1
|
Al-Dhalimy AMB, Salim HM, Shather AH, Naser IH, Hizam MM, Alshujery MK. The pathological and therapeutically role of mesenchymal stem cell (MSC)-derived exosome in degenerative diseases; Particular focus on LncRNA and microRNA. Pathol Res Pract 2023; 250:154778. [PMID: 37683391 DOI: 10.1016/j.prp.2023.154778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023]
Abstract
By releasing exosomes, which create the ideal milieu for the resolution of inflammation, mesenchymal stem cells (MSCs) enhance tissue healing and have strong immunomodulatory capabilities. MSCs-derived exosome also can affect tumor progress by a myriad of mechanisms. Exosomes function as a cell-cell communication tool to affect cellular activity in recipient cells and include an array of efficient bioactive chemicals. Understanding the fundamental biology of inflammation ablation, tissue homeostasis, and the creation of therapeutic strategies is particularly interested in the horizontal transfer of exosomal long non-coding RNAs (lncRNA) and microRNAs (miRNAs) to recipient cells, where they affect target gene expression. Herein, we propose an exosomal lncRNA and microRNA profile in neurological, renal, cardiac, lung, and liver diseases as well as skin wounds and arthritis.
Collapse
Affiliation(s)
| | - Haitham Mukhlif Salim
- Ministry of Health, Directorat of the Public Health, Health Promotion Departments, Baghdad, Iraq
| | - A H Shather
- Department of Computer Engineering Technology, Al Kitab University, Altun Kopru, Kirkuk 00964, Iraq
| | - Israa Habeeb Naser
- Medical Laboratories Techniques Department, AL-Mustaqbal University, 51001 Hillah, Babil, Iraq
| | - Manar Mohammed Hizam
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | |
Collapse
|
2
|
Mansouri-Kivaj N, Nazari A, Esfandiari F, Shekari F, Ghaffari M, Pakzad M, Baharvand H. Homogenous subpopulation of human mesenchymal stem cells and their extracellular vesicles restore function of endometrium in an experimental rat model of Asherman syndrome. Stem Cell Res Ther 2023; 14:61. [PMID: 37013655 PMCID: PMC10071639 DOI: 10.1186/s13287-023-03279-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Asherman syndrome (AS), or intrauterine adhesions, is a main cause of infertility in reproductive age women after endometrial injury. Mesenchymal stem cells (MSCs) and their extracellular vesicles (EVs) are promising candidates for therapies that repair damaged endometria. However, concerns about their efficacy are attributed to heterogeneity of the cell populations and EVs. A homogenous population of MSCs and effective EV subpopulation are needed to develop potentially promising therapeutic options in regenerative medicine. METHODS AS model was induced by mechanical injury in adult rat uteri. Then, the animals were treated immediately with homogeneous population of human bone marrow-derived clonal MSCs (cMSCs), heterogenous parental MSCs (hMSCs), or cMSCs-derived EV subpopulations (EV20K and EV110K). The animals were sacrificed two weeks post-treatment and uterine horns were collected. The sections were taken, and hematoxylin-eosin was used to examine the repair of endometrial structure. Fibrosis was measured by Masson's trichrome staining and α-SMA and cell proliferation by Ki67 immunostaining. The function of the uteri was explored by the result of mating trial test. Expression changes of TNFα, IL-10, VEGF, and LIF were assayed by ELISA. RESULTS Histological analysis indicated fewer glands, thinner endometria, increased fibrotic areas, and decreased proliferation of epithelial and stroma of the uteri in the treated compared with intact and sham-operated animals. However, these parameters improved after transplantation of both types of cMSCs and hMSCs and/or both cryopreserved EVs subpopulations. The cMSCs demonstrated more successful implantation of the embryos in comparison with hMSCs. The tracing of the transplanted cMSCs and EVs showed that they migrated and localized in the uteri. Protein expression analysis results demonstrated downregulation of proinflammatory factor TNFα and upregulation of anti-inflammatory cytokine IL-10, and endometrial receptivity cytokines VEGF and LIF in cMSC- and EV20K-treated animals. CONCLUSION Transplantation of MSCs and EVs contributed to endometrial repair and restoration of reproductive function, likely by inhibition of excessive fibrosis and inflammation, enhancement of endometrial cell proliferation, and regulation of molecular markers related to endometrial receptivity. Compared to classical hMSCs, cMSCs were more efficient than hMSCs in restoration of reproductive function. Moreover, EV20K is more cost-effective and feasible for prevention of AS in comparison with conventional EVs (EV110K).
Collapse
Affiliation(s)
- Nahid Mansouri-Kivaj
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Abdoreza Nazari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marefat Ghaffari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Pakzad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
3
|
Huang Q, Cheng X, Luo C, Yang S, Li S, Wang B, Yuan X, Yang Y, Wen Y, Liu R, Tang L, Sun H. Placental chorionic plate-derived mesenchymal stem cells ameliorate severe acute pancreatitis by regulating macrophage polarization via secreting TSG-6. Stem Cell Res Ther 2021; 12:337. [PMID: 34112260 PMCID: PMC8193892 DOI: 10.1186/s13287-021-02411-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) hold promising potential to treat systemic inflammatory diseases including severe acute pancreatitis (SAP). In our previous study, placental chorionic plate-derived MSCs (CP-MSCs) were found to possess superior immunoregulatory capability. However, the therapeutic efficacy of CP-MSCs on SAP and their underlying mechanism remain unclear. METHODS The survival and colonization of exogenous CP-MSCs were observed by bioluminescence imaging and CM-Dil labeling in rodent animal models of SAP. The therapeutic efficacy of CP-MSCs on SAP rats was evaluated by pathology scores, the levels of pancreatitis biomarkers as well as the levels of inflammatory factors in the pancreas and serum. The potential protective mechanism of CP-MSCs in SAP rats was explored by selectively depleting M1 or M2 phenotype macrophages and knocking down the expression of TSG-6. RESULTS Exogenous CP-MSCs could survive and colonize in the injured tissue of SAP such as the lung, pancreas, intestine, and liver. Meanwhile, we found that CP-MSCs alleviated pancreatic injury and systemic inflammation by inducing macrophages to polarize from M1 to M2 in SAP rats. Furthermore, our data suggested that CP-MSCs induced M2 polarization of macrophages by secreting TSG-6, and TSG-6 played a vital role in alleviating pancreatic injury and systemic inflammation in SAP rats. Notably, we found that a high inflammation environment could stimulate CP-MSCs to secrete TSG-6. CONCLUSION Exogenous CP-MSCs tended to colonize in the injured tissue and reduced pancreatic injury and systemic inflammation in SAP rats through inducing M2 polarization of macrophages by secreting TSG-6. Our study provides a new treatment strategy for SAP and initially explains the potential protective mechanism of CP-MSCs on SAP rats.
Collapse
Affiliation(s)
- Qilin Huang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610083, China.,Tianjin Medical University, Tianjin, 300070, China
| | - Xiumei Cheng
- XinDu Hospital of Traditional Chinese Medicine & Chengdu 2nd Hospital of Traditional Chinese Medicine, Chengdu, 610500, China
| | - Chen Luo
- Division of Hepatobiliary Pancreatic Surgery, Panzhihua Central Hospital, Sichuan Province, Panzhihua, 617017, China
| | - Shuxu Yang
- Tianjin Medical University, Tianjin, 300070, China
| | - Shuai Li
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Bing Wang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Xiaohui Yuan
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Yi Yang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Yi Wen
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Ruohong Liu
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Lijun Tang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610083, China.
| | - Hongyu Sun
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610083, China. .,Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, 610031, China.
| |
Collapse
|
4
|
Ma Z, Zhou J, Yang T, Xie W, Song G, Song Z, Chen J. Mesenchymal stromal cell therapy for pancreatitis: Progress and challenges. Med Res Rev 2021; 41:2474-2488. [PMID: 33840113 DOI: 10.1002/med.21801] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/17/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
Pancreatitis is a common gastrointestinal disease with no effective therapeutic options, particularly for cases of severe acute and chronic pancreatitis (CP). Mesenchymal stromal cells (MSCs) are multipotent cells with diverse biological properties, including directional migration, paracrine, immunosuppressive, and antiinflammatory effects, which are considered an ideal candidate cell type for repairing tissue damage caused by various pathogenies. Several researchers have reported significant therapeutic efficacy of MSCs in animal models of acute and CP. However, the specific underlying mechanisms are yet to be clarified and clinical application of MSCs as pancreatitis therapy has rarely been reported. This review mainly focuses on the potential and challenges in clinical application of MSCs for treatment of acute and CP, along with discussion of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Zhilong Ma
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia Zhou
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingsong Yang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wangcheng Xie
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guodong Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ji Chen
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Navabi R, Negahdari B, Hajizadeh-Saffar E, Hajinasrollah M, Jenab Y, Rabbani S, Pakzad M, Hassani SN, Hezavehei M, Jafari-Atrabi M, Tahamtani Y, Baharvand H. Combined therapy of mesenchymal stem cells with a GLP-1 receptor agonist, liraglutide, on an inflammatory-mediated diabetic non-human primate model. Life Sci 2021; 276:119374. [PMID: 33745896 DOI: 10.1016/j.lfs.2021.119374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
AIMS Immunomodulation concurrent with the promotion of β-cell function is a strategy used to develop innovative therapies for type 1 diabetes (T1D). Here, we assessed the therapeutic potential of co-administration of human clonal mesenchymal stem (stromal) cells (hBM-cMSCs) and liraglutide as a glucagon-like peptide-1 agonist in a non-human primate model with streptozotocin (STZ)-induced diabetes. MAIN METHODS Diabetes was induced through intravenous (i.v.) multiple low-dose (MLD) infusions of STZ at a dose of 30 mg/kg body weight (b.w.) for five consecutive days, followed by two booster injections of 35 mg/kg on days 12 and 19. After 90 days, the diabetic animals were randomly allocated to two groups: The combination therapy group (n = 4) received injections of 1.5 × 106 hBM-cMSCs/kg b.w. through celiac artery by angiography on days 91 and 105 and daily subcutaneous injections of liraglutide (up to 1.8 mg/day) until day 160 while vehicle group received phosphate-buffered saline. The monkeys were assessed for functional, immunological, and histological analysis. KEY FINDINGS The combined treatment group had continued reduction in FBG levels up to day 160, which was accompanied by increased b.w., C-peptide, and β-cell function, and decreased HbA1c and fructosamine levels compared to vehicle group. The combined treatment increased Tregs, IL-4, IL-10, and TGF-β1 and decreased IL-6 and IL-1β. Stereological analysis of the pancreatic tissue exhibited more total volume of insulin-secreting islets in the combined treatment group compared to vehicle group. SIGNIFICANCE Our findings demonstrated this combined treatment impaired the clinical symptoms of diabetes in this animal model through immunomodulation and β-cell preservation.
Collapse
Affiliation(s)
- Roghayeh Navabi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ensiyeh Hajizadeh-Saffar
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Diabetes, Obesity, and Metabolism, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mostafa Hajinasrollah
- Animal Core Facility, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Yaser Jenab
- Tehran Heart Center, Tehran University of Medical Science, Tehran, Iran
| | - Shahram Rabbani
- Tehran Heart Center, Tehran University of Medical Science, Tehran, Iran
| | - Mohamad Pakzad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Jafari-Atrabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Yaser Tahamtani
- Department of Diabetes, Obesity, and Metabolism, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
6
|
Chela H, Romana BS, Madabattula M, Albarrak AA, Yousef MH, Samiullah S, Tahan V. Stem cell therapy: a potential for the perils of pancreatitis. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 31:415-424. [PMID: 32721912 DOI: 10.5152/tjg.2020.19143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute and chronic pancreatitis carry a significant disease burden and there is no definite treatment that exists for either. They are associated with local and systemic inflammation and lead to numerous complications. Stem cell therapy has been explored for other disease processes and is a topic of research that has gained momentum with regards to implications for acute and chronic pancreatitis. They not only carry the potential to aid in regeneration but also prevent pancreatic injury as well as injury of other organs and hence the resultant complications. Stem cells appear to have immunomodulatory properties and clinical potential as evidenced by numerous studies in animal models. This review article discusses the types of stem cells commonly used and the properties that show promise in the field of pancreatitis.
Collapse
Affiliation(s)
- Harleen Chela
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, USA
| | - Bhupinder S Romana
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, USA
| | - Markandeya Madabattula
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, USA
| | - Abdulmajeed A Albarrak
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, USA
| | - Mohamad H Yousef
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, USA
| | - Sami Samiullah
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, USA
| | - Veysel Tahan
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
7
|
Stavely R, Nurgali K. The emerging antioxidant paradigm of mesenchymal stem cell therapy. Stem Cells Transl Med 2020; 9:985-1006. [PMID: 32497410 PMCID: PMC7445024 DOI: 10.1002/sctm.19-0446] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/05/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (multipotent stromal cells; MSCs) have been under investigation for the treatment of diverse diseases, with many promising outcomes achieved in animal models and clinical trials. The biological activity of MSC therapies has not been fully resolved which is critical to rationalizing their use and developing strategies to enhance treatment efficacy. Different paradigms have been constructed to explain their mechanism of action, including tissue regeneration, trophic/anti-inflammatory secretion, and immunomodulation. MSCs rarely engraft and differentiate into other cell types after in vivo administration. Furthermore, it is equivocal whether MSCs function via the secretion of many peptide/protein ligands as their therapeutic properties are observed across xenogeneic barriers, which is suggestive of mechanisms involving mediators conserved between species. Oxidative stress is concomitant with cellular injury, inflammation, and dysregulated metabolism which are involved in many pathologies. Growing evidence supports that MSCs exert antioxidant properties in a variety of animal models of disease, which may explain their cytoprotective and anti-inflammatory properties. In this review, evidence of the antioxidant effects of MSCs in in vivo and in vitro models is explored and potential mechanisms of these effects are discussed. These include direct scavenging of free radicals, promoting endogenous antioxidant defenses, immunomodulation via reactive oxygen species suppression, altering mitochondrial bioenergetics, and donating functional mitochondria to damaged cells. Modulation of the redox environment and oxidative stress by MSCs can mediate their anti-inflammatory and cytoprotective properties and may offer an explanation to the diversity in disease models treatable by MSCs and how these mechanisms may be conserved between species.
Collapse
Affiliation(s)
- Rhian Stavely
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Sundar V, Senthil Kumar KA, Manickam V, Ramasamy T. Current trends in pharmacological approaches for treatment and management of acute pancreatitis – a review. J Pharm Pharmacol 2020; 72:761-775. [DOI: 10.1111/jphp.13229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
Abstract
Objectives
Acute pancreatitis (AP) is an inimical disorder associated with overall mortality rates between 10-15%. It is a disorder of the exocrine pancreas which is characterized by local and systemic inflammatory responses primarily driven by oxidative stress and death of pancreatic acinar cells. The severity of AP ranges from mild pancreatic edema with complete recuperative possibilities to serious systemic inflammatory response resulting in peripancreatic/pancreatic necrosis, multiple organ failure, and death.
Key findings
We have retrieved the potential alternative approaches that are developed lately for efficacious treatment of AP from the currently available literature and recently reported experimental studies. This review summarizes the need for alternative approaches and combinatorial treatment strategies to deal with AP based on literature search using specific key words in PubMed and ScienceDirect databases.
Summary
Since AP results from perturbations of multiple signaling pathways, the so called “monotargeted smart drugs” of the past decade is highly unlikely to be effective. Also, the conventional treatment approaches were mainly involved in providing palliative care instead of curing the disease. Hence, many researchers are beginning to focus on developing alternate therapies to treat AP effectively. This review also summarizes the recent trends in the combinatorial approaches available for AP treatment.
Collapse
Affiliation(s)
- Vaishnavi Sundar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | | | - Venkatraman Manickam
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Tamizhselvi Ramasamy
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
9
|
Li HY, He HC, Song JF, Du YF, Guan M, Wu CY. Bone marrow-derived mesenchymal stem cells repair severe acute pancreatitis by secreting miR-181a-5p to target PTEN/Akt/TGF-β1 signaling. Cell Signal 2020; 66:109436. [DOI: 10.1016/j.cellsig.2019.109436] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022]
|
10
|
Zhou Q, Tao X, Xia S, Guo F, Pan C, Xiang H, Shang D. T Lymphocytes: A Promising Immunotherapeutic Target for Pancreatitis and Pancreatic Cancer? Front Oncol 2020; 10:382. [PMID: 32266154 PMCID: PMC7105736 DOI: 10.3389/fonc.2020.00382] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/04/2020] [Indexed: 01/18/2023] Open
Abstract
Pancreatic disorders cause a broad spectrum of clinical diseases, mainly including acute and chronic pancreatitis and pancreatic cancer, and are associated with high global rates of morbidity and mortality. Unfortunately, the pathogenesis of pancreatic disease remains obscure, and there is a lack of specific treatments. T lymphocytes (T cells) play a vital role in the adaptive immune systems of multicellular organisms. During pancreatic disease development, local imbalances in T-cell subsets in inflammatory and tumor environments and the circulation have been observed. Furthermore, agents targeting T cells have been shown to reverse the natural course of pancreatic diseases. In this review, we have discussed the clinical relevance of T-cell alterations as a potential outcome predictor and the underlying mechanisms, as well as the present status of immunotherapy targeting T cells in pancreatitis and neoplasms. The breakthrough findings summarized in this review have important implications for innovative drug development and the prospective use of immunotherapy for pancreatitis and pancreatic cancer.
Collapse
Affiliation(s)
- Qi Zhou
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xufeng Tao
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Shilin Xia
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Chen Pan
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hong Xiang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Hong Xiang
| | - Dong Shang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dong Shang
| |
Collapse
|
11
|
Roch AM, Maatman TK, Cook TG, Wu HH, Merfeld-Clauss S, Traktuev DO, March KL, Zyromski NJ. Therapeutic Use of Adipose-Derived Stromal Cells in a Murine Model of Acute Pancreatitis. J Gastrointest Surg 2020; 24:67-75. [PMID: 31745900 DOI: 10.1007/s11605-019-04411-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/11/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND No specific therapy exists for acute pancreatitis (AP), and current treatment remains entirely supportive. Adipose stem cells (ASCs) have significant immunomodulatory and regenerative activities. We hypothesized that systemic administration of ASCs would mitigate inflammation in AP. METHODS AP was induced in mice by 6 hourly intraperitoneal injections of cerulein. Twenty-four hours after AP induction, mice were randomized into four systemic treatment groups: sham group (no acute pancreatitis), vehicle, human ASCs, and human ASC-conditioned media. Mice were sacrificed at 48 h, and blood and organs were collected and analyzed. Pancreatic injury was quantified histologically using a published score (edema, inflammation, and necrosis). Pancreatic inflammation was also studied by immunohistochemistry and PCR. RESULTS When using IV infusion of Hoechst-labeled ASCs, ASCs were found to localize to inflamed tissues: lungs and pancreas. Mice treated with ASCs had less severe AP, as shown by a significantly decreased histopathology score (edema, inflammation, and necrosis) (p = 0.001). ASCs infusion polarized pancreatic macrophages toward an anti-inflammatory M2 phenotype. ASC-conditioned media reduced pancreatic inflammation similarly to ASCs only, highlighting the importance of ASCs secreted factors in modulating inflammation. CONCLUSION Intravenous delivery of human ASCs markedly reduces pancreatic inflammation in a murine model of AP ASCs which represent an effective therapy for AP.
Collapse
Affiliation(s)
- Alexandra M Roch
- Department of Surgery, Indiana University School of Medicine, 545 Barnhill Drive EH 519, Indianapolis, IN, 46202, USA
| | - Thomas K Maatman
- Department of Surgery, Indiana University School of Medicine, 545 Barnhill Drive EH 519, Indianapolis, IN, 46202, USA
| | - Todd G Cook
- Department of Surgery, Indiana University School of Medicine, 545 Barnhill Drive EH 519, Indianapolis, IN, 46202, USA
| | - Howard H Wu
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephanie Merfeld-Clauss
- Department of Medicine, Division of Cardiovascular Medicine, Center for Regenerative medicine, University of Florida, Gainesville, FL, USA
| | - Dmitry O Traktuev
- Department of Medicine, Division of Cardiovascular Medicine, Center for Regenerative medicine, University of Florida, Gainesville, FL, USA
| | - Keith L March
- Department of Medicine, Division of Cardiovascular Medicine, Center for Regenerative medicine, University of Florida, Gainesville, FL, USA
| | - Nicholas J Zyromski
- Department of Surgery, Indiana University School of Medicine, 545 Barnhill Drive EH 519, Indianapolis, IN, 46202, USA.
| |
Collapse
|
12
|
Chen Q, Zhang Y, Zhu H, Yuan X, Luo X, Wu X, Chen S, Chen Y, Xu J, Issa HA, Zheng Z, Hu J, Yang T. Bone marrow mesenchymal stem cells alleviate the daunorubicin-induced subacute myocardial injury in rats through inhibiting infiltration of T lymphocytes and antigen-presenting cells. Biomed Pharmacother 2019; 121:109157. [PMID: 31731195 DOI: 10.1016/j.biopha.2019.109157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Bone marrow mesenchymal stem cells (BMSCs) have been extensively investigated from a perspective on cardiac regeneration therapy. The current study aimed to investigate the protective effect conferred by BMSCs in subacute myocardial injury, and to identify an appropriate BMSC reinfusion time. METHODS BMSCs were isolated from human bone marrow blood. Daunorubicin (DNR)-induced subacute myocardial models were subsequently established. The rats with DNR-induced subacute myocardial injury were injected with dexrazoxane (DZR) and/or BMSCs at varying time points, after which cardiac function was evaluated by assessing left ventricular ejection fraction (LVEF) and fraction shortening (FS). The myocardial structural changes were analyzed, after which the levels of CD3 and human leukocyte antigen DR (HLA-DR) were examined to further validate the mechanism by which BMSCs could influence subacute myocardial injury. RESULTS BMSCs combined with DZR treatment enhanced the cardiac function of rats with DNR-induced myocardial injury, as reflected by increased LVEF and FS. DNR-induced myocardial injuries were mitigated via the application of BMSCs combined with treatment of DZR, accompanied by diminished infiltration or vacuolization. Moreover, BMSCs were observed to alleviate infiltration of T lymphocyte and antigen-presenting cells, as evidenced by reduced expression of CD3 and HLA-DR. CONCLUSION Taken together, this study demonstrates that BMSCs could protect against DNR-induced myocardial injury, especially in the first three days of DNR administration. BMSCs combined with DZR exert a better therapeutic effect, but there are individual differences.
Collapse
Affiliation(s)
- Qiuru Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350000, PR China
| | - Yuxin Zhang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350000, PR China
| | - Haojie Zhu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350000, PR China
| | - Xiaohong Yuan
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350000, PR China
| | - Xiaofeng Luo
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350000, PR China
| | - Xueqiong Wu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350000, PR China
| | - Shaozhen Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350000, PR China
| | - Yongquan Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350000, PR China
| | - Jingjing Xu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350000, PR China
| | - Hajji Ally Issa
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350000, PR China
| | - Zhihong Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350000, PR China
| | - Jianda Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350000, PR China.
| | - Ting Yang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou 350000, PR China.
| |
Collapse
|
13
|
Ma Z, Song G, Liu D, Qian D, Wang Y, Zhou J, Gong J, Meng H, Zhou B, Yang T, Song Z. N-Acetylcysteine enhances the therapeutic efficacy of bone marrow-derived mesenchymal stem cell transplantation in rats with severe acute pancreatitis. Pancreatology 2019; 19:258-265. [PMID: 30660392 DOI: 10.1016/j.pan.2019.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is a high mortality disease, for which there is a lack of effective therapies. Previous research has demonstrated that bone marrow-derived mesenchymal stem cells (BMSCs), which have immunomodulatory and antioxidant properties, have potential for the treatment of SAP. It remains unclear, however, whether the free radical scavenger N-acetylcysteine (NAC) can enhance the therapeutic efficacy of BMSC transplantation in SAP. In this study, we investigated the effect of combining treatment with NAC and BMSCs in a rat model of SAP. METHODS SAP was induced by injection of sodium taurocholate into the pancreatic duct and, after successful induction of SAP, the rats were treated with BMSCs and NAC, either singly or in combination. RESULTS After 3 days, serum levels of amylase, proinflammatory factors, malondialdehyde, and reactive oxygen species were significantly decreased in animals treated with BMSCs or NAC, compared with vehicle-treated animals. In contrast, total glutathione, superoxide dismutase and catalase were markedly increased after treatment with BMSCs or NAC. However, oxidative stress markers and inflammatory factors were significantly improved in the SAP + BMSCs + NAC group compared with those in the SAP + NAC group and the SAP + BMSCs group. CONCLUSIONS Combined NAC and BMSC therapy was found to alleviate oxidative stress damage to the pancreas and to inhibit the inflammatory response to a significantly greater extent than single therapy with either BMSCs or NAC. Because NAC enhances the therapeutic efficacy of BMSC transplantation in a rat model of SAP, combined therapy may provide a promising new approach for the treatment of SAP.
Collapse
Affiliation(s)
- Zhilong Ma
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guodong Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Dalu Liu
- Shanghai Clinical Medical College of Anhui Medical University, Hefei, 230032, China
| | - Daohai Qian
- Department of Hepatobiliary Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Yuxiang Wang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jia Zhou
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jian Gong
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hongbo Meng
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Bo Zhou
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Tingsong Yang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
14
|
Goodman RR, Jong MK, Davies JE. Concise review: The challenges and opportunities of employing mesenchymal stromal cells in the treatment of acute pancreatitis. Biotechnol Adv 2019; 42:107338. [PMID: 30639517 DOI: 10.1016/j.biotechadv.2019.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 02/08/2023]
Abstract
To date only small animal models have been employed to assess the effect of mesenchymal stromal cell (MSC) therapy on acute pancreatitis (AP), the most common cause of hospitalization for gastrointestinal diseases worldwide. We outline the challenges inherent in the small animal models of AP. We also point to specific benefits afforded by the adoption of larger animal models. The potential for MSC therapeutics in the treatment of AP was recognized over a decade ago. With sharper focus on the form of AP and development of new MSC delivery routes in larger animals, we believe the challenge can be engaged.
Collapse
Affiliation(s)
- Robbie R Goodman
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Canada
| | - Madelaine K Jong
- Faculty of Dentistry, University of Toronto, Toronto M5G 1G6, Canada
| | - John E Davies
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Canada; Faculty of Dentistry, University of Toronto, Toronto M5G 1G6, Canada.
| |
Collapse
|
15
|
Bone marrow-derived mesenchymal stromal cells ameliorate severe acute pancreatitis in rats via hemeoxygenase-1-mediated anti-oxidant and anti-inflammatory effects. Cytotherapy 2018; 21:162-174. [PMID: 30600195 DOI: 10.1016/j.jcyt.2018.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/09/2018] [Accepted: 11/20/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS It has been previously verified that mesenchymal stromal cells (MSCs) have a good therapeutic effect on severe acute pancreatitis (SAP) and the potential for regeneration of damaged pancreatic tissue, but the exact molecular mechanism remains unclear. In this study, we demonstrated the therapeutic effect of bone morrow MSCs (BMSCs) on SAP, probably by targeting heme oxygenase-1 (HO-1). METHODS Six hours after SAP induction, either phosphate-buffered saline (PBS) or BMSCs were transfused into the caudal vein of rats, zinc protoporphyrin (ZnPP) was administered intraperitoneally. Pancreatic pathological scoring, serum levels of amylase and inflammatory factors, as well as levels of reactive oxygen species (ROS), malondialdehyde (MDA) and myeloperoxidase (MPO), superoxide dismutase (SOD) and catalase (CAT) activity in the pancreas were evaluated. RESULTS Our data showed that BMSCs significantly reduce inflammation and oxidative stress, reduce apoptosis and promote angiogenesis of damaged pancreas. Moreover, BMSCs increased the level of HO-1 in the serum and pancreatic tissue in rats with SAP. In addition, the protective effect of BMSCs was partially neutralized by the HO-1 activity inhibitor ZnPP, suggesting a key role of HO-1 in the therapeutic effect of BMSCs on SAP. CONCLUSIONS BMSCs ameliorated SAP, probably by inducing expression of HO-1, which can exert anti-inflammatory and anti-oxidant effects, reduce apoptosis and promote angiogenesis.
Collapse
|
16
|
Mesenchymal Stem Cells as New Therapeutic Approach for Diabetes and Pancreatic Disorders. Int J Mol Sci 2018; 19:ijms19092783. [PMID: 30223606 PMCID: PMC6163453 DOI: 10.3390/ijms19092783] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/05/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Diabetes is a worldwide disease which actually includes different disorders related to glucose metabolism. According to different epidemiological studies, patients affected by diabetes present a higher risk to develop both acute and chronic pancreatitis, clinical situations which, in turn, increase the risk to develop pancreatic cancer. Current therapies are able to adjust insulin levels according to blood glucose peak, but they only partly reach the goal to abrogate the consequent inflammatory milieu responsible for diabetes-related diseases. In recent years, many studies have investigated the possible use of adult mesenchymal stem cells (MSCs) as alternative therapeutic treatment for diabetes, with promising results due to the manifold properties of these cells. In this review we will critically analyze the many different uses of MSCs for both diabetes treatment and for the reduction of diabetes-related disease development, focusing on their putative molecular mechanisms.
Collapse
|
17
|
Mesenchymal Stromal Cell Therapy for Pancreatitis: A Systematic Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3250864. [PMID: 29743979 PMCID: PMC5878867 DOI: 10.1155/2018/3250864] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/31/2017] [Indexed: 12/19/2022]
Abstract
Background Based on animal studies, adult mesenchymal stromal cells (MSCs) are promising for the treatment of pancreatitis. However, the best type of this form of cell therapy and its mechanism of action remain unclear. Methods We searched the PubMed, Web of Science, Scopus, Google Scholar, and Clinical Trials.gov websites for studies using MSCs as a therapy for both acute and chronic pancreatitis published until September 2017. Results We identified 276 publications; of these publications, 18 met our inclusion criteria. In animal studies, stem cell therapy was applied more frequently for acute pancreatitis than for chronic pancreatitis. No clinical trials were identified. MSC therapy ameliorated pancreatic inflammation in acute pancreatitis and pancreatic fibrosis in chronic pancreatitis. Bone marrow and umbilical cord MSCs were the most frequently administered cell types. Due to the substantial heterogeneity among the studies regarding the type, source, and dose of MSCs used, conducting a meta-analysis was not feasible to determine the best type of MSCs. Conclusion The available data were insufficient for determining the best type of MSCs for the treatment of acute or chronic pancreatitis; therefore, clinical trials investigating the use of MSCs as therapy for pancreatitis are not warranted.
Collapse
|
18
|
Abstract
Mesenchymal stem cells (MSCs) have attracted attention as a cell source for regenerative medicine. In particular, MSCs have an anti-inflammatory effect by secreting several kinds of bioactive molecules. MSC therapy is now being applied to various gastrointestinal diseases, such as graft-versus-host disease, inflammatory bowel disease, and liver cirrhosis. Therefore, MSC therapy has the potential to be a novel treatment for acute and chronic pancreatitis by suppressing inflammation. Several studies have investigated the effect of MSC therapy on acute and chronic pancreatitis, but the underlying mechanisms remain unknown. In this review, we summarize the present status of MSC therapy for acute and chronic pancreatitis.
Collapse
Affiliation(s)
- Kazumichi Kawakubo
- Department of Gastroenterology and Hepatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita15 Nishi7, Kita-ku, Sapporo, 060-8638, Japan.
| | - Shunsuke Ohnishi
- Department of Gastroenterology and Hepatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita15 Nishi7, Kita-ku, Sapporo, 060-8638, Japan
| | - Masaki Kuwatani
- Division of Endoscopy, Hokkaido University Hospital, Kita14 Nishi5, Kita-ku, Sapporo, 060-8648, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita15 Nishi7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
19
|
Jin XR, Xu BR, Hou GF, Sun B, Bai XW. Mesenchymal stem cell transplantation for treatment of pancreatitis. Shijie Huaren Xiaohua Zazhi 2017; 25:2714-2720. [DOI: 10.11569/wcjd.v25.i30.2714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are one of the main cell resources of regenerative medicine. Recently, MSCs have been used to treat many diseases, such as Alzheimer's disease, inflammatory bowel disease and cirrhosis, with certain curative effects achieved. MSCs can not only secrete a variety of anti-inflammatory cytokines, but also reduce the secretion of inflammatory factors. Therefore, acute pancreatitis (AP) and chronic pancreatitis (CP) can be treated with MSCs. Several studies have investigated the effect of MSC therapy on acute and CP. MSCs exert a therapeutic effect on AP perhaps via two pathways: anti-inflammatory pathway and anti-apoptotic pathway. However, the mechanism for the therapeutic effect of MSCs on CP is unclear. In this review, we will summarize the progress in MSC treatment of AP and CP.
Collapse
Affiliation(s)
- Xiang-Ren Jin
- Department of Pancreatic and Biliary Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Bo-Ran Xu
- Department of Pancreatic and Biliary Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Guo-Fang Hou
- Department of Pancreatic and Biliary Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xue-Wei Bai
- Department of Pancreatic and Biliary Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
20
|
Kim HW, Song WJ, Li Q, Han SM, Jeon KO, Park SC, Ryu MO, Chae HK, Kyeong K, Youn HY. Canine adipose tissue-derived mesenchymal stem cells ameliorate severe acute pancreatitis by regulating T cells in rats. J Vet Sci 2017; 17:539-548. [PMID: 27297425 PMCID: PMC5204032 DOI: 10.4142/jvs.2016.17.4.539] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/01/2016] [Accepted: 04/08/2016] [Indexed: 01/15/2023] Open
Abstract
Severe acute pancreatitis (SAP) is associated with systemic complications and high mortality rate in dogs. Mesenchymal stem cells (MSCs) have been investigated for their therapeutic potential in several inflammation models. In the present study, the effects of canine adipose tissue-derived (cAT)-MSCs in a rat model of SAP induced by retrograde injection of 3% sodium taurocholate solution into the pancreatic duct were investigated. cAT-MSCs labeled with dioctadecyl-3,3,3′-tetramethylindo-carbocyanine perchlorate (1 × 107 cells/kg) were systemically administered to rats and pancreatic tissue was collected three days later for histopathological, quantitative real-time polymerase chain reaction, and immunocytochemical analyses. Greater numbers of infused cAT-MSCs were detected in the pancreas of SAP relative to sham-operated rats. cAT-MSC infusion reduced pancreatic edema, inflammatory cell infiltration, and acinar cell necrosis, and decreased pancreatic expression of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-1β, -6, -12, -17, and -23 and interferon-γ, while stimulating expression of the anti-inflammatory cytokines IL-4 and IL-10 in SAP rats. Moreover, cAT-MSCs decreased the number of clusters of differentiation 3-positive T cells and increased that of forkhead box P3-positive T cells in the injured pancreas. These results indicate that cAT-MSCs can be effective as a cell-based therapeutic strategy for treatment of SAP in dogs.
Collapse
Affiliation(s)
- Hyun-Wook Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.,Haemaru Referral Animal Hospital, Seongnam 13590, Korea
| | - Woo-Jin Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Qiang Li
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Sei-Myoung Han
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Kee-Ok Jeon
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Sang-Chul Park
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Min-Ok Ryu
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Hyung-Kyu Chae
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Kweon Kyeong
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Hwa-Young Youn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
21
|
Qu B, Chu Y, Zhu F, Wang B, Liu T, Yu B, Jin S. Granulocyte colony-stimulating factor enhances the therapeutic efficacy of bone marrow mesenchymal stem cell transplantation in rats with experimental acute pancreatitis. Oncotarget 2017; 8:21305-21314. [PMID: 28423506 PMCID: PMC5400585 DOI: 10.18632/oncotarget.15515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Acute pancreatitis (AP) is one of the most common diseases involving necrotic inflammation. Bone marrow mesenchymal stem cells (BMMSCs) have the potential of multi-directional differentiation and self-renewal for tissue repair. It remains less clear if granulocyte colony-stimulating factor (G-CSF) can improve the therapeutic effect of BMMSC transplant in AP. Therefore, we explored this issue in a rat model of experimental AP. RESULTS Transplanted PKH26-positive BMMSCs were present in the injured pancreatic tissue, with some cells co-expressed pancreatic cellular markers, including Pax-4, Ngn3 and Nkx-6. Pathological, biochemical and serological data suggested an improvement in histological and functional recovery in these animals relative to control. Overall, the AP model rats received BMMSCs and G-CSF co-treatment showed better recovery in terms of tissue regeneration and blood biochemical levels relative to other groups. MATERIALS AND METHODS BMMSCs from donor rats were labeled with the fluorescent dye PKH26 and transfused into recipient rats with AP induced by L-arginine. The animals were divided into a control group, and groups treated with BMMSCs, G-CSF, and BMMSCs together with G-CSF. Therapeutic effects were evaluated histologically with immunohistochemistry and immunofluorescence, together with biochemical measurement of pancreatic markers. CONCLUSION G-CSF therapy with BMMSC transplantation improves histological and functional outcomes in rats with experimental AP.
Collapse
Affiliation(s)
- Bo Qu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China
| | - Yanjie Chu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China
| | - Fang Zhu
- Department of Gastroenterology and Hepatology, The First People's Hospital of Yongkang, Zhejiang Province, 321300, China
| | - Beibei Wang
- Department of the Second Internal Medicine Ward, The Yellow River Hospital, Tianjin, 300101, China
| | - Ting Liu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China
| | - Bo Yu
- Department of Gastroenterology and Hepatology, The Tailai County People's Hospital, Heilongjiang Province, 162400, China
| | - Shizhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China
| |
Collapse
|
22
|
Xun Q, Wang H, He F. Bone marrow mesenchymal stem cells for treatment of pancreatic diseases: Research status and prospects. Shijie Huaren Xiaohua Zazhi 2016; 24:3232-3237. [DOI: 10.11569/wcjd.v24.i21.3232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The incidence of pancreatic diseases is increasing year by year. Current treatments for pancreatic diseases are mainly symptomatic, and the research on the repair and restoration of function of the pancreatic cells progresses slowly. Stem cells have been widely used in the treatment of diseases in recent years because of their ability of multi-directional differentiation and repair of cell damage caused by disease and injury. Numerous studies confirm that pancreatic stem cells after transplantation can differentiate into pancreatic cells and play an important role in the recovery of external secretory function and repair of the damaged pancreatic cells. Particularly, both in vivo and in vitro studies show that bone marrow mesenchymal stem cells have achieved remarkable results in the treatment of pancreatic diseases, laying a theoretical and practical basis for clinical treatment of pancreatic diseases with stem cells. This article outlines the progress in treatment of acute pancreatitis, chronic pancreatitis and pancreatic cancer with bone marrow mesenchymal stem cells, demonstrating that stem cells are expected to become one of new methods for the treatment of pancreatic diseases.
Collapse
|
23
|
Li X, Zhuang LW, Zhu CY, Bo WL, Mi LN. Optimal route of transplantation of bone marrow mesenchymal stem cells for therapy of acute pancreatitis. Shijie Huaren Xiaohua Zazhi 2016; 24:2152-2160. [DOI: 10.11569/wcjd.v24.i14.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To find the optimal route of transplantation of mesenchym stem cells for the treatment of acute pancreatitis.
METHODS: Bone marrow mesenchymal stem cells (BMSCs) were derived from the bone marrow of the femur and tibia from healthy 3-week-old SD rats by primary adherent culture. Acute pancreatitis was induced in rats by intraperitoneal injection of L-arginine. The model rats were randomly divided into either a treatment group or a model group. Serum amylase was measured at 12, 24, 48, and 72 h and lipase measured at 24, 48, 72 h, and one week. The treatment group was further divided into a tail vein group, a superior mesenteric vein group, and a pancreatic local injection group, with 40 rats in each group. All experimental groups received Pkh26 labelled BMSCs transplantation. At 12, 24, 48, 72 h, and one week after the transplantation, serum amylase and lipase were measured and compared. After three weeks, Pkh26 labelled BMSCs in animals were observed, and pancreatic tissue pathology was assessed by HE staining.
RESULTS: Two weeks and three weeks after the transplantation, compared with the model group, the levels of serum amylase and lipase were statistically significant different in the tail vein injection group, and they were also significantly decreased in the pancreatic local injection group and superior mesenteric vein group compared with the model group (P < 0.05). The levels of serum amylase and lipase were significantly lower in the pancreatic local injection group than in the superior mesenteric vein group (P < 0.05), but they were still higher in the treatment groups than in the control group. Very few Pkh26 labeled cells were found in the tail vein group at different time points. A few Pkh26 labeled cells were found in the superior mesenteric vein group at week 2, and more were visible at week 3. A lot of Pkh26 labeled cells were found in the pancreatic local injection group at both weeks 2 and 3, but they were not found in the control group or model group at each time point.
CONCLUSION: Transplantation of bone marrow BMSCs via the tail vein, superior mesenteric vein and pancreatic local injection can ameliorate and repair pancreatic function of rats with pancreatic injury. Pancreatic local injection is the best route of transplantation.
Collapse
|
24
|
Hua J, Qian DH, Song ZS. Mesenchymal stem cell transplantation for treatment of digestive diseases. Shijie Huaren Xiaohua Zazhi 2015; 23:5263-5268. [DOI: 10.11569/wcjd.v23.i33.5263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Treatment of diseases using mesenchymal stem cells (MSCs) has gained great breakthrough with the discovery of properties of MSCs since 1990s. So far, MSC transplantation in the treatment of digestive tract diseases is mainly focused on hepatic cirrhosis, liver failure, acute or chronic pancreatitis, inflammatory bowel disease and digestive tumors. In the current editorial, we rely primarily on the existing evidence to gain a comprehensive perspective toward this area.
Collapse
|
25
|
Sun FL, Li HP, Teng YS, Shang D. Therapeutic effects of rat bone marrow-derived mesenchymal stem cells combined with Dachengqi decoction in rats with severe acute pancreatitis. Shijie Huaren Xiaohua Zazhi 2015; 23:4167-4176. [DOI: 10.11569/wcjd.v23.i26.4167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the therapeutic effects of mesenchymal stem cells (MSCs) combined with Dachengqi decoction (DcqD) in rats with severe acute pancreatitis (SAP) and to explore the underlying mechanism.
METHODS: Sixty male Sprague-Dawley rats were randomly divided into sham-operated (SO), model-control (MC), MSCs-treatment (1.0 × 106 MSCs; MSC group), DcqD-treatment (1 mL/100 g; DD group), and MSCs-plus-DcqD-treatment (MSCDD group) groups (n = 12). SAP was induced in rats by retrograde infusion of 1.5% sodium deoxycholate into the biliopancreatic duct. Isolation and culture of MSCs were performed by Percoll density gradient centrifugation and plastic adherence separating. Ahead of infusion, MSCs were labelled with DAPI via the tail vein. After 24 h of administration, distribution of MSCS in vivo was observed by fluorescence microscopy. Neutrophil apoptosis was identified by flow cytometry. Serum levels of amylase, lipase, tumour necrosis factor-α (TNF-α), interleukin (IL)-6, IL-10 and blood CD4+CD25+ regulatory T cells (CD4+CD25+Tregs) percentages were determined. Mortality, pathological changes in the pancreas, and histological scores were assessed.
RESULTS: The mortality rate of SAP rats was significantly lower in the treatment groups. Under a fluorescence microscope, the lumen tissue in the pancreatic sections of the MSC group exhibited bright blue fluorescence, whereas that in the MC group did not. Compared with the MC group, the MSC, DD and MSCDD groups had a significant decrease in TNF-α, IL-6, amylase, and lipase (P < 0.05). IL-10 and CD4+CD25+Tregs percentage were significantly higher in the MSCDD group than in the SAP, MSC and DD groups. However, there was no significant difference between the MSCDD and SO groups in IL-10 or CD4+CD25+Tregs percentage (P > 0.05). The pancreatic pathological changes and histopathologic scores were attenuated in the treatment groups, especially in the MSCDD group.
CONCLUSION: The combined therapy proved to be more effective than either MSC or DD alone and may cause synergistic effects in the early stage of SAP. The potential mechanisms that might account for the favourable effects include participating in injured pancreas repair, switching from neutrophils or acinar cell necrosis to apoptosis and inhibiting over-inflammatory reaction.
Collapse
|
26
|
Fong CY, Subramanian A, Biswas A, Bongso A. Freezing of Fresh Wharton's Jelly From Human Umbilical Cords Yields High Post-Thaw Mesenchymal Stem Cell Numbers for Cell-Based Therapies. J Cell Biochem 2015; 117:815-27. [PMID: 26365815 DOI: 10.1002/jcb.25375] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/09/2015] [Indexed: 01/02/2023]
Abstract
Some cord blood banks freeze entire pieces of UC (mixed cord, MC) which after post-thaw yields mixed heterogeneous populations of mesenchymal stem cells (MSCs) from all its microanatomical compartments. Freezing of such entire tissues results in sub-optimal post-thaw cell recovery because of poor cryoprotectant diffusion and intracellular ice-formation, heat and water transport issues, and damage to intercellular junctions. To develop a simple method of harvesting pure homogeneous MSCs for cord blood banks, we compared the post-thaw behavior of three groups of frozen UC tissues: (i) freshly harvested WJ without cell separation; (ii) MSCs isolated from WJ (WJSC); and (iii) MC, WJ, and WJSC produced high post-thaw cell survival rates (93.52 ± 6.12% to 90.83 ± 4.51%) and epithelioid monolayers within 24 h in primary culture whereas post-thaw MC explants showed slow growth with mixed epithelioid and fibroblastic cell outgrowths after several days. Viability and proliferation rates of post-thawed WJ and hWJSC were significantly greater than MC. Post-thaw WJ and WJSC produced significantly greater CD24(+) and CD108(+) fluorescence intensities and significantly lower CD40(+) contaminants. Post-thaw WJ and WJSC produced significantly lesser annexin-V-positive and sub-G1 cells and greater degrees of osteogenic and chondrogenic differentiation compared to MC. qRT-PCR analysis of post-thaw MC showed significant decreases in anti-apoptotic gene expression (SURVIVIN, BCL2) and increases in pro-apoptotic (BAX) and cell cycle regulator genes (P53, P21, ROCK 1) compared to WJ and WJSC. We conclude that freezing of fresh WJ is a simple and reliable method of generating large numbers of clinically utilizable MSCs for cell-based therapies.
Collapse
Affiliation(s)
- Chui-Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Arjunan Subramanian
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| |
Collapse
|
27
|
Abstract
Mesenchymal stem cells (MSCs) have the capacity of multipotent differentiation and the property of immunomodulation. MSCs have been widely used in digestive system disease research because of their advantageous characteristics such as homing to areas of inflammation or tumour tissue, anti-inflammation, high plasticity, absence of immunologic rejection, being easy to be isolated, and being convenient for the expression of exogenous genes. In this article, we will review the application of mesenchymal stem cells in digestive system diseases including caustic esophagus injury, reflux esophagitis, gastric ulcer, radioactive intestinal injury, severe acute pancreatitis, inflammatory bowel disease, nonalcoholic steatohepatitis, acute liver failure, hepatic fibrosis, autoimmune liver diseases, liver cirrhosis, esophageal cancer, gastric cancer, colon cancer, liver cancer, and pancreatic cancer.
Collapse
|