1
|
Marinko M, Hou HT, Stojanovic I, Milojevic P, Nenezic D, Kanjuh V, Yang Q, He GW, Novakovic A. Mechanisms underlying the vasorelaxant effect of hydrogen sulfide on human saphenous vein. Fundam Clin Pharmacol 2021; 35:906-918. [PMID: 33523557 DOI: 10.1111/fcp.12658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/08/2021] [Accepted: 01/27/2021] [Indexed: 11/30/2022]
Abstract
Hydrogen sulfide (H2 S) represents the third and the youngest member of the gaseous transmitters family. The dominant effect of H2 S on isolated vessels is vasodilation. As the mechanism of H2 S-induced relaxation in human vessels remains unclear, the present study aimed to investigate the effects of H2 S donor, sodium hydrosulfide (NaHS), on isolated human saphenous vein (HSV) and to determine the mechanism of action. Our results showed that NaHS (1 µM-3 mM) induced a concentration-dependent relaxation of endothelium-intact HSV rings pre-contracted by phenylephrine. Pre-treatment with L-NAME, ODQ and KT5823 significantly inhibited NaHS-induced relaxation, while indomethacin induced partial inhibition. Among K+ channel blockers, the combination of apamin and TRAM-34 significantly affected the relaxation produced by NaHS, while iberiotoxin and glibenclamide only reduced maximal relaxation of HSV. NaHS partially relaxed endothelium-intact rings pre-contracted by high K+ , as well as phenylephrine-contracted rings in the presence of nifedipine. Additionally, the incubation of HSV rings with NaHS increased NO production. These results demonstrate that NaHS produces the concentration- and endothelium-dependent relaxation of isolated HSV. Vasorelaxation to NaHS probably involves activation of NO/cGMP/PKG pathway and partially prostacyclin. In addition, different K+ channels subtypes, especially SKCa and IKCa , as well as BKCa and KATP channels in high concentrations of NaHS, probably participate in the NaHS-induced vasorelaxation.
Collapse
Affiliation(s)
- Marija Marinko
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Hai-Tao Hou
- Department of Cardiovascular Surgery, Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Ivan Stojanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Predrag Milojevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | - Dragoslav Nenezic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Institute for Cardiovascular Diseases "Dedinje", Belgrade, Serbia
| | | | - Qin Yang
- Department of Cardiovascular Surgery, Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Guo-Wei He
- Department of Cardiovascular Surgery, Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Tianjin, China.,Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Aleksandra Novakovic
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Loesch A, Dashwood MR. Saphenous Vein Vasa Vasorum as a Potential Target for Perivascular Fat-Derived Factors. Braz J Cardiovasc Surg 2020; 35:964-969. [PMID: 33306322 PMCID: PMC7731844 DOI: 10.21470/1678-9741-2020-0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Perivascular adipose tissue (PVAT) is a source of factors affecting vasomotor tone with the potential to play a role in the performance of saphenous vein (SV) bypass grafts. As these factors have been described as having constrictor or relaxant effects, they may be considered either beneficial or detrimental. The close proximity of PVAT to the adventitia provides an environment whereby adipose tissue-derived factors may affect the vasa vasorum, a microvascular network providing the vessel wall with oxygen and nutrients. Since medial ischaemia promotes aspects of graft occlusion the involvement of the PVAT/vasa vasorum axis in vein graft patency should be considered.
Collapse
Affiliation(s)
- Andrzej Loesch
- Centre for Rheumatology and Connective Tissue Diseases, University College London Medical School, Royal Free Campus, London, United Kingdom
| | - Michael Richard Dashwood
- Division of Surgery and Interventional Science, University College London Medical School, Royal Free Campus, London, United Kingdom
| |
Collapse
|