1
|
Zhang L, Liu T, Wang P, Shen Y, Huang T. Overexpression of Long Noncoding RNA H19 Inhibits Cardiomyocyte Apoptosis in Neonatal Rats with Hypoxic-Ischemic Brain Damage Through the miR-149-5p/LIF/PI3K/Akt Axis. Biopreserv Biobank 2021; 19:376-385. [PMID: 34672722 DOI: 10.1089/bio.2020.0088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hypoxic-ischemic brain damage (HIBD) is a leading cause of fatality and neural system injury in neonates. This study aims to explore the effect of long noncoding RNA H19 on cardiomyocyte apoptosis in neonatal rats with HIBD. The neonatal rat model of HIBD was established. The cerebral infarction volume and apoptosis index of cardiomyocyte increased, while H19 expression decreased in neonatal rats with HIBD. After the lentivirus vector of overexpressed H19 was injected into neonatal rats with HIBD, the cardiomyocyte apoptosis was suppressed; levels of inflammatory factors and oxidative stress injury of myocardial tissues were reduced. The binding relationships between H19 and miR-149-5p, and miR-149-5p and leukemia inhibitory factor (LIF) were predicted by a bioinformatics website and verified using the dual-luciferase reporter gene assay. H19 competitively bound to miR-149-5p to upregulate LIF expression and activate the PI3K/Akt pathway. Moreover, a functional rescue experiment was carried out. Injection of Wortmannin reversed the inhibitory effect of H19 overexpression on cardiomyocyte apoptosis in neonatal rats with HIBD. It could be concluded that H19 competitively bound to miR-149-5p to upregulate LIF expression and activate the PI3K/Akt pathway, thus reducing cardiomyocyte apoptosis in neonatal rats with HIBD. This study may offer new insights for HIBD treatment.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Tao Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Ping Wang
- Department of Hand and Foot Surgery, Nanchang Fifth Hospital, Nanchang, P.R. China
| | - Yanhong Shen
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Tao Huang
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| |
Collapse
|
2
|
Wang W, Miao Y, Sui S, Wang Y, Wu S, Cao Q, Duan H, Qi X, Zhou Q, Pan X, Zhang J, Chen X, Han Y, Wang N, Kuehn MH, Zhu W. Xeno- and Feeder-Free Differentiation of Human iPSCs to Trabecular Meshwork-Like Cells by Recombinant Cytokines. Transl Vis Sci Technol 2021; 10:27. [PMID: 34015102 PMCID: PMC8142710 DOI: 10.1167/tvst.10.6.27] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Stem cell-based therapy has the potential to become one approach to regenerate the damaged trabecular meshwork (TM) in glaucoma. Co-culture of induced pluripotent stem cells (iPSCs) with human TM cells has been a successful approach to generate autologous TM resembling cells. However, the differentiated cells generated using this approach are still problematic for clinical usage. This study aimed to develop a clinically applicable strategy for generating TM-like cells from iPSCs. Methods Highly expressed receptors during iPSC differentiation were identified by AutoSOME, Gene Ontology, and reverse transcription polymerase chain reaction (RT-PCR) analysis. The recombinant cytokines that bind to these receptors were used to generate a new differentiation protocol. The resultant TM-like cells were characterized morphologically, immunohistochemically, and transcriptionally. Results We first determined two stages of iPSC differentiation and identified highly expressed receptors associated with the differentiation at each stage. The expression of these receptors was further confirmed by RT-PCR analysis. Exposure to the recombinant cytokines that bind to these receptors, including transforming growth factor beta 1, nerve growth factor beta, erythropoietin, prostaglandin F2 alpha, and epidermal growth factor, can efficiently differentiate iPSCs into TM-like cells, which express TM biomarkers and can form dexamethasone-inducible CLANs. Conclusions We successfully generated a xeno- and feeder-free differentiation protocol with recombinant cytokines to generate the TM progenitor and TM-like cells from human iPSCs. Translational Relevance The new approach minimizes the risks from contamination and also improves the differentiation efficiency and consistency, which are particularly crucial for clinical use of stem cells in glaucoma treatment.
Collapse
Affiliation(s)
- Wenyan Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yongzhen Miao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Shangru Sui
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yanan Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Qilong Cao
- Qingdao Haier Biotech Co. Ltd., Qingdao, China
| | - Haoyun Duan
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Xia Qi
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaojing Pan
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yantao Han
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Markus H Kuehn
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA.,Center for the Prevention and Treatment of Visual Loss, Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China.,Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing University of Aeronautics and Astronautics-Capital Medical University, Beijing, China
| |
Collapse
|
3
|
In vitro maturation in the presence of Leukemia Inhibitory Factor modulates gene and miRNA expression in bovine oocytes and embryos. Sci Rep 2020; 10:17777. [PMID: 33082423 PMCID: PMC7575586 DOI: 10.1038/s41598-020-74961-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Members of the interleukin-6 (IL-6) family of cytokines are important for reproductive function that are mediated through changes in gene and miRNA expression. Herein, we characterized the expression of miR-21, miR-155, miR-34c and miR-146a in bovine oocytes and cumulus cells during in vitro maturation (IVM) with leukemia inhibitory factor (LIF), IL-6 and IL-11 or unsupplemented controls. LIF-exposed COCs showed higher expression of miR-21 and miR-155 in oocytes, whereas miR-146a expression was increased in oocytes matured with IL-6 and IL-11. In cumulus cells, miR-155 expression was elevated by all treatments while only LIF increased miR-21 expression. Based on these results, we next examined how LIF exposure during IVM affected oocyte competence, through IVF and the expression of specific genes in GV- and MII-oocytes, in 2- and 8-cell embryos, and in Day 8-blastocysts. LIF supplementation did not affect cleavage rate, blastocyst yield or several other developmental parameters, but did increase hatching rate. LIF suppressed DPPA3, ZAR1 and NPM2 expression in 2 cell- and/or 8-cell embryos. LIF increased the expression of KAT2A and HSPA1A in MII-oocytes, and that of HDAC1, KAT2A and HSP90AA1 and the BAX:BCL2L1 ratio in 2-cell embryos. In contrast, HDAC1, KAT2A and HSP90AA1 expression and BAX:BCL2L1 ratio was lower in 8-cell embryos derived from LIF oocytes. IVM with LIF also increased the expression of DNMT3A, HSPA1A and HSP90AA1 in blastocysts. In conclusion, supplementation with LIF during IVM was consistently associated with changes in the relative abundance of transcripts in mature bovine oocytes and in specific embryo developmental stages.
Collapse
|
4
|
Vendrell-Flotats M, García-Martínez T, Martínez-Rodero I, Lopez-Bejar M, LaMarre J, Yeste M, Mogas T. In Vitro Maturation with Leukemia Inhibitory Factor Prior to the Vitrification of Bovine Oocytes Improves Their Embryo Developmental Potential and Gene Expression in Oocytes and Embryos. Int J Mol Sci 2020; 21:ijms21197067. [PMID: 32992968 PMCID: PMC7582665 DOI: 10.3390/ijms21197067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
Oocyte cryopreservation has a significant impact on subsequent embryonic development. Herein, we investigated whether supplementing in vitro maturation medium with Leukemia Inhibitory Factor (LIF) prior to vitrification affects embryo development and gene expression at different embryo developmental stages. A panel of genes including maternal effect, epigenetics, apoptosis and heat stress was relatively quantified. The results show reduced cleavage rates after vitrification, regardless of the LIF treatment. Although not statistically different from control-vitrified oocytes, oocyte apoptosis and the blastocyst yield of LIF-vitrified oocytes were similar to their non-vitrified counterparts. Vitrification increased oocyte ZAR1, NPM2 and DPPA3 gene expression while its expression decreased in LIF-vitrified oocytes to similar or close levels to those of non-vitrified oocytes. With a few gene-specific exceptions, vitrification significantly increased the expression of DNMT3A, HDAC1, KAT2A, BAX and BCL2L1 in oocytes and most stages of embryo development, while comparable expression patterns for these genes were observed between LIF-vitrified and non-vitrified groups. Vitrification increased HSPA1A expression in oocytes and HSP90AA1 in 2-cell embryos. Our data suggest that vitrification triggers stage-specific changes in gene expression throughout embryonic development. However, the inclusion of LIF in the IVM medium prior to vitrification stimulates blastocyst development and several other developmental parameters and induces oocytes and embryos to demonstrate gene expression patterns similar to those derived from non-vitrified oocytes.
Collapse
Affiliation(s)
- Meritxell Vendrell-Flotats
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (M.V.-F.); (T.G.-M.); (I.M.-R.)
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain;
| | - Tania García-Martínez
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (M.V.-F.); (T.G.-M.); (I.M.-R.)
| | - Iris Martínez-Rodero
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (M.V.-F.); (T.G.-M.); (I.M.-R.)
| | - Manel Lopez-Bejar
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain;
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jonathan LaMarre
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Marc Yeste
- Department of Biology, Institute of Food and Agricultural Technology, University of Girona, ES-17004 Girona, Spain;
| | - Teresa Mogas
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, ES-08193 Cerdanyola del Vallès, Spain; (M.V.-F.); (T.G.-M.); (I.M.-R.)
- Correspondence: ; Tel.: +34-93-581-10-44
| |
Collapse
|
5
|
Ashja-Arvan M, Dehbashi M, Eslami A, Salehi H, Yoosefi M, Ganjalikhani-Hakemi M. Impact of IFN-β and LIF overexpression on human adipose-derived stem cells properties. J Cell Physiol 2020; 235:8736-8746. [PMID: 32324266 DOI: 10.1002/jcp.29717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/11/2020] [Accepted: 04/05/2020] [Indexed: 02/05/2023]
Abstract
Adipose-derived stem cells (ADSCs) are a subset of mesenchymal stem cells that their therapeutic effects in various diseases make them an interesting tool in cell therapy. In the current study, we aimed to overexpress interferon-β (IFN-β) and leukemia inhibitory factor (LIF) cytokines in human ADSCs to evaluate the impact of this overexpression on human ADSCs properties. Here, we designed a construct containing IFN-β and LIF and then, transduced human adipose-derived stem cells (hADSCs) by this construct via a lentiviral vector (PCDH-513B). We assessed the ability of long-term expression of the transgene in transduced cells by western blot analysis and enzyme-linked immunosorbent assay techniques on Days 15, 45, and 75 after transduction. For the evaluation of stem cell properties, flow cytometry and differentiation assays were performed. Finally, the MTT assay was done to assess the proliferation of transduced cells compares to controls. Our results showed high-efficiency transduction with highest expression rates on Day 75 after transduction which were 70 pg/ml for IFN-β and 77.9 pg/ml for LIF in comparison with 25.60 pg/ml and 27.63 pg/ml, respectively, in untransduced cells (p = .0001). Also, transduced cells expressed a high level of ADSCs surface markers and successfully differentiated into adipocytes, chondrocytes, neural cells, and osteocytes besides the preservation rate of proliferation near untreated cells (p = .88). All in all, we successfully constructed an hADSC population stably overexpressed IFN-β and LIF cytokines. Considering the IFN-β and LIF anti-inflammatory and neuroprotective effects as well as immune-regulatory properties of hADSCs, the obtained cells of this study could be subjected for further evaluations in experimental autoimmune encephalomyelitis mice model.
Collapse
Affiliation(s)
- Mehnoosh Ashja-Arvan
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Moein Dehbashi
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Asma Eslami
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdiyeh Yoosefi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|