1
|
Meng X, Xia C, Wu H, Gu Q, Li P. Metabolism of quercitrin in the colon and its beneficial regulatory effects on gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9255-9264. [PMID: 39043159 DOI: 10.1002/jsfa.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Quercitrin is a dietary flavonoid widely found in plants with various physiological activities. However, whether quercitrin alters gut microbiota in vivo is not well understood. The aim of this study was to investigate metabolism of quercitrin in the colon and its regulation on gut microbiota in mice. RESULTS Herein, 22 flavonoids related to quercitrin metabolism were identified based on ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). Gas chromatography and 16S rDNA gene sequencing were used to investigate short-chain fatty acid (SCFA) content and diversity of composition of gut microbiota, respectively. The results showed that quercitrin significantly alters the beta-diversity of the gut microbiota, probiotics such as Akkermansia and Lactococcus were significantly increased, and the production of propanoate, isovalerate and hexanoate of the quercitrin group were enhanced significantly. The Spearman's association analysis provided evidence that Gardnerella and Akkermansia have obvious correlations with most of quercitrin metabolites and SCFAs. CONCLUSION Quercitrin and its metabolites in the colon altered the structure of the mice gut microbiota and increased the content of SCFAs. Our experiments provide valuable insights into quercitrin research and application. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xia Meng
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Chenlan Xia
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Hongchen Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
2
|
Zhu X, Ding G, Ren S, Xi J, Liu K. The bioavailability, absorption, metabolism, and regulation of glucolipid metabolism disorders by quercetin and its important glycosides: A review. Food Chem 2024; 458:140262. [PMID: 38944925 DOI: 10.1016/j.foodchem.2024.140262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Quercetin and its glycosides (QG), vitally natural flavonoid, have been popular for health benefits. However, the absorption and metabolism affect their bioavailability, and the metabolic transformation alters their biological activities. This review systematically summarizes the bioavailability and pathways for the absorption and metabolism of quercetin/QG in vivo and in vitro, the biological activities and mechanism of quercetin/QG and their metabolites in treating glucolipid metabolism are discussed. After oral administration, quercetin/QG are mainly absorbed by the intestine, undergo phase II metabolism in the small intestine and liver to form conjugates and are metabolized into small phenolic acids by intestinal microbiota. Quercetin/QG and their metabolites exert beneficial effects on regulating glucolipid metabolism disorders, including improving insulin resistance, inhibiting lipogenesis, enhancing thermogenesis, modulating intestinal microbiota, relieving oxidative stress, and attenuating inflammation. This review enhances understanding of the mechanism of quercetin/QG regulate glucolipid metabolism and provides scientific support for the development of functional foods.
Collapse
Affiliation(s)
- Xiaoai Zhu
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Guiyuan Ding
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Shuncheng Ren
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Jun Xi
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Kunlun Liu
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| |
Collapse
|
3
|
Ai J, Tang X, Mao B, Zhang Q, Zhao J, Chen W, Cui S. Gut microbiota: a superior operator for dietary phytochemicals to improve atherosclerosis. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 38940319 DOI: 10.1080/10408398.2024.2369169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Mounting evidence implicates the gut microbiota as a possible key susceptibility factor for atherosclerosis (AS). The employment of dietary phytochemicals that strive to target the gut microbiota has gained scientific support for treating AS. This study conducted a general overview of the links between the gut microbiota and AS, and summarized available evidence that dietary phytochemicals improve AS via manipulating gut microbiota. Then, the microbial metabolism of several dietary phytochemicals was summarized, along with a discussion on the metabolites formed and the biotransformation pathways involving key gut bacteria and enzymes. This study additionally focused on the anti-atherosclerotic potential of representative metabolites from dietary phytochemicals, and investigated their underlying molecular mechanisms. In summary, microbiota-dependent dietary phytochemical therapy is a promising strategy for AS management, and knowledge of "phytochemical-microbiota-biotransformation" may be a breakthrough in the search for novel anti-atherogenic agents.
Collapse
Affiliation(s)
- Jian Ai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Wang L, Li M, Gu Y, Shi J, Yan J, Wang X, Li B, Wang B, Zhong W, Cao H. Dietary flavonoids-microbiota crosstalk in intestinal inflammation and carcinogenesis. J Nutr Biochem 2024; 125:109494. [PMID: 37866426 DOI: 10.1016/j.jnutbio.2023.109494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/20/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Colorectal cancer (CRC) is currently the third leading cancer and commonly develops from chronic intestinal inflammation. A strong association was found between gut microbiota and intestinal inflammation and carcinogenic risk. Flavonoids, which are abundant in vegetables and fruits, can inhibit inflammation, regulate gut microbiota, protect gut barrier integrity, and modulate immune cell function, thereby attenuating colitis and preventing carcinogenesis. Upon digestion, about 90% of flavonoids are transported to the colon without being absorbed in the small intestine. This phenomenon increases the abundance of beneficial bacteria and enhances the production of short-chain fatty acids. The gut microbe further metabolizes these flavonoids. Interestingly, some metabolites of flavonoids play crucial roles in anti-inflammation and anti-tumor effects. This review summarizes the modulatory effect of flavonoids on gut microbiota and their metabolism by intestinal microbe under disease conditions, including inflammatory bowel disease, colitis-associated cancer (CAC), and CRC. We focus on dietary flavonoids and microbial interactions in intestinal mucosal barriers as well as intestinal immune cells. Results provide novel insights to better understand the crosstalk between dietary flavonoids and gut microbiota and support the standpoint that dietary flavonoids prevent intestinal inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China; Department of Gastroenterology and Hepatology, The Affiliated Hospital of Chengde Medical College, Hebei, China
| | - Mengfan Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yu Gu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Junli Shi
- Department of Gastroenterology and Hepatology, The Affiliated Hospital of Chengde Medical College, Hebei, China
| | - Jing Yan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China; Department of Nutrition, the Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bingqing Li
- Department of Gastroenterology and Hepatology, The Affiliated Hospital of Chengde Medical College, Hebei, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| |
Collapse
|
5
|
Wagner W, Sobierajska K, Pułaski Ł, Stasiak A, Ciszewski WM. Whole grain metabolite 3,5-dihydroxybenzoic acid is a beneficial nutritional molecule with the feature of a double-edged sword in human health: a critical review and dietary considerations. Crit Rev Food Sci Nutr 2023; 64:8786-8804. [PMID: 37096487 DOI: 10.1080/10408398.2023.2203762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Nonprocessed foodstuffs of plant origin, especially whole-grain cereals, are considered to be health-promoting components of the human diet. While most of their well-studied effects derive from their high fiber content and low glycemic index, the presence of underrated phenolic phytonutrients has recently been brought to the attention of nutritionists. In this review, we report and discuss findings on the sources and bioactivities of 3,5-dihydroxybenzoic acid (3,5-DHBA), which is both a direct dietary component (found, e.g., in apples) and, more importantly, a crucial metabolite of whole-grain cereal-derived alkylresorcinols (ARs). 3,5-DHBA is a recently described exogenous agonist of the HCAR1/GPR81 receptor. We concentrate on the HCAR1-mediated effects of 3,5-DHBA in the nervous system, on the maintenance of cell stemness, regulation of carcinogenesis, and response to anticancer therapy. Unexpectedly, malignant tumors take advantage of HCAR1 expression to sense 3,5-DHBA to support their growth. Thus, there is an urgent need to fully identify the role of whole-grain-derived 3,5-DHBA during anticancer therapy and its contribution in the regulation of vital organs of the body via its specific HCAR1 receptor. We discuss here in detail the possible consequences of the modulatory capabilities of 3,5-DHBA in physiological and pathological conditions in humans.
Collapse
Affiliation(s)
- Waldemar Wagner
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | | | - Łukasz Pułaski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Anna Stasiak
- Department of Hormone Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Wojciech M Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Oh KK, Yoon SJ, Lee SB, Lee SY, Gupta H, Ganesan R, Sharma SP, Won SM, Jeong JJ, Kim DJ, Suk KT. The convergent application of metabolites from Avena sativa and gut microbiota to ameliorate non-alcoholic fatty liver disease: a network pharmacology study. J Transl Med 2023; 21:263. [PMID: 37069607 PMCID: PMC10111676 DOI: 10.1186/s12967-023-04122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a serious public health issue globally, currently, the treatment of NAFLD lies still in the labyrinth. In the inchoate stage, the combinatorial application of food regimen and favorable gut microbiota (GM) are considered as an alternative therapeutic. Accordingly, we integrated secondary metabolites (SMs) from GM and Avena sativa (AS) known as potent dietary grain to identify the combinatorial efficacy through network pharmacology. METHODS We browsed the SMs of AS via Natural Product Activity & Species Source (NPASS) database and SMs of GM were retrieved by gutMGene database. Then, specific intersecting targets were identified from targets related to SMs of AS and GM. The final targets were selected on NAFLD-related targets, which was considered as crucial targets. The protein-protein interaction (PPI) networks and bubble chart analysis to identify a hub target and a key signaling pathway were conducted, respectively. In parallel, we analyzed the relationship of GM or AS─a key signaling pathway─targets─SMs (GASTM) by merging the five components via RPackage. We identified key SMs on a key signaling pathway via molecular docking assay (MDA). Finally, the identified key SMs were verified the physicochemical properties and toxicity in silico platform. RESULTS The final 16 targets were regarded as critical proteins against NAFLD, and Vascular Endothelial Growth Factor A (VEGFA) was a key target in PPI network analysis. The PI3K-Akt signaling pathway was the uppermost mechanism associated with VEGFA as an antagonistic mode. GASTM networks represented 122 nodes (60 GM, AS, PI3K-Akt signaling pathway, 4 targets, and 56 SMs) and 154 edges. The VEGFA-myricetin, or quercetin, GSK3B-myricetin, IL2-diosgenin complexes formed the most stable conformation, the three ligands were derived from GM. Conversely, NR4A1-vestitol formed stable conformation with the highest affinity, and the vestitol was obtained from AS. The given four SMs were no hurdles to develop into drugs devoid of its toxicity. CONCLUSION In conclusion, we show that combinatorial application of AS and GM might be exerted to the potent synergistic effects against NAFLD, dampening PI3K-Akt signaling pathway. This work provides the importance of dietary strategy and beneficial GM on NAFLD, a data mining basis for further explicating the SMs and pharmacological mechanisms of combinatorial application (AS and GM) against NAFLD.
Collapse
Affiliation(s)
- Ki-Kwang Oh
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Sang-Jun Yoon
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Su-Been Lee
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Sang Youn Lee
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Satya Priya Sharma
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Sung-Min Won
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Jin-Ju Jeong
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Ki-Tae Suk
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea.
| |
Collapse
|
7
|
Zhao Y, Zhong X, Yan J, Sun C, Zhao X, Wang X. Potential roles of gut microbes in biotransformation of natural products: An overview. Front Microbiol 2022; 13:956378. [PMID: 36246222 PMCID: PMC9560768 DOI: 10.3389/fmicb.2022.956378] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Natural products have been extensively applied in clinical practice, characterized by multi-component and multi-target, many pharmacodynamic substances, complex action mechanisms, and various physiological activities. For the oral administration of natural products, the gut microbiota and clinical efficacy are closely related, but this relationship remains unclear. Gut microbes play an important role in the transformation and utilization of natural products caused by the diversity of enzyme systems. Effective components such as flavonoids, alkaloids, lignans, and phenols cannot be metabolized directly through human digestive enzymes but can be transformed by enzymes produced by gut microorganisms and then utilized. Therefore, the focus is paid to the metabolism of natural products through the gut microbiota. In the present study, we systematically reviewed the studies about gut microbiota and their effect on the biotransformation of various components of natural products and highlighted the involved common bacteria, reaction types, pharmacological actions, and research methods. This study aims to provide theoretical support for the clinical application in the prevention and treatment of diseases and provide new ideas for studying natural products based on gut biotransformation.
Collapse
Affiliation(s)
- Yucui Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junyuan Yan
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Congying Sun
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xin Zhao,
| | - Xiaoying Wang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Xiaoying Wang,
| |
Collapse
|
8
|
Chen J, Li G, Sun C, Peng F, Yu L, Chen Y, Tan Y, Cao X, Tang Y, Xie X, Peng C. Chemistry, pharmacokinetics, pharmacological activities, and toxicity of Quercitrin. Phytother Res 2022; 36:1545-1575. [PMID: 35253930 DOI: 10.1002/ptr.7397] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/20/2022]
Abstract
Quercitrin is a naturally available type of flavonoid that commonly functions as the dietary ingredient and supplement. So far, a wide spectrum of bioactivities of quercitrin have been revealed, including antioxidative stress, antiinflammation, anti-microorganisms, immunomodulation, analgesia, wound healing, and vasodilation. Based on these various pharmacological activities, increasing studies have focused on the potency of quercitrin in diverse diseases in recent years, such as bone metabolic diseases, gastrointestinal diseases, cardiovascular and cerebrovascular diseases, and others. In this paper, by collecting and summarizing publications from the recent years, the natural sources, pharmacological activities and roles in various diseases, pharmacokinetics, structure-activity relationship, as well as the toxicity of quercitrin were systematically reviewed. In addition, the underlying molecular mechanisms of quercitrin in treating related diseases, the dose-effect relationships, and the novel preparations were discussed on the purpose of broadening the application prospect of quercitrin as functional food and providing reference for its clinical application. Notably, clinical studies of quercitrin are insufficient at present, further high-quality studies are needed to firmly establish the clinical efficacy of quercitrin.
Collapse
Affiliation(s)
- Junren Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gangmin Li
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Sun
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Lei Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunli Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, Guangxi University of Traditional Chinese Medicine, Guangxi, China
| | - Xiaofang Xie
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Xia H. Extensive metabolism of flavonoids relevant to their potential efficacy on Alzheimer's disease. Drug Metab Rev 2021; 53:563-591. [PMID: 34491868 DOI: 10.1080/03602532.2021.1977316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder, the incidence of which is climbing with ever-growing aged population, but no cure is hitherto available. The epidemiological studies unveiled that chronic intake of flavonoids was negatively associated with AD risk. Flavonoids, a family of natural polyphenols widely distributed in human daily diets, were readily conjugated by phase II drug metabolizing enzymes after absorption in vivo, and glucuronidation could occur in 1 min following intravenous administration. Recently, as many as 191 metabolites were obtained after intragastric administration of a single flavonoid, indicating that other bioactive metabolites, besides conjugates, might be formed and account for the contradiction between efficacy of flavonoids in human or animal models and low systematic exposure of flavonoid glycosides or aglycones. In this review, metabolism of complete 68 flavonoid monomers potential for AD treatment, grouped in flavonoid O-glycosides, flavonoid aglycones, flavonoid C-glycosides, flavonoid dimers, flavonolignans and prenylated flavonoids according to their common structural elements, respectively, has been systematically retrospected, summarized and discussed, including their unequivocally identified metabolites, metabolic interconversions, metabolic locations, metabolic sites (regio- or stereo-selectivity), primarily involved metabolic enzymes or intestinal bacteria, and interspecies correlations or differences in metabolism, and their bioactive metabolites and the underlying mechanism to reverse AD pathology were also reviewed, providing whole perspective about advances on extensive metabolism of diverse potent flavonoids in vivo and in vitro up to date and aiming at elucidation of mechanism of actions of flavonoids on AD or other central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Hongjun Xia
- Medical College, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
10
|
Lu Y, Li N, Zhu X, Pan J, Wang Y, Lan Y, Li Y, Wang A, Sun J, Liu C. Comparative analysis of excretion of six major compounds of Polygonum orientale L. extract in urine, feces and bile under physiological and myocardial ischemia conditions in rats using UPLC-MS/MS. Biomed Chromatogr 2021; 35:e5174. [PMID: 33998022 DOI: 10.1002/bmc.5174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/25/2021] [Accepted: 04/19/2021] [Indexed: 11/07/2022]
Abstract
Polygonum orientale L. is a traditional Chinese medicine having extensive pharmacological activities including antimyocardial ischemia (MI) injury properties. Isoorientin, orientin, vitexin, quercitrin, astragalin and protocatechuic acid are the main compounds in P. orientale extract. The aim of this study was to establish an ultra-performance liquid chromatography-tandem mass spectrometry method for the determination of the content of these compounds in urine, feces and bile samples simultaneously and application of the method in a comparative excretion study in normal and MI model rats after oral administration of P. orientale extract. Chromatographic seperation was conducted on an Agilent Eclipse Plus C18 column with the mobile phase consisting of 0.1% formic acid-acetonitrile and 0.1% formic acid-water. Negative ion multiple reaction monitoring mode was used for quantification. The six compounds had good linearity (r ≥ 0.9921) and acceptable accuracy ranging from 10.10 to -5.82% The relative standard deviations of within-day precision and inter-day precision were <10.45 and 13.44%, respectively. The extraction recovery of the six analytes ranged from 80.31 to 101.47% and the matrix effect was 82.56-102.88%, indicating that the preparations of sample collected form urine, feces and bile were stable throughout analysis. The excretion amount of the six analytes increased in both normal and MI model rats' urine, feces and bile in a 24 h period and became stable between 36 and 48 h after administration. The total excretion rate of six compounds was <5% in urine, feces and bile of normal and MI model rats. The excretion peak period for all compounds in MI rats was slower than that in normal rats. This excretion study provides insights for further application and research on P. orientale.
Collapse
Affiliation(s)
- Yuan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Na Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Xiaoqin Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Jie Pan
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Yonglin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Yanyu Lan
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Aimin Wang
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Chunhua Liu
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| |
Collapse
|
11
|
Tang XY, Gao MX, Xiao HH, Dai ZQ, Yao ZH, Dai Y, Yao XS. Effects of Xian-Ling-Gu-Bao capsule on the gut microbiota in ovariectomized rats: Metabolism and modulation. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1176:122771. [PMID: 34058528 DOI: 10.1016/j.jchromb.2021.122771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/27/2020] [Accepted: 05/11/2021] [Indexed: 01/28/2023]
Abstract
Xian-Ling-Gu-Bao capsule (XLGB) has been proven to prevent and treat osteoporosis. However, as a long-term oral formula, XLGB's effects on the metabolic capacity, structure and function of gut microbiota have yet to be elucidated in ovariectomized (OVX) rats. Our objectives were to evaluate the capacity of gut microbiota for metabolizing XLGB ingredients and to assess the effect of this prescription on gut microbiota. Herein, an integrated analysis that combined ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and ultrahigh-performance liquid chromatography tandem triple quadrupole mass spectrometry (UPLC-TQD-MS) was conducted to determine the metabolic capacity of gut microbiota. The effects of XLGB on gut microbiota were explored by metagenomic sequencing in OVX rats. Fecal samples from each group were collected after intragastric administration for three months. In total, 64 biotransformation products were fully characterized with rat gut microbiota from the OVX group and the XLGB group. The deglycosylation reaction was the main biotransformation pathway in core structures in the group that was incubated with XLGB. Compared with the OVX group, different biotransformation products and pathways of the XLGB group after incubation for 2 h and 8 h were described. After three months of feeding with XLGB, the domesticated gut microbiota was conducive to the production of active absorbed components via deglycosylation, such as icaritin, psoralen and isopsoralen. Comparisons of the gut microbiota of the OVX and XLGB groups showed differences in the relative abundances of the two dominant bacterial divisions, namely, Firmicutes and Bacteroidetes. The proportion of Firmicutes was significantly lower and that of Bacteroidetes was significantly higher in the XLGB group. This result demonstrated that XLGB could provide a basis for the treatment of osteoporosis by regulating lipid and bile acid metabolism. In addition, the increase in Lactobacillus, Bacteroides and Prevotella could be an important factor that led to easier production of active absorbed aglycones in the XLGB group. Our observation provided further evidence of the importance of gut microbiota in the metabolism and potential activity of XLGB.
Collapse
Affiliation(s)
- Xi-Yang Tang
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Meng-Xue Gao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, PR China
| | - Zi-Qin Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Zhi-Hong Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Yi Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| | - Xin-Sheng Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
12
|
Amirullah NA, Zainal Abidin N, Abdullah N, Manickam S. Application of ultrasound towards improving the composition of phenolic compounds and enhancing in vitro bioactivities of Pleurotus pulmonarius (Fr.) Quél extracts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2020.101881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Yan Y, Fu C, Cui X, Pei X, Li A, Qin X, Du C, Du H. Metabolic profile and underlying antioxidant improvement of Ziziphi Spinosae Folium by human intestinal bacteria. Food Chem 2020; 320:126651. [DOI: 10.1016/j.foodchem.2020.126651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
|
14
|
Cheng X, Zhang Q, Li Z, Dong C, Jiang S, Sun YA, Wang G. Determination of behavior of catalpol hexapropionate in simulated gastric conditions by UPLC-ESI-HRMS. Sci Rep 2020; 10:11185. [PMID: 32636447 PMCID: PMC7341753 DOI: 10.1038/s41598-020-68056-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/15/2020] [Indexed: 11/09/2022] Open
Abstract
Catalpol hexapropionate (CP-6) was designed and synthesized as anti-aging drug. In order to investigate the behavior of CP-6 in simulated gastric juice, ultra-high performance liquid chromatography-electrospray ionization-high resolution mass spectrometry was used to determinate the components produced in simulated gastric conditions. Six metabolites were identified with the possible metabolic processes proposed. Hydrolysis may be the main metabolic pathways. The relative contents of CP-6 and its metabolites were determined using their extractive ion chromatograms. The results show that the relative content of CP-6 is rapidly decreased about 15% during the first 0.5 h and generally stable after 0.5 h. The mainly produced metabolites are catalpol penta-propionate (CP-5), catalpol and a spot of catalpol tetra-propionate (CP-4), catalpol tri-propionate (CP-3), catalpol dipropionate (CP-2) and catalpol propionate (CP-1). The metabolitic process of CP-6 may be an hydrolysis under acid conditions. The research results can provide useful information for development and utilization of CP-6 as a pharmaceutical preparation.
Collapse
Affiliation(s)
- Xiaodong Cheng
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Qiuxia Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
- School of Chemical and Environmental Engineering, Pingdingshan University, Pingdingshan, China
| | - Zhenxing Li
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Chunhong Dong
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Shiqing Jiang
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Yu-an Sun
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Guoqing Wang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
15
|
Simultaneous determination of four flavonoids in rat plasma after oral administration of Malus hupehensis (Pamp.) Rehd. extracts by UPLC‐MS/MS and its application to a pharmacokinetics study. J Pharm Biomed Anal 2020; 177:112869. [DOI: 10.1016/j.jpba.2019.112869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/11/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
|
16
|
Plant-Derived Anticancer Agents: Lessons from the Pharmacology of Geniposide and Its Aglycone, Genipin. Biomedicines 2018; 6:biomedicines6020039. [PMID: 29587429 PMCID: PMC6027249 DOI: 10.3390/biomedicines6020039] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/24/2022] Open
Abstract
For centuries, plants have been exploited by mankind as sources of numerous cancer chemotherapeutic agents. Good examples of anticancer compounds of clinical significance today include the taxanes (e.g., taxol), vincristine, vinblastine, and the podophyllotoxin analogues that all trace their origin to higher plants. While all these drugs, along with the various other available therapeutic options, brought some relief in cancer management, a real breakthrough or cure has not yet been achieved. This critical review is a reflection on the lessons learnt from decades of research on the iridoid glycoside geniposide and its aglycone, genipin, which are currently used as gold standard reference compounds in cancer studies. Their effects on tumour development (carcinogenesis), cancer cell survival, and death, with particular emphasis on their mechanisms of actions, are discussed. Particular attention is also given to mechanisms related to the dual pro-oxidant and antioxidant effects of these compounds, the mitochondrial mechanism of cancer cell killing through reactive oxygen species (ROS), including that generated through the uncoupling protein-2 (UCP-2), the inflammatory mechanism, and cell cycle regulation. The implications of various studies for the evaluation of glycosidic and aglycone forms of natural products in vitro and in vivo through pharmacokinetic scrutiny are also addressed.
Collapse
|
17
|
A UPLC-MS/MS Method for Simultaneous Determination of Free and Total Forms of a Phenolic Acid and Two Flavonoids in Rat Plasma and Its Application to Comparative Pharmacokinetic Studies of Polygonum capitatum Extract in Rats. Molecules 2017; 22:molecules22030353. [PMID: 28245598 PMCID: PMC6155221 DOI: 10.3390/molecules22030353] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 11/30/2022] Open
Abstract
The principal active constituents of Polygonum capitatum are phenolic acids and flavonoids, such as gallic acid, quercitrin, and quercetin. The aim of this study was to develop and validate a method to determine the three constituents and the corresponding conjugated metabolites of Polygonum capitatum in vivo and to conduct pharmacokinetic studies on the herb, a well-known Miao medicinal plant in China. Gallic acid, quercitrin, and quercetin were analysed by ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). Protein precipitation in plasma samples was performed using methanol. For the determination of total forms of analytes, an additional process of hydrolysis was conducted using β-glucuronidase and sulphatase. The analytes were separated on a BEH C18 column (50 mm × 2.1 mm; i.d., 1.7 μm) and quantified by multiple reaction monitoring (MRM) mode. The linear regression showed high linearity over a 729-fold dynamic range for the three analytes. The relative standard deviations of intra- and inter-day measurements were less than 9.5%, and the method was accurate to within −11.1% to 12.5%. The extraction recoveries for gallic acid, quercitrin, and quercetin were 94.3%–98.8%, 88.9%–98.8%, and 95.7%–98.5%, respectively. All samples were stable under short- and long-term storage conditions. The validated method was successfully applied to a comparative pharmacokinetic study of gallic acid, quercitrin, and quercetin in their free and total forms in rat plasma. The study revealed significantly higher exposure of the constituents in total forms for gallic acid and quercetin, while quercitrin was detected mainly in its corresponding free form in vivo. The established method was rapid and sensitive for the simultaneous quantification of free and total forms of multiple constituents of Polygonum capitatum extract in plasma.
Collapse
|
18
|
Dong X, Wang R, Zhou X, Li P, Yang H. Current mass spectrometry approaches and challenges for the bioanalysis of traditional Chinese medicines. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1026:15-26. [DOI: 10.1016/j.jchromb.2015.11.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 12/11/2022]
|
19
|
Han F, Li Y, Mao X, Xu R, Yin R. Characterization of chemical constituents in Rhodiola Crenulate by high-performance liquid chromatography coupled with Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS). JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:363-368. [PMID: 27194521 DOI: 10.1002/jms.3764] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/06/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
In this work, an approach using high-performance liquid chromatography coupled with diode-array detection and Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS) for the identification and profiling of chemical constituents in Rhodiola crenulata was developed for the first time. The chromatographic separation was achieved on an Inertsil ODS-3 column (150 mm × 4.6 mm,3 µm) using a gradient elution program, and the detection was performed on a Bruker Solarix 7.0 T mass spectrometer equipped with electrospray ionization source in both positive and negative modes. Under the optimized conditions, a total of 48 chemical compounds, including 26 alcohols and their glycosides, 12 flavonoids and their glycosides, 5 flavanols and gallic acid derivatives, 4 organic acids and 1 cyanogenic glycoside were identified or tentatively characterized. The results indicated that the developed HPLC-FT-ICR MS method with ultra-high sensitivity and resolution is suitable for identifying and characterizing the chemical constituents in R. crenulata. And it provides a helpful chemical basis for further research on R. crenulata. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Yanting Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Xinjuan Mao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Rui Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| | - Ran Yin
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, China
| |
Collapse
|
20
|
Ahrén IL, Xu J, Önning G, Olsson C, Ahrné S, Molin G. Antihypertensive activity of blueberries fermented by Lactobacillus plantarum DSM 15313 and effects on the gut microbiota in healthy rats. Clin Nutr 2015; 34:719-26. [DOI: 10.1016/j.clnu.2014.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/12/2014] [Accepted: 08/18/2014] [Indexed: 02/05/2023]
|
21
|
Sung B, Chung JW, Bae HR, Choi JS, Kim CM, Kim ND. Humulus japonicus extract exhibits antioxidative and anti-aging effects via modulation of the AMPK-SIRT1 pathway. Exp Ther Med 2015; 9:1819-1826. [PMID: 26136899 DOI: 10.3892/etm.2015.2302] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/28/2015] [Indexed: 12/30/2022] Open
Abstract
The perennial herb, Humulus japonicus, has been previously described as possessing potential antituberculosis and anti-inflammatory properties. In the present study, the anti-aging activity of ethanol extracts from the leaves of H. japonicus (HJE) was evaluated in yeast and human fibroblast cells. In addition, the antioxidant activity of HJE was analyzed using free radical scavenging assays. Furthermore, the mechanism underlying the hypothesized HJE-associated extension of lifespan was investigated, and the results indicated that HJE was able to extend the lifespan of yeast cells. Further experiments demonstrated that HJE upregulated the longevity-associated proteins, sirtuin 1 and AMP-activated protein kinase, and effectively inhibited the generation of reactive oxygen species (ROS). In addition, the antioxidative potential of the active constituents of HJE, including luteolin, luteolin 7-glycoside, quercetin and quercitrin, was evaluated and the results demonstrated that these flavonoids were able to scavenge ROS in cell-free and intracellular systems. In summary, the results revealed that HJE possessed the potential for antioxidative activity; however, further in vivo investigations are required with the aim of developing safe, high-efficacy anti-aging agents.
Collapse
Affiliation(s)
- Bokyung Sung
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| | - Ji Won Chung
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| | - Ha Ram Bae
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| | - Jae Sue Choi
- Faculty of Food Science and Biotechnology, Pukyong National University, Busan 608-737, Republic of Korea
| | - Cheol Min Kim
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 626-770, Republic of Korea
| | - Nam Deuk Kim
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|
22
|
Zhao L, Li F. UHPLC-MS strategies and applications for bioanalyses related to pharmacokinetics and drug metabolism. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
23
|
Sak K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn Rev 2014; 8:122-46. [PMID: 25125885 PMCID: PMC4127821 DOI: 10.4103/0973-7847.134247] [Citation(s) in RCA: 297] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/27/2014] [Accepted: 06/10/2014] [Indexed: 02/06/2023] Open
Abstract
Flavonoids are ubiquitous in nature. They are also in food, providing an essential link between diet and prevention of chronic diseases including cancer. Anticancer effects of these polyphenols depend on several factors: Their chemical structure and concentration, and also on the type of cancer. Malignant cells from different tissues reveal somewhat different sensitivity toward flavonoids and, therefore, the preferences of the most common dietary flavonoids to various human cancer types are analyzed in this review. While luteolin and kaempferol can be considered as promising candidate agents for treatment of gastric and ovarian cancers, respectively, apigenin, chrysin, and luteolin have good perspectives as potent antitumor agents for cervical cancer; cells from main sites of flavonoid metabolism (colon and liver) reveal rather large fluctuations in anticancer activity probably due to exposure to various metabolites with different activities. Anticancer effect of flavonoids toward blood cancer cells depend on their myeloid, lymphoid, or erythroid origin; cytotoxic effects of flavonoids on breast and prostate cancer cells are highly related to the expression of hormone receptors. Different flavonoids are often preferentially present in certain food items, and knowledge about the malignant tissue-specific anticancer effects of flavonoids could be purposely applied both in chemoprevention as well as in cancer treatment.
Collapse
Affiliation(s)
- Katrin Sak
- Non Government Organization Praeventio, Tartu, Estonia
| |
Collapse
|
24
|
Studies of the microbial metabolism of flavonoids extracted from the leaves of Diospyros kaki by intestinal bacteria. Arch Pharm Res 2014; 38:614-9. [DOI: 10.1007/s12272-014-0421-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/09/2014] [Indexed: 01/10/2023]
|
25
|
Juurlink BHJ, Azouz HJ, Aldalati AMZ, AlTinawi BMH, Ganguly P. Hydroxybenzoic acid isomers and the cardiovascular system. Nutr J 2014; 13:63. [PMID: 24943896 PMCID: PMC4074389 DOI: 10.1186/1475-2891-13-63] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/12/2014] [Indexed: 12/15/2022] Open
Abstract
Today we are beginning to understand how phytochemicals can influence metabolism, cellular signaling and gene expression. The hydroxybenzoic acids are related to salicylic acid and salicin, the first compounds isolated that have a pharmacological activity. In this review we examine how a number of hydroxyphenolics have the potential to ameliorate cardiovascular problems related to aging such as hypertension, atherosclerosis and dyslipidemia. The compounds focused upon include 2,3-dihydroxybenzoic acid (Pyrocatechuic acid), 2,5-dihydroxybenzoic acid (Gentisic acid), 3,4-dihydroxybenzoic acid (Protocatechuic acid), 3,5-dihydroxybenzoic acid (α-Resorcylic acid) and 3-monohydroxybenzoic acid. The latter two compounds activate the hydroxycarboxylic acid receptors with a consequence there is a reduction in adipocyte lipolysis with potential improvements of blood lipid profiles. Several of the other compounds can activate the Nrf2 signaling pathway that increases the expression of antioxidant enzymes, thereby decreasing oxidative stress and associated problems such as endothelial dysfunction that leads to hypertension as well as decreasing generalized inflammation that can lead to problems such as atherosclerosis. It has been known for many years that increased consumption of fruits and vegetables promotes health. We are beginning to understand how specific phytochemicals are responsible for such therapeutic effects. Hippocrates’ dictum of ‘Let food be your medicine and medicine your food’ can now be experimentally tested and the results of such experiments will enhance the ability of nutritionists to devise specific health-promoting diets.
Collapse
Affiliation(s)
| | | | | | | | - Paul Ganguly
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|