
| |
Collapse
|