1
|
Yang H, Gao Y, Liu M, Ma J, Lu Q. Process Optimization of Scaled-Up Production and Biosafety Evaluation of the Dimethyl-Dioctadecyl-Ammonium Bromide/Poly(lactic acid) Nano-Vaccine. J Funct Biomater 2024; 15:127. [PMID: 38786638 PMCID: PMC11122170 DOI: 10.3390/jfb15050127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Nano-adjuvant vaccines could induce immune responses and enhance immunogenicity. However, the application and manufacturing of nano-adjuvant is hampered by its challenging scale-up, poor reproducibility, and low security. Therefore, the present study aimed to optimize the preparation nanoparticles (NPs) using FDA-approved biopolymer materials poly(lactic acid) (PLA) and cationic lipid didodecyl-dimethyl-ammonium bromide (DDAB), develop the scale-up process, and evaluate the stability and biosafety of it. The optimum preparation conditions of DDAB/PLA NPs on a small scale were as follows: DDAB amount of 30 mg, aqueous phase volume of 90 mL, stirring rate at 550 rpm, and solidifying time of 12 h. Under the optimum conditions, the size of the NPs was about 170 nm. In scale-up preparation experiments, the vacuum rotary evaporation of 6 h and the Tangential flow ultrafiltration (TFU) method were the optimum conditions. The results suggested that DDAB/PLA NPs exhibited a uniform particle size distribution, with an average size of 150.3 ± 10.4 nm and a narrow polydispersity index (PDI) of 0.090 ± 0.13, coupled with a high antigen loading capacity of 85.4 ± 4.0%. In addition, the DDAB/PLA NPs can be stored stably for 30 days and do not have side effects caused by residual solvents. For biosafety, the acute toxicity experiments showed good tolerance of the vaccine formulation even at a high adjuvant dose. The local irritation experiment demonstrated the reversibility of muscular irritation, and the repeated toxicity experiment revealed no significant necrosis or severe lesions in mice injected with the high-dose vaccine formulation. Overall, the DDAB/PLA NPs exhibit potential for clinical translation as a safe candidate vaccine adjuvant.
Collapse
Affiliation(s)
- Hengye Yang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China;
| | - Yuan Gao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, College of Chemistry, Chemistry Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China;
| | - Meijuan Liu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Juan Ma
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Qun Lu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China;
| |
Collapse
|
2
|
Potential of transpapillary route for artesunate-loaded microneedles against breast cancer cell line. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Formulation and evaluation of transdermal nanogel for delivery of artemether. Drug Deliv Transl Res 2021; 11:1655-1674. [PMID: 33742415 DOI: 10.1007/s13346-021-00951-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 10/21/2022]
Abstract
Artemether (ART) is second to artesunate in being the most widely used derivatives of artemisinin in combination therapy of malaria. Nanostructured lipid carrier (NLC) formulations were prepared following our previous report using optimized ART concentration of 0.25 g dissolved in 5% w/v mixture of solid (Gelucire 43/01 and Phospholipon 85G) and liquid (Transcutol) lipids at 90 °C. An aqueous surfactant phase at 90 °C was added (dropwise) under magnetic stirring (1000 rpm) for 5 min. The pre-emulsion was speedily homogenized at 28,000 rpm for 15 min and further probe sonicated at 60% amplitude (15 min). Resultant sample was cooled at room temperature and frozen at - 80 °C prior to lyophilization. The freeze-dried sample was used for solid-state characterization as well as in the formulation of transdermal nanogels using three polymers (Carbopol 971P, Poloxamer 407, and Prosopis africana peel powder) to embed the ART-NLC, using ethanol as a penetration enhancer. Transdermal ART-nanogels were characterized accordingly (physical examination, pH, drug content, rheology, spreadability, stability, particle size and morphology, skin irritation, in vitro and ex vivo skin permeation, and analysis of permeation data), P < 0.05. Results indicated that ART nanogels showed good encapsulation, drug release, pH-dependent swelling, stability, and tolerability. Overall, ART nanogels prepared from Poloxamer 407 showed the most desirable drug permeation, pH, swellability, spreadability, viscosity, and transdermal antiplasmodial properties superior to PAPP-ANG > C971P-ANG. A two-patch/week concurrent application of the studied nanogels could offer 100% cure of malaria as a lower-dose (50 mg ART) patient-friendly regimen devoid of the drug's many side effects.
Collapse
|
4
|
Wu Y, Zeng Q, Qi Z, Deng T, Liu F. Recent Progresses in Cancer Nanotherapeutics Design Using Artemisinins as Free Radical Precursors. Front Chem 2020; 8:472. [PMID: 32626687 PMCID: PMC7311774 DOI: 10.3389/fchem.2020.00472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Artemisinin and its derivatives (ARTs) are sort of important antimalarials, which exhibit a wide range of biological activities including anticancer effect. To solve the issues regarding poor solubility and limited bioavailability of ARTs, nanoformulation of ARTs has thus emerged as a promising strategy for cancer treatment. A common consideration on nanoARTs design lies on ARTs' delivery and controlled release, where ARTs are commonly regarded as hydrophobic drugs. Based on the mechanism that ARTs' activation relies on ferrous ions (Fe2+) or Fe2+-bonded complexes, new designs to enhance ARTs' activation have thus attracted great interests for advanced cancer nanotherapy. Among these developments, the design of a nanoparticle that can accelerate ARTs' activation has become the major consideration, where ARTs have been regarded as radical precursors. This review mainly focused on the most recent developments of ARTs nanotherapeutics on the basis of advanced drug activation. The basic principles in those designs will be summarized, and a few excellent cases will be also discussed in detail.
Collapse
Affiliation(s)
- Yalan Wu
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingping Zeng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiwen Qi
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Nanjing, China
| | - Tao Deng
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fang Liu
- Institute of Tropical Medicine and Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Lee WH, Rho JG, Han HS, Kweon S, Nguyen VQ, Park JH, Kim W. Self-assembled hyaluronic acid nanoparticle suppresses fat accumulation via CD44 in diet-induced obese mice. Carbohydr Polym 2020; 237:116161. [DOI: 10.1016/j.carbpol.2020.116161] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 01/29/2023]
|
6
|
Sakurai Y, Harashima H. Hyaluronan-modified nanoparticles for tumor-targeting. Expert Opin Drug Deliv 2019; 16:915-936. [DOI: 10.1080/17425247.2019.1645115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Sakurai
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | |
Collapse
|
7
|
A Promising Biocompatible Platform: Lipid-Based and Bio-Inspired Smart Drug Delivery Systems for Cancer Therapy. Int J Mol Sci 2018; 19:ijms19123859. [PMID: 30518027 PMCID: PMC6321581 DOI: 10.3390/ijms19123859] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 02/06/2023] Open
Abstract
Designing new drug delivery systems (DDSs) for safer cancer therapy during pre-clinical and clinical applications still constitutes a considerable challenge, despite advances made in related fields. Lipid-based drug delivery systems (LBDDSs) have emerged as biocompatible candidates that overcome many biological obstacles. In particular, a combination of the merits of lipid carriers and functional polymers has maximized drug delivery efficiency. Functionalization of LBDDSs enables the accumulation of anti-cancer drugs at target destinations, which means they are more effective at controlled drug release in tumor microenvironments (TMEs). This review highlights the various types of ligands used to achieve tumor-specific delivery and discusses the strategies used to achieve the effective release of drugs in TMEs and not into healthy tissues. Moreover, innovative recent designs of LBDDSs are also described. These smart systems offer great potential for more advanced cancer therapies that address the challenges posed in this research area.
Collapse
|
8
|
Charlie-Silva I, Fraceto LF, de Melo NFS. Progress in nano-drug delivery of artemisinin and its derivatives: towards to use in immunomodulatory approaches. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S611-S620. [DOI: 10.1080/21691401.2018.1505739] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Souho T, Lamboni L, Xiao L, Yang G. Cancer hallmarks and malignancy features: Gateway for improved targeted drug delivery. Biotechnol Adv 2018; 36:1928-1945. [DOI: 10.1016/j.biotechadv.2018.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/22/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
|
10
|
Soe ZC, Thapa RK, Ou W, Gautam M, Nguyen HT, Jin SG, Ku SK, Oh KT, Choi HG, Yong CS, Kim JO. Folate receptor-mediated celastrol and irinotecan combination delivery using liposomes for effective chemotherapy. Colloids Surf B Biointerfaces 2018; 170:718-728. [PMID: 30005409 DOI: 10.1016/j.colsurfb.2018.07.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/17/2018] [Accepted: 07/06/2018] [Indexed: 01/08/2023]
Abstract
Drug targeting using functionalized nanoparticles provides a new standard in anticancer therapy. Liposomes, safe and effective drug delivery carriers, can incorporate both hydrophilic and hydrophobic drugs for combination chemotherapy treatment of cancers. The objectives of the current study were to synthesize and test the effectiveness of a nanotechnology-based strategy utilizing folic acid (FA)-conjugated liposomes that incorporate both celastrol (Cs) and irinotecan (Ir) for targeted breast cancer therapy. Our results revealed the successful preparation of Cs and Ir-loaded folate-targeted liposomes (Lipo/Cs/Ir-FA) with a small particle size (∼190 nm) and polydispersity index (∼0.10). The formulation exhibited higher drug release profiles for both Ir and Cs at pH 5.0 compared to those at physiological pH, favoring cancer cell-targeted release. Furthermore, in vitro cell studies showed high uptake and enhanced apoptosis in folate receptor-positive breast cancer cells (MCF-7 and MDA-MB-231), but not in folate receptor-negative lung cancer cells (A549). Moreover, an in vivo study in a mouse tumor model using MDA-MB-231 xenografts supported effective drug delivery behavior of the folate-conjugated liposomes by selective targeting of tumor tissue and minimizing systemic adverse effects. Therefore, our formulation could provide an effective therapy for targeted cancer treatment.
Collapse
Affiliation(s)
- Zar Chi Soe
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan, 712-749, Republic of Korea
| | - Raj Kumar Thapa
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan, 712-749, Republic of Korea
| | - Wenquan Ou
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan, 712-749, Republic of Korea
| | - Milan Gautam
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan, 712-749, Republic of Korea
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan, 712-749, Republic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 712-715, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong Dongjak-gu, Seoul, 156-756, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 426-791, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan, 712-749, Republic of Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan, 712-749, Republic of Korea.
| |
Collapse
|
11
|
Gao Z, Li Y, You C, Sun K, An P, Sun C, Wang M, Zhu X, Sun B. Iron Oxide Nanocarrier-Mediated Combination Therapy of Cisplatin and Artemisinin for Combating Drug Resistance through Highly Increased Toxic Reactive Oxygen Species Generation. ACS APPLIED BIO MATERIALS 2018; 1:270-280. [DOI: 10.1021/acsabm.8b00056] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhiguo Gao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Yaojia Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Chaoqun You
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Kai Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Peijing An
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Chen Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Mingxin Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Xiaoli Zhu
- Department of Respiratory Medicine, The Affiliated Zhongda Hospital of Southeast University, Nanjing 210096, PR China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| |
Collapse
|
12
|
Saneja A, Arora D, Kumar R, Dubey RD, Panda AK, Gupta PN. CD44 targeted PLGA nanomedicines for cancer chemotherapy. Eur J Pharm Sci 2018; 121:47-58. [PMID: 29777858 DOI: 10.1016/j.ejps.2018.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 12/28/2022]
Abstract
In recent years scientific community has drawn a great deal of attention towards understanding the enigma of cluster of differentiation-44 (CD44) in order to deliver therapeutic agents more selectively towards tumor tissues. Moreover, its over-expression in variety of solid tumors has attracted drug delivery researchers to target this receptor with nanomedicines. Conventional nanomedicines based on biodegradable polymers such as poly(lactide-co-glycolide) (PLGA) are often associated with insufficient cellular uptake by cancer cells, due to lack of active targeting moiety on their surface. Therefore, to address this limitation, CD44 targeted PLGA nanomedicines has gained considerable interest for enhancing the efficacy of chemotherapeutic agents. In this review, we have elaborately discussed the recent progress in the design and synthesis of CD44 targeted PLGA nanomedicines used to improve tumor-targeted drug delivery. We have also discussed strategies based on co-targeting of CD44 with other targeting moieties such as folic acid, human epidermal growth factor 2 (HER2), monoclonal antibodies using PLGA based nanomedicines.
Collapse
Affiliation(s)
- Ankit Saneja
- Product Development Cell-II, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India; Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Divya Arora
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Robin Kumar
- Product Development Cell-II, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ravindra Dhar Dubey
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Amulya K Panda
- Product Development Cell-II, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
13
|
Combination of a chemopreventive agent and paclitaxel in CD44-targeted hybrid nanoparticles for breast cancer treatment. Arch Pharm Res 2017; 40:1420-1432. [PMID: 29027133 DOI: 10.1007/s12272-017-0968-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/06/2017] [Indexed: 01/20/2023]
Abstract
The CD44 receptor, which is upregulated in many cancer cells, provides a selective cellular surface for targeted drug delivery systems. We developed a hybrid nanocarrier for the CD44-targeted delivery of ibuprofen (IBU) and paclitaxel (PTX). The solid lipid nanoparticles (SLNs) were prepared by a hot-melt oil/water emulsion technique and then coated with hyaluronic acid (HA) by electrostatic interactions. The final SLN were spherical with a hydrodynamic diameter (Z) of 72.16 ± 2.9 nm, polydispersity index (PDI) of 0.276 ± 0.009, and zeta potential (ZP) of 28.20 ± 0.69 mV. Similarly, SLN coated with HA (SLN-HA) exhibited acceptable physical properties (Z 169.3 ± 0.55 nm, PDI 0.285 ± 0.004, and ZP - 10.5 ± 0.15 mV). Cell viability assays showed that the combination of IBU, a chemopreventive agent, and PTX exerted a synergistic inhibitory effect on the proliferation of cancer cells (CI < 1.0). Additionally, our observations indicated that both SLN and SLN-HA enhanced apoptosis and cellular uptake compared to the cocktail of free drugs. HA indicated its affinity for cancer cells through the improvement of cellular uptake and induction of apoptosis. These results clearly indicated that these nanoparticle systems hold great promise for drug delivery in breast cancer treatment.
Collapse
|
14
|
Mokhtarzadeh A, Hassanpour S, Vahid ZF, Hejazi M, Hashemi M, Ranjbari J, Tabarzad M, Noorolyai S, de la Guardia M. Nano-delivery system targeting to cancer stem cell cluster of differentiation biomarkers. J Control Release 2017; 266:166-186. [PMID: 28941992 DOI: 10.1016/j.jconrel.2017.09.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are one of the most important origins of cancer progression and metastasis. CSCs have unique self-renewal properties and diverse cell membrane receptors that induced the resistance to the conventional chemotherapeutic agents. Therefore, the therapeutic removal of CSCs could result in the cancer cure with lack of recurrence and metastasis. In this regard, targeting CSCs in accordance to their specific biomarkers is a talented attitude in cancer therapy. Various CSCs surface biomarkers have been described, which some of them exhibited similarities on different cancer cell types, while the others are cancer specific and have just been reported on one or a few types of cancers. In this review, the importance of CSCs in cancer development and therapeutic response has been stated. Different CSCs cluster of differentiation (CD) biomarkers and their specific function and applications in the treatment of cancers have been discussed, Special attention has been made on targeted nano-delivery systems. In this regard, several examples have been illustrated concerning specific natural and artificial ligands against CSCs CD biomarkers that could be decorated on various nanoparticulated drug delivery systems to enhance therapeutic index of chemotherapeutic agents or anticancer gene therapy. The outlook of CSCs biomarkers discovery and therapeutic/diagnostic applications was discussed.
Collapse
Affiliation(s)
- Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Soodabeh Hassanpour
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | | | | | - Maryam Hashemi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Ranjbari
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeed Noorolyai
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
15
|
Tran BN, Nguyen HT, Kim JO, Yong CS, Nguyen CN. Developing combination of artesunate with paclitaxel loaded into poly-d,l-lactic-co-glycolic acid nanoparticle for systemic delivery to exhibit synergic chemotherapeutic response. Drug Dev Ind Pharm 2017; 43:1952-1962. [DOI: 10.1080/03639045.2017.1357729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bao Ngoc Tran
- Department of Pharmaceutical Industry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Chien Ngoc Nguyen
- Department of Pharmaceutical Industry, Hanoi University of Pharmacy, Hanoi, Vietnam
- National Institute of Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi, Vietnam
| |
Collapse
|
16
|
Tran TH, Nguyen HT, Phuong Tran TT, Ku SK, Jeong JH, Choi HG, Yong CS, Kim JO. Combined photothermal and photodynamic therapy by hyaluronic acid-decorated polypyrrole nanoparticles. Nanomedicine (Lond) 2017; 12:1511-1523. [DOI: 10.2217/nnm-2016-0438] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: To develop a nanoparticle-based platform using polypyrrole and IR-780 for effective combined photothermal and photodynamic therapy. Materials & methods: IR-780 was loaded in a poly(lactic-co-glycolic acid) core, decorated with polypyrrole shells and hyaluronic acid (IPPH). Physicochemical properties and in vitro and in vivo anticancer effects of these nanoparticles were evaluated. Results: The resulting IPPHs were spherical, small and negatively charged. Under near-infrared laser irradiation, the IPPHs generated reactive oxygen species and heat and synergistically improved therapeutic efficacy. The antitumor effects were confirmed by in vitro cellular reactive oxygen species detection and cytotoxicity assays, and in vivo in a xenograft tumor model, with no damage to body organs. Conclusion: Our results indicate the potential of applying IPPH in oncology nanomedicine.
Collapse
Affiliation(s)
- Tuan Hiep Tran
- Department for Management of Science & Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- College of Pharmacy, Yeungnam University, 214–211, Dae-Dong, Gyeongsan 712-749, South Korea
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, 214–211, Dae-Dong, Gyeongsan 712-749, South Korea
| | - Thi Thu Phuong Tran
- The Institute of Molecular Genetics of Montpellier, CNRS, Montpellier, France
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, South Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, 214–211, Dae-Dong, Gyeongsan 712-749, South Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 214–211, Dae-Dong, Gyeongsan 712-749, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214–211, Dae-Dong, Gyeongsan 712-749, South Korea
| |
Collapse
|
17
|
Massadeh S, Alaamery M, Al-Qatanani S, Alarifi S, Bawazeer S, Alyafee Y. Synthesis of protein-coated biocompatible methotrexate-loaded PLA-PEG-PLA nanoparticles for breast cancer treatment. NANO REVIEWS & EXPERIMENTS 2016. [PMCID: PMC4919641 DOI: 10.3402/nano.v7.31996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background PLA-PEG-PLA triblock polymer nanoparticles are promising tools for targeted dug delivery. The main aim in designing polymeric nanoparticles for drug delivery is achieving a controlled and targeted release of a specific drug at the therapeutically optimal rate and choosing a suitable preparation method to encapsulate the drug efficiently, which depends mainly on the nature of the drug (hydrophilic or hydrophobic). In this study, methotrexate (MTX)-loaded nanoparticles were prepared by the double emulsion method. Method Biodegradable polymer polyethylene glycol-polylactide acid tri-block was used with poly(vinyl alcohol) as emulsifier. The resulting methotrexate polymer nanoparticles were coated with bovine serum albumin in order to improve their biocompatibility. This study focused on particle size distribution, zeta potential, encapsulation efficiency, loading capacity, and in vitro drug release at various concentrations of PVA (0.5%, 1%, 2%, and 3%). Results Reduced particle size of methotrexate-loaded nanoparticles was obtained using lower PVA concentrations. Enhanced encapsulation efficiency and loading capacity was obtained using 1% PVA. FT-IR characterization was conducted for the void polymer nanoparticles and for drug-loaded nanoparticles with methotrexate, and the protein-coated nanoparticles in solid state showed the structure of the plain PEG-PLA and the drug-loaded nanoparticles with methotrexate. The methotrexate-loaded PLA-PEG-PLA nanoparticles have been studied in vitro; the drug release, drug loading, and yield are reported. Conclusion The drug release profile was monitored over a period of 168 hours, and was free of burst effect before the protein coating. The results obtained from this work are promising; this work can be taken further to develop MTX based therapies.
Collapse
Affiliation(s)
- Salam Massadeh
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Developmental Medicine Department, King Abdul Aziz Medical City, Ministry of National Guard Health Affairs, Riyadh, KSA
- Salam Massadeh, Developmental Medicine Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health affairs, P.O Box 22490, Riyadh 11426, Kingdom of Saudi Arabia,
| | - Manal Alaamery
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Developmental Medicine Department, King Abdul Aziz Medical City, Ministry of National Guard Health Affairs, Riyadh, KSA
| | - Shatha Al-Qatanani
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Developmental Medicine Department, King Abdul Aziz Medical City, Ministry of National Guard Health Affairs, Riyadh, KSA
| | - Saqer Alarifi
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, College of Pharmacy, King Abdul Aziz Medical City, Ministry of National Guard Health Affairs, Riyadh, KSA
| | - Shahad Bawazeer
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Developmental Medicine Department, King Abdul Aziz Medical City, Ministry of National Guard Health Affairs, Riyadh, KSA
| | - Yusra Alyafee
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Developmental Medicine Department, King Abdul Aziz Medical City, Ministry of National Guard Health Affairs, Riyadh, KSA
| |
Collapse
|