1
|
Oliveira KAD, Araújo HN, Lima TID, Oliveira AG, Favero-Santos BC, Guimarães DSP, Freitas PAD, Neves RDJD, Vasconcelos RP, Almeida MGGD, Ramos MV, Silveira LR, Oliveira ACD. Phytomodulatory proteins isolated from Calotropis procera latex promote glycemic control by improving hepatic mitochondrial function in HepG2 cells. Saudi Pharm J 2021; 29:1061-1069. [PMID: 34588851 PMCID: PMC8463474 DOI: 10.1016/j.jsps.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/04/2021] [Indexed: 12/03/2022] Open
Abstract
The medicinal uses of Calotropis procera are diverse, yet some of them are based on effects that still lack scientific support. Control of diabetes is one of them. Recently, latex proteins from C. procera latex (LP) have been shown to promote in vivo glycemic control by the inhibition of hepatic glucose production via AMP-activated protein kinase (AMPK). Glycemic control has been attributed to an isolated fraction of LP (CpPII), which is composed of cysteine peptidases (95%) and osmotin (5%) isoforms. Those proteins are extensively characterized in terms of chemistry, biochemistry and structural aspects. Furthermore, we evaluated some aspects of the mitochondrial function and cellular mechanisms involved in CpPII activity. The effect of CpPII on glycemic control was evaluated in fasting mice by glycemic curve and glucose and pyruvate tolerance tests. HepG2 cells was treated with CpPII, and cell viability, oxygen consumption, PPAR activity, production of lactate and reactive oxygen species, mitochondrial density and protein and gene expression were analyzed. CpPII reduced fasting glycemia, improved glucose tolerance and inhibited hepatic glucose production in control animals. Additionally, CpPII increased the consumption of ATP-linked oxygen and mitochondrial uncoupling, reduced lactate concentration, increased protein expression of mitochondrial complexes I, III and V, and activity of peroxisome-proliferator-responsive elements (PPRE), reduced the presence of reactive oxygen species (ROS) and increased mitochondrial density in HepG2 cells by activation of AMPK/PPAR. Our findings strongly support the medicinal use of the plant and suggest that CpPII is a potential therapy for prevention and/or treatment of type-2 diabetes. A common epitope sequence shared among the proteases and osmotin is possibly the responsible for the beneficial effects of CpPII.
Collapse
Key Words
- AMPK, AMP-activated kinase protein
- AUC, Area under the curve
- Bioactive proteins
- CTL, Control
- Calotropis procera
- CpPII, Major peptidase fraction treated with iodoacetamide
- DHE, Dihydroethidium
- DMEM, Dulbecco’s minimal essential medium
- DMSO, Dimethyl sulfoxide
- FCCP, Oligomycin carbonyl cyanide 4 (trifluoromethoxy) phenylhydrazine
- Folk medicine
- Glycemia
- HGP, Hepatic glucose production
- LP, Soluble latex proteins from Calotropis procera
- Latex
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- OCR, Oxygen consumption rate
- OXPHOS, Oxidative phosphorylation
- PPAR, Peroxisome proliferator-activated receptor
- PPRE, PPAR response element
- ROS, Reactive oxygen species
- TBS-T, Tris buffered saline solution containing 0.1% Tween 20
- UCP2, Mitochondrial uncoupling protein 2
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ariclecio Cunha de Oliveira
- Superior Institute of Biomedical Sciences, State University of Ceara, Fortaleza, Brazil
- Corresponding author.at: Superior Institute of Biomedical Sciences, State University of Ceara, Fortaleza, Ceara, Brazil.
| |
Collapse
|
2
|
Amini MH, Ashraf K, Salim F, Meng Lim S, Ramasamy K, Manshoor N, Sultan S, Ahmad W. Important insights from the antimicrobial activity of Calotropis procera. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
3
|
Zou YY, Wang DW, Yan YM, Cheng YX. Lignans from Lepidium meyenii and Their Anti-Inflammatory Activities. Chem Biodivers 2021; 18:e2100231. [PMID: 34087032 DOI: 10.1002/cbdv.202100231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/03/2021] [Indexed: 11/12/2022]
Abstract
Meyeniines A-C (1-3), three new lignans, two known neolignans (4-5), and three known lignans (6-8) were isolated from the rhizomes of Lepidium meyenii. Their structures were identified by comprehensive spectroscopic analyses and computational methods. Compound 1 represents a unique lignan featuring an aromatic ring migration. Compounds 2 and 4-6 were analyzed by chiral HPLC column as enantiomers. Biological evaluation revealed that compound 8 could inhibit IL-6 production in lipopolysaccharide (LPS) induced RAW264.7 cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Yi-Yan Zou
- Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.,Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Dai-Wei Wang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yong-Ming Yan
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yong-Xian Cheng
- Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.,Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China.,Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, 521041, P. R. China
| |
Collapse
|
4
|
Kaur A, Batish DR, Kaur S, Chauhan BS. An Overview of the Characteristics and Potential of Calotropis procera From Botanical, Ecological, and Economic Perspectives. FRONTIERS IN PLANT SCIENCE 2021; 12:690806. [PMID: 34220914 PMCID: PMC8248367 DOI: 10.3389/fpls.2021.690806] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/24/2021] [Indexed: 05/05/2023]
Abstract
Calotropis procera (Aiton) Dryand. (commonly known as the apple of sodom, calotrope, and giant milkweed) is an evergreen, perennial shrub of the family Apocynaceae, mainly found in arid and semi-arid regions. It is a multipurpose plant, which can be utilized for medicine, fodder, and fuel purposes, timber and fiber production, phytoremediation, and synthesis of nanoparticles. It has been widely used in traditional medicinal systems across North Africa, Middle East Asia, and South-East Asia. At present, it is being extensively explored for its potential pharmacological applications. Several reports also suggest its prospects in the food, textile, and paper industries. Besides, C. procera has also been acknowledged as an ornamental species. High pharmacological potential and socio-economic value have led to the pantropical introduction of the plant. Morpho-physiological adaptations and the ability to tolerate various abiotic stresses enabled its naturalization beyond the introduced areas. Now, it is recognized as an obnoxious environmental weed in several parts of the world. Its unnatural expansion has been witnessed in the regions of South America, the Caribbean Islands, Australia, the Hawaiian Islands, Mexico, Seychelles, and several Pacific Islands. In Australia, nearly 3.7 million hectares of drier areas, including rangelands and Savannahs, have been invaded by the plant. In this review, multiple aspects of C. procera have been discussed including its general characteristics, current and potential uses, and invasive tendencies. The objectives of this review are a) to compile the information available in the literature on C. procera, to make it accessible for future research, b) to enlist together its potential applications being investigated in different fields, and c) to acknowledge C. procera as an emerging invasive species of arid and semi-arid regions.
Collapse
Affiliation(s)
- Amarpreet Kaur
- Department of Botany, Panjab University, Chandigarh, India
| | | | - Shalinder Kaur
- Department of Botany, Panjab University, Chandigarh, India
| | - Bhagirath S. Chauhan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI) and School of Agriculture and Food Sciences (SAFS), The University of Queensland, Gatton, QLD, Australia
- *Correspondence: Bhagirath S. Chauhan,
| |
Collapse
|
5
|
Gwag JE, Lee YG, Kim HG, Lee DS, Lee DY, Baek NI. Syringoleosides A-H, Secoiridoids from Syringa dilatata Flowers and Their Inhibition of NO Production in LPS-Induced RAW 264.7 Cells. JOURNAL OF NATURAL PRODUCTS 2020; 83:2655-2663. [PMID: 32936639 DOI: 10.1021/acs.jnatprod.0c00490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Repeated column chromatography of Syringa dilatata flowers, a native shrub to Korea, led to the isolation of eight new oleoside-type secoiridoids, syringoleosides A-H (1-8), as well as five known secoiridoids (9-13). The new chemical structures were identified through spectroscopic data analysis, as well as the application of chemical methods. Compounds 1, 2, 6, 7, 11, and 13 showed suppression effects on NO production in LPS-induced RAW 264.7 cells, with IC50 values ranging from 32.5 ± 9.8 to 65.7 ± 11.0 μM, and no visible toxicity. The content of the major secoiridoids in S. dilatata flowers, compounds 1, 4, 5, 8, 9, 12, and 13, were determined through HPLC analysis.
Collapse
Affiliation(s)
- Jung Eun Gwag
- Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Yeong-Geun Lee
- Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyoung-Geun Kim
- Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Nam-In Baek
- Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
6
|
Pathania S, Bansal P, Gupta P, Rawal RK. Genus Calotropis: A Hub of Medicinally Active Phytoconstituents. CURRENT TRADITIONAL MEDICINE 2020. [DOI: 10.2174/2215083805666190619095933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Traditional medicines derived from plant and other natural sources have several
advantages over synthetic drugs when used for the management of pathological conditions.
Natural product based therapies are safer than synthetic drugs-based chemotherapies. One of
such sources of bioactive molecules includes C. procera and C. gigantea, flowering herbal
plants, belonging to the genus Calotropis, family Apocynaceae, which, due to their diverse
pharmacological profile, have been widely employed in Ayurveda, Unani, Siddha and other
traditional systems for the treatment of various diseases. The various parts of this plant are
rich in phytoconstituents such as cardiac glycosides, flavonoids, terpenoids, steroids, phenolic
compounds, proteins etc. Due to the presence of multiple constituents, this plant possess
diverse biological activities such as analgesic, antitumor, antihelmintic, antioxidant, hepatoprotective,
antidiarrhoeal, anticonvulsant, antimicrobial, oestrogenic, antinociceptive, antimalarial
activity etc. The present review provides comprehensive information about various
phytochemical constituents of the plant along with their medicinal importance.
Collapse
Affiliation(s)
- Shelly Pathania
- Research Scholar, Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda (Punjab) 151001, India
| | - Parveen Bansal
- University Centre of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Prasoon Gupta
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Ravindra K. Rawal
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana-133207, Ambala, Haryana, India
| |
Collapse
|