1
|
Li X, Liu J, Zuo TT, Hu Y, Li Z, Wang HD, Xu XY, Yang WZ, Guo DA. Advances and challenges in ginseng research from 2011 to 2020: the phytochemistry, quality control, metabolism, and biosynthesis. Nat Prod Rep 2022; 39:875-909. [PMID: 35128553 DOI: 10.1039/d1np00071c] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2011 to the end of 2020Panax species (Araliaceae), particularly P. ginseng, P. quinquefolius, and P. notoginseng, have a long history of medicinal use because of their remarkable tonifying effects, and currently serve as crucial sources for various healthcare products, functional foods, and cosmetics, aside from their vast clinical preparations. The huge market demand on a global scale prompts the continuous prosperity in ginseng research concerning the discovery of new compounds, precise quality control, ADME (absorption/disposition/metabolism/excretion), and biosynthesis pathways. Benefitting from the ongoing rapid development of analytical technologies, e.g. multi-dimensional chromatography (MDC), personalized mass spectrometry (MS) scan strategies, and multi-omics, highly recognized progress has been made in driving ginseng analysis towards "systematicness, integrity, personalization, and intelligentization". Herein, we review the advances in the phytochemistry, quality control, metabolism, and biosynthesis pathway of ginseng over the past decade (2011-2020), with 410 citations. Emphasis is placed on the introduction of new compounds isolated (saponins and polysaccharides), and the emerging novel analytical technologies and analytical strategies that favor ginseng's authentic use and global consumption. Perspectives on the challenges and future trends in ginseng analysis are also presented.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Jie Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Tian-Tian Zuo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Ying Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Zheng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, China
| | - Hong-da Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Xiao-Yan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Wen-Zhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - De-An Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
2
|
Liu L, Xu FR, Wang YZ. Traditional uses, chemical diversity and biological activities of Panax L. (Araliaceae): A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:112792. [PMID: 32311488 DOI: 10.1016/j.jep.2020.112792] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax L. (Araliaceae) is globally-recognized plant resource suitable for the globalization of traditional Chinese medicines. It has traditionally been used as tonic agents in various ethnomedicinal systems of East Asia, especially in China. It is often used to regulate bodily functions and considered as adjuvant therapy for tumor, resuscitation of traumatic hemorrhagic shock, etc. AIM OF THIS REVIEW: This review systematically summarized the information on distributions, botanical characteristics, traditional uses, chemical components and biological activities of the genus Panax, in order to explore and exploit the therapeutic potential of this plant. MATERIALS AND METHODS The available information about genus Panax was collected via the online search on Web of Science, Google Scholar, PubMed, Baidu Scholar, Science Direct, China National Knowledge Infrastructure and Springer search. The keywords used include Panax, saponin, secondary metabolites, chemical components, biological activity, pharmacology, traditional medicinal uses, safety and other related words. The Plant List (www.theplantlist.org) and Catalogue of Life: 2019 Annual Checklist (www.catalogueoflife.org/col/) databases were used to provide the scientific names, subspecies classification and distribution information of Panax. RESULTS Panax is widely assessed concerning its phytochemistry and biological activities. To date, at least 748 chemical compounds from genus Panax were isolated, including saponins, flavonoids, polysaccharides, steroids and phenols. Among them, triterpenoid saponins and polysaccharides were the representative active ingredients of Panax plants, which have been widely investigated. Modern pharmacological studies showed that these compounds exhibited a wide range of biological activities in vitro and in vivo including antineoplastic, anti-inflammatory, hepatorenal protective, neuroprotective, immunoregulatory, cardioprotective and antidiabetic activities. Many studies also confirmed that the mechanisms of organ-protective were closely related to molecular signaling pathways, the expression of related proteins and antioxidant reactions. To sum up, genus Panax has high medicinal and social value, deserving further investigation. CONCLUSIONS The genus Panax is very promising to be fully utilized in the development of nutraceutical and pharmaceutical products. However, there is a lack of in-depth studies on ethnomedicinal uses of Panax plants. In addition, further studies of single chemical component should be performed based on the diversity of chemical structure, significant biological activities and clinical application. If the bioactive molecules and multicomponent interactions are discovered, it will be of great significance to the clinical application of Panax plants. It is an urgent requirement to carry out detailed phytochemical, pharmacology and clinical research on Panax classical prescriptions for the establishment of modern medication guidelines. Exploring the molecular basis of herbal synergistic actions may provide a new understanding of the complex disease mechanisms and accelerate the process of pharmaceutical development.
Collapse
Affiliation(s)
- Lu Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Fu-Rong Xu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China.
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.
| |
Collapse
|
3
|
Liu XQ, Zou QP, Huang JJ, Yook CS, Whang WK, Lee HK, Kwon OK. Inhibitory effects of 3α-hydroxy-lup-20(29)-en-23, 28-dioic acid on lipopolysaccharide-induced TNF-α, IL-1β, and the high mobility group box 1 release in macrophages. Biosci Biotechnol Biochem 2017; 81:1305-1313. [PMID: 28345393 DOI: 10.1080/09168451.2017.1301803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We investigated the anti-inflammatory effects of 3α-hydroxy-lup-20(29)-en-23, 28-dioic acid (HLEDA)-a lupane-type triterpene isolated from leaves of Acanthopanax gracilistylus W. W.Smith (AGS), as well as the underlying molecular mechanisms in lipopolysaccharide (LPS)-induced RAW264.7 cells. Our results demonstrated that HLEDA concentration-dependently reduced the production of nitric oxide (NO), significantly suppressed LPS-induced expression of TNF-α and IL-1β at the mRNA and protein levels in RAW264.7 cells. Further analysis revealed that HLEDA could reduce the secretion of High Mobility Group Box 1 (HMGB1). Additionally, the results showed that HLEDA efficiently decreased nuclear factor-kappaB (NF-κB) activation by inhibiting the degradation and phosphorylation of IκBα. These results suggest that HLEDA exerts anti-inflammatory properties in LPS-induced macrophages, possibly through inhibition of the NF-κB signaling pathway, which mediates the expression of pro-inflammatory cytokines. These results warrant further studies that would concern candidate therapy for diseases, such as fulminant hepatitis and rheumatology of triterpenoids in AGS.
Collapse
Affiliation(s)
- Xiang-Qian Liu
- a School of Pharmacy, Hunan University of Chinese Medicine , Changsha , China.,b School of Chemistry and Chemical Engineering, Central South University , Changsha , China
| | - Qin-Peng Zou
- b School of Chemistry and Chemical Engineering, Central South University , Changsha , China.,c Changsha Broad-Ocean Bio-science and Technique Co.,Ltd. , Changsha , China
| | - Jian-Jun Huang
- d Department of Clinical Biochemistry , Xiangya Medical College, Central South University , Changsha , China
| | - Chang-Soo Yook
- e College of Pharmacy, KyungHee University , Seoul , Korea
| | | | - Hyeong-Kyu Lee
- g Korea Research Institute of Bioscience and Biotechnology , Chungbuk , Korea
| | - Ok-Kyoung Kwon
- g Korea Research Institute of Bioscience and Biotechnology , Chungbuk , Korea
| |
Collapse
|
4
|
Zhang J, Cao L, Wang H, Cheng X, Wang L, Zhu L, Yan T, Xie Y, Wu Y, Zhao M, Ma S, Wu M, Wang G, Hao H. Ginsenosides Regulate PXR/NF-κB Signaling and Attenuate Dextran Sulfate Sodium–Induced Colitis. Drug Metab Dispos 2015; 43:1181-9. [DOI: 10.1124/dmd.115.063800] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 05/15/2015] [Indexed: 12/21/2022] Open
|
5
|
Abstract
This review covers the isolation and structure determination of triterpenoids reported during 2012 including squalene derivatives, lanostanes, holostanes, cycloartanes, cucurbitanes, dammaranes, euphanes, tirucallanes, tetranortriterpenoids, quassinoids, lupanes, oleananes, friedelanes, ursanes, hopanes, serratanes, isomalabaricanes and saponins; 348 references are cited.
Collapse
|
6
|
Kim E, Yoon KD, Lee WS, Yang WS, Kim SH, Sung NY, Baek KS, Kim Y, Htwe KM, Kim YD, Hong S, Kim JH, Cho JY. Syk/Src-targeted anti-inflammatory activity of Codariocalyx motorius ethanolic extract. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:185-193. [PMID: 24866386 DOI: 10.1016/j.jep.2014.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/11/2014] [Accepted: 05/14/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Codariocalyx motorius (Houtt.) H. Ohashi (Fabaceae) is one of several ethnopharmacologically valuable South Asian species prescribed as an herbal medicine for various inflammatory diseases. Due to the lack of systematic studies on this plant, we aimed to explore the inhibitory activity of Codariocalyx motorius toward inflammatory responses using its ethanolic extract (Cm-EE). MATERIALS AND METHODS Lipopolysaccharide (LPS)-treated macrophages and a HCl/EtOH-induced gastritis model were used for evaluation of the anti-inflammatory activity of Cm-EE. HPLC and spectroscopic analysis were employed to identify potential active components. Mechanistic approaches to determine target enzymes included kinase assays, reporter gene assays, and overexpression of target enzymes. RESULTS Cm-EE strongly suppressed nitric oxide (NO) and prostaglandin E2 (PGE2) release. Cm-EE-mediated inhibition was observed at the transcriptional level in the form of suppression of NF-κB (p65) translocation and activation. This extract also lowered the levels of phosphorylation of Src and Syk, their kinase activity, and their formation of signalling complexes by binding to the downstream enzyme p85/PI3K. In accord with these findings, the phosphorylation of p85 induced by overexpression of Src or Syk was also diminished by Cm-EE. Orally administered Cm-EE clearly inhibited gastritic ulcer formation and the phosphorylation of IκBα and Src in HCl/EtOH-treated stomachs of mice. By phytochemical analysis, luteolin and its glycoside, apigenin-7-O-glucuronide, and scutellarein-6-O-glucuronide were identified as major components of Cm-EE. Among these, it was found that luteolin was able to strongly suppress NO and PGE2 production under the same conditions. CONCLUSION Syk/Src-targeted inhibition of NF-κB by Cm-EE could be a major anti-inflammatory mechanism contributing to its ethno pharmacological role as an anti-inflammatory herbal medicine.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Kee Dong Yoon
- College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Republic of Korea
| | - Woo-Shin Lee
- Department of Forest Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Woo Seok Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Shi Hyoung Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Nak Yoon Sung
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Kwang-Soo Baek
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Yong Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Khin Myo Htwe
- Popa Mountain Park, Forest Department, Kyaukpadaung Township, Mandalay Division, Myanmar
| | - Young-Dong Kim
- Department of Life Science, Hallym University, Chuncheon 200-702, Republic of Korea
| | - Sungyoul Hong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| |
Collapse
|
7
|
Lee Y, Kim KT, Kim SS, Hur J, Ha SK, Cho CW, Choi SY. Inhibitory effects of ginseng seed on melanin biosynthesis. Pharmacogn Mag 2014; 10:S272-5. [PMID: 24991102 PMCID: PMC4078335 DOI: 10.4103/0973-1296.133271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/14/2013] [Accepted: 05/28/2014] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Ginseng root has been traditionally used for the treatment of many diseases in Korea. However, so far ginseng seed has been mostly unused and discarded. As part of our ongoing research on the ginseng seeds, the inhibitory effect of ginseng seeds on melanin production was verified to assess their potential as a skin depigmenting substance. MATERIALS AND METHODS The present study measured the inhibitory effect of ginseng seeds on melanin production through the tyrosinase inhibitory effect and analyzed their effects on melanin production in melan-a-cells. RESULTS Ethanol extract of ginseng seed was applied to melan-a-cells at a concentration of 100 ppm and melanin production was reduced by 35.1% without cytotoxicity. In addition, the ethanol extract of ginseng seed was shown to reduce tyrosinase activity. CONCLUSION Because the results showed excellent melanin inhibitory activity compared with that obtained by arbutin, ethanol extracts of ginseng leaf and ginseng root at the same concentration, it can be concluded that ginseng seeds show great potential as a skin depigmenting substance.
Collapse
Affiliation(s)
- Yeonmi Lee
- Korea Food Research Institute, Seongnam 463-746, Republic of Korea
| | - Kyoung-Tack Kim
- Korea Food Research Institute, Seongnam 463-746, Republic of Korea
| | - Sung Soo Kim
- Korea Food Research Institute, Seongnam 463-746, Republic of Korea
| | - Jinyoung Hur
- Korea Food Research Institute, Seongnam 463-746, Republic of Korea
| | - Sang Keun Ha
- Korea Food Research Institute, Seongnam 463-746, Republic of Korea
| | - Chang-Won Cho
- Korea Food Research Institute, Seongnam 463-746, Republic of Korea
| | - Sang Yoon Choi
- Korea Food Research Institute, Seongnam 463-746, Republic of Korea
| |
Collapse
|
8
|
Andre CM, Larsen L, Burgess EJ, Jensen DJ, Cooney JM, Evers D, Zhang J, Perry NB, Laing WA. Unusual immuno-modulatory triterpene-caffeates in the skins of russeted varieties of apples and pears. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:2773-9. [PMID: 23418665 DOI: 10.1021/jf305190e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Three triterpene-caffeates have been isolated from skins of a russeted apple cultivar "Merton Russet" and identified by LC-MS and NMR as betulinic acid-3-cis-caffeate, betulinic acid-3-trans-caffeate, and oleanolic acid-3-trans-caffeate. Betulinic acid-3-trans-caffeate and oleanolic acid-3-trans-caffeate were also found in russeted pear skins. These compounds have not been previously reported in apples or pears, or in any other foods. Their presence was related to suberized tissue as they were only found in russet portions of the partially russeted apple cultivar "Cox's Orange Pippin" and were not detected in the waxy apple cultivar "Royal Gala". High concentrations of betulinic acid-3-trans-caffeate were found in the bark of both "Merton Russet" and "Royal Gala" trees. The three triterpene-caffeates showed anti-inflammatory activity in vitro, inhibiting NF-κB activation with IC50's of 6-9 μM. Betulinic acid-3-trans-caffeate, the predominant compound in the apples, was immuno-modulatory at around 10 μM in the in vitro and ex vivo bioassays, boosting production of the pro-inflammatory cytokine TNFα in cells stimulated with bacterial lipopolysaccharides.
Collapse
Affiliation(s)
- Christelle M Andre
- The New Zealand Institute for Plant & Food Research Limited, Mt Albert Research Centre , Private Bag 92 169, Auckland 1142, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|