1
|
Lu H, Xu Z, Shao L, Li P, Xia Y. High infiltration of immune cells with lower immune activity mediated the heterogeneity of gastric adenocarcinoma and promoted metastasis. Heliyon 2024; 10:e37092. [PMID: 39319155 PMCID: PMC11419928 DOI: 10.1016/j.heliyon.2024.e37092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/21/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Background Gastric adenocarcinoma (GA) is a heterogeneous malignancy with high invasion and metastasis. We aimed to explore the metastatic characteristics of GA using single-cell RNA-sequencing (scRNA-seq) analysis. Methods The scRNA-seq dataset was downloaded from the GEO database and the "Seurat" package was used to perform the scRNA-seq analysis. The CellMarker2.0 database provided gene markers. Subsequently, differentially expressed genes (DEGs) were identified using the FindMarkers function and subjected to enrichment analysis with the "ClusterProlifer". "GseaVis" package was used for visualizing the gene levels. Finally, the SCENIC analysis was performed for identifying key regulons. The expression level and functionality of the key genes were verified by quantitative real-time PCR (qRT-PCR), wound healing and transwell assays. Results A total of 7697 cells were divided into 8 cell subsets, in which the Cytotoxic NK/T cells, Myeloid cells and Myofibroblasts had higher proportion in the metastatic tissues. Further screening of DEGs and enrichment analysis revealed that in the metastatic tissues, NK cells, monocytes and inflammatory fibroblasts with low immune levels contributed to GA metastasis. In addition, this study identified a series of key immune-related regulons that mediated the lower immune activity of immune cells. Further in vitro experiment verified that CXCL8 was a key factor mediating the proliferation and migration of GA cells. Conclusion The scRNA-seq analysis showed that high infiltration of immune cells with lower immune activity mediated heterogeneity to contribute to GA metastasis.
Collapse
Affiliation(s)
- Hongpeng Lu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Zhihui Xu
- Department of Gastroenterology, Ninghai County Second Hospital, Ningbo, 315600, China
| | - Lihong Shao
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Peifei Li
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Yonghong Xia
- Department of Gastroenterology, Ninghai County Second Hospital, Ningbo, 315600, China
| |
Collapse
|
2
|
Abebayehu D, Pfaff BN, Bingham GC, Miller AE, Kibet M, Ghatti S, Griffin DR, Barker TH. A Thy-1-negative immunofibroblast population emerges as a key determinant of fibrotic outcomes to biomaterials. SCIENCE ADVANCES 2024; 10:eadf2675. [PMID: 38875340 PMCID: PMC11177936 DOI: 10.1126/sciadv.adf2675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/10/2024] [Indexed: 06/16/2024]
Abstract
Fibrosis-associated fibroblasts have been identified across various fibrotic disorders, but not in the context of biomaterials, fibrotic encapsulation, and the foreign body response. In other fibrotic disorders, a fibroblast subpopulation defined by Thy-1 loss is strongly correlated with fibrosis yet we do not know what promotes Thy-1 loss. We have previously shown that Thy-1 is an integrin regulator enabling normal fibroblast mechanosensing, and here, leveraging nonfibrotic microporous annealed particle (MAP) hydrogels versus classical fibrotic bulk hydrogels, we demonstrate that Thy1-/- mice mount a fibrotic response to MAP gels that includes inflammatory signaling. We found that a distinct and cryptic α-smooth muscle actin-positive Thy-1- fibroblast population emerges in response to interleuklin-1β (IL-1β) and tumor necrosis factor-α (TNFα). Furthermore, IL-1β/TNFα-induced Thy-1- fibroblasts consist of two distinct subpopulations that are strongly proinflammatory. These findings illustrate the emergence of a unique proinflammatory, profibrotic fibroblast subpopulation that is central to fibrotic encapsulation of biomaterials.
Collapse
Affiliation(s)
- Daniel Abebayehu
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Robert Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Blaise N. Pfaff
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Grace C. Bingham
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Andrew E. Miller
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Mathew Kibet
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Surabhi Ghatti
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Donald R. Griffin
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Thomas H. Barker
- Department of Biomedical Engineering, Schools of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Robert Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
3
|
Krzysiek-Maczka G, Brzozowski T, Ptak-Belowska A. Helicobacter pylori-activated fibroblasts as a silent partner in gastric cancer development. Cancer Metastasis Rev 2023; 42:1219-1256. [PMID: 37460910 PMCID: PMC10713772 DOI: 10.1007/s10555-023-10122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 12/18/2023]
Abstract
The discovery of Helicobacter pylori (Hp) infection of gastric mucosa leading to active chronic gastritis, gastroduodenal ulcers, and MALT lymphoma laid the groundwork for understanding of the general relationship between chronic infection, inflammation, and cancer. Nevertheless, this sequence of events is still far from full understanding with new players and mediators being constantly identified. Originally, the Hp virulence factors affecting mainly gastric epithelium were proposed to contribute considerably to gastric inflammation, ulceration, and cancer. Furthermore, it has been shown that Hp possesses the ability to penetrate the mucus layer and directly interact with stroma components including fibroblasts and myofibroblasts. These cells, which are the source of biophysical and biochemical signals providing the proper balance between cell proliferation and differentiation within gastric epithelial stem cell compartment, when exposed to Hp, can convert into cancer-associated fibroblast (CAF) phenotype. The crosstalk between fibroblasts and myofibroblasts with gastric epithelial cells including stem/progenitor cell niche involves several pathways mediated by non-coding RNAs, Wnt, BMP, TGF-β, and Notch signaling ligands. The current review concentrates on the consequences of Hp-induced increase in gastric fibroblast and myofibroblast number, and their activation towards CAFs with the emphasis to the altered communication between mesenchymal and epithelial cell compartment, which may lead to inflammation, epithelial stem cell overproliferation, disturbed differentiation, and gradual gastric cancer development. Thus, Hp-activated fibroblasts may constitute the target for anti-cancer treatment and, importantly, for the pharmacotherapies diminishing their activation particularly at the early stages of Hp infection.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Agata Ptak-Belowska
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland
| |
Collapse
|
4
|
Knipper K, Lyu SI, Quaas A, Bruns CJ, Schmidt T. Cancer-Associated Fibroblast Heterogeneity and Its Influence on the Extracellular Matrix and the Tumor Microenvironment. Int J Mol Sci 2023; 24:13482. [PMID: 37686288 PMCID: PMC10487587 DOI: 10.3390/ijms241713482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The tumor microenvironment comprises multiple cell types, like cancer cells, endothelial cells, fibroblasts, and immune cells. In recent years, there have been massive research efforts focusing not only on cancer cells, but also on other cell types of the tumor microenvironment, thereby aiming to expand and determine novel treatment options. Fibroblasts represent a heterogenous cell family consisting of numerous subtypes, which can alter immune cell fractions, facilitate or inhibit tumor growth, build pre-metastatic niches, or stabilize vessels. These effects can be achieved through cell-cell interactions, which form the extracellular matrix, or via the secretion of cytokines or chemokines. The pro- or antitumorigenic fibroblast phenotypes show variability not only among different cancer entities, but also among intraindividual sites, including primary tumors or metastatic lesions. Commonly prescribed for arterial hypertension, the inhibitors of the renin-angiotensin system have recently been described as having an inhibitory effect on fibroblasts. This inhibition leads to modified immune cell fractions and increased tissue stiffness, thereby contributing to overcoming therapy resistance and ultimately inhibiting tumor growth. However, it is important to note that the inhibition of fibroblasts can also have the opposite effect, potentially resulting in increased tumor growth. We aim to summarize the latest state of research regarding fibroblast heterogeneity and its intricate impact on the tumor microenvironment and extracellular matrix. Specifically, we focus on highlighting recent advancements in the comprehension of intraindividual heterogeneity and therapy options within this context.
Collapse
Affiliation(s)
- Karl Knipper
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (K.K.); (C.J.B.)
| | - Su Ir Lyu
- Institute of Pathology, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (S.I.L.); (A.Q.)
| | - Alexander Quaas
- Institute of Pathology, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (S.I.L.); (A.Q.)
| | - Christiane J. Bruns
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (K.K.); (C.J.B.)
| | - Thomas Schmidt
- Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (K.K.); (C.J.B.)
| |
Collapse
|
5
|
Jamal Eddin TM, Nasr SM, Gupta I, Zayed H, Al Moustafa AE. Helicobacter pylori and epithelial mesenchymal transition in human gastric cancers: An update of the literature. Heliyon 2023; 9:e18945. [PMID: 37609398 PMCID: PMC10440535 DOI: 10.1016/j.heliyon.2023.e18945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Gastric cancer, a multifactorial disease, is considered one of the most common malignancies worldwide. In addition to genetic and environmental risk factors, infectious agents, such as Epstein-Barr virus (EBV) and Helicobacter pylori (H.pylori) contribute to the onset and development of gastric cancer. H. pylori is a type I carcinogen that colonizes the gastric epithelium of approximately 50% of the world's population, thus increasing the risk of gastric cancer development. On the other hand, epithelial mesenchymal transition (EMT) is a fundamental process crucial to embryogenic growth, wound healing, organ fibrosis and cancer progression. Several studies associate gastric pathogen infection of the epithelium with EMT initiation, provoking cancer metastasis in the gastric mucosa through various molecular signaling pathways. Additionally, EMT is implicated in the progression and development of H. pylori-associated gastric cancer. In this review, we recapitulate recent findings elucidating the association between H. pylori infection in EMT promotion leading to gastric cancer progression and metastasis.
Collapse
Affiliation(s)
- Tala M. Jamal Eddin
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Shahd M.O. Nasr
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Ishita Gupta
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Hatem Zayed
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Biomedical Research Center, Qatar University, PO Box 2713, Doha, Qatar
- Oncology Department, Faculty of Medicine, McGill University, Montreal, QC, H3G 2M1, Canada
| |
Collapse
|
6
|
Lunina NA, Safina DR. Intercellular Interactions in the Tumor Stroma and Their Role in Oncogenesis. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2022. [DOI: 10.3103/s0891416822040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
7
|
Deng R, Zheng H, Cai H, Li M, Shi Y, Ding S. Effects of helicobacter pylori on tumor microenvironment and immunotherapy responses. Front Immunol 2022; 13:923477. [PMID: 35967444 PMCID: PMC9371381 DOI: 10.3389/fimmu.2022.923477] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/04/2022] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori is closely associated with gastric cancer. During persistent infection, Helicobacter pylori can form a microenvironment in gastric mucosa which facilitates the survival and colony formation of Helicobacter pylori. Tumor stromal cells are involved in this process, including tumor-associated macrophages, mesenchymal stem cells, cancer-associated fibroblasts, and myeloid-derived suppressor cells, and so on. The immune checkpoints are also regulated by Helicobacter pylori infection. Helicobacter pylori virulence factors can also act as immunogens or adjuvants to elicit or enhance immune responses, indicating their potential applications in vaccine development and tumor immunotherapy. This review highlights the effects of Helicobacter pylori on the immune microenvironment and its potential roles in tumor immunotherapy responses.
Collapse
Affiliation(s)
- Ruiyi Deng
- Peking University Third Hospital, Research Center of Clinical Epidemiology, Beijing, China
- Peking University Health Science Center, Peking University First Medical School, Beijing, China
| | - Huiling Zheng
- Peking University Third Hospital, Department of Gastroenterology, Beijing, China
| | - Hongzhen Cai
- Peking University Third Hospital, Research Center of Clinical Epidemiology, Beijing, China
- Peking University Health Science Center, Peking University First Medical School, Beijing, China
| | - Man Li
- Peking University Third Hospital, Research Center of Clinical Epidemiology, Beijing, China
- Peking University Health Science Center, Peking University Third Medical School, Beijing, China
| | - Yanyan Shi
- Peking University Third Hospital, Research Center of Clinical Epidemiology, Beijing, China
| | - Shigang Ding
- Peking University Third Hospital, Department of Gastroenterology, Beijing, China
| |
Collapse
|
8
|
Xiong S, Whitehurst CE, Li L, Heo GS, Lai CW, Jain U, Muegge BD, Espenschied ST, Musich RJ, Chen M, Liu Y, Liu TC, Stappenbeck TS. Reverse translation approach generates a signature of penetrating fibrosis in Crohn's disease that is associated with anti-TNF response. Gut 2022; 71:1289-1301. [PMID: 34261752 DOI: 10.1136/gutjnl-2020-323405] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Fibrosis is a common feature of Crohn's disease (CD) which can involve the mesenteric fat. However, the molecular signature of this process remains unclear. Our goal was to define the transcriptional signature of mesenteric fibrosis in CD subjects and to model mesenteric fibrosis in mice to improve our understanding of CD pathogenesis. DESIGN We performed histological and transcriptional analysis of fibrosis in CD samples. We modelled a CD-like fibrosis phenotype by performing repeated colonic biopsies in mice and analysed the model by histology, type I collagen-targeted positron emission tomography (PET) and global gene expression. We generated a gene set list of essential features of mesenteric fibrosis and compared it to mucosal biopsy datasets from inflammatory bowel disease patients to identify a refined gene set that correlated with clinical outcomes. RESULTS Mesenteric fibrosis in CD was interconnected to areas of fibrosis in all layers of the intestine, defined as penetrating fibrosis. We found a transcriptional signature of differentially expressed genes enriched in areas of the mesenteric fat of CD subjects with high levels of fibrosis. Mice subjected to repeated colonic biopsies showed penetrating fibrosis as shown by histology, PET imaging and transcriptional analysis. Finally, we composed a composite 24-gene set list that was linked to inflammatory fibroblasts and correlated with treatment response. CONCLUSION We linked histopathological and molecular features of CD penetrating fibrosis to a mouse model of repeated biopsy injuries. This experimental system provides an innovative approach for functional investigations of underlying profibrotic mechanisms and therapeutic concepts in CD.
Collapse
Affiliation(s)
- Shanshan Xiong
- Department of Gastroenterology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Charles E Whitehurst
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Li Li
- Department of Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Gyu Seong Heo
- Washington University in St Louis, St Louis, Missouri, USA
| | - Chin-Wen Lai
- Washington University in St Louis, St Louis, Missouri, USA
| | - Umang Jain
- Washington University in St Louis, St Louis, Missouri, USA
| | - Brian D Muegge
- Washington University in St Louis, St Louis, Missouri, USA
| | | | - Ryan J Musich
- Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Minhu Chen
- Department of Gastroenterology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Yongjian Liu
- Washington University in St Louis, St Louis, Missouri, USA
| | - Ta-Chiang Liu
- Department of Pathology and Immunology, Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | | |
Collapse
|
9
|
Inflammation and Gastric Cancer. Diseases 2022; 10:diseases10030035. [PMID: 35892729 PMCID: PMC9326573 DOI: 10.3390/diseases10030035] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 11/17/2022] Open
Abstract
Gastric cancer remains a major killer globally, although its incidence has declined over the past century. It is the fifth most common cancer and the third most common reason for cancer-related deaths worldwide. Gastric cancer is the outcome of a complex interaction between environmental, host genetic, and microbial factors. There is significant evidence supporting the association between chronic inflammation and the onset of cancer. This association is particularly robust for gastrointestinal cancers in which microbial pathogens are responsible for the chronic inflammation that can be a triggering factor for the onset of those cancers. Helicobacter pylori is the most prominent example since it is the most widespread infection, affecting nearly half of the world’s population. It is well-known to be responsible for inducing chronic gastric inflammation progressing to atrophy, metaplasia, dysplasia, and eventually, gastric cancer. This review provides an overview of the association of the factors playing a role in chronic inflammation; the bacterial characteristics which are responsible for the colonization, persistence in the stomach, and triggering of inflammation; the microbiome involved in the chronic inflammation process; and the host factors that have a role in determining whether gastritis progresses to gastric cancer. Understanding these interconnections may improve our ability to prevent gastric cancer development and enhance our understanding of existing cases.
Collapse
|
10
|
Li J, Guo T. Role of Peritoneal Mesothelial Cells in the Progression of Peritoneal Metastases. Cancers (Basel) 2022; 14:2856. [PMID: 35740521 PMCID: PMC9221366 DOI: 10.3390/cancers14122856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Peritoneal metastatic cancer comprises a heterogeneous group of primary tumors that originate in the peritoneal cavity or metastasize into the peritoneal cavity from a different origin. Metastasis is a characteristic of end-stage disease, often indicative of a poor prognosis with limited treatment options. Peritoneal mesothelial cells (PMCs) are a thin layer of cells present on the surface of the peritoneum. They display differentiated characteristics in embryonic development and adults, representing the first cell layer encountering peritoneal tumors to affect their progression. PMCs have been traditionally considered a barrier to the intraperitoneal implantation and metastasis of tumors; however, recent studies indicate that PMCs can either inhibit or actively promote tumor progression through distinct mechanisms. This article presents a review of the role of PMCs in the progression of peritoneum implanted tumors, offering new ideas for therapeutic targets and related research.
Collapse
Affiliation(s)
- Junliang Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China;
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tiankang Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China;
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
| |
Collapse
|
11
|
Mahhengam N, Kazemnezhad K, Setia Budi H, Ansari MJ, Olegovich Bokov D, Suksatan W, Thangavelu L, Siahmansouri H. Targeted therapy of tumor microenvironment by gold nanoparticles as a new therapeutic approach. J Drug Target 2022; 30:494-510. [DOI: 10.1080/1061186x.2022.2032095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Negah Mahhengam
- Faculty of General Medicine, Belarusian State Medical University, Minsk, Belarus.
| | - Kimia Kazemnezhad
- Faculty of General Medicine, Belarusian State Medical University, Minsk, Belarus.
| | - Hendrik Setia Budi
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University,Al-kharj, Saudi Arabia.
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation.
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand.
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India.
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Bolourani S, Sari E, Brenner M, Wang P. Extracellular CIRP Induces an Inflammatory Phenotype in Pulmonary Fibroblasts via TLR4. Front Immunol 2021; 12:721970. [PMID: 34367191 PMCID: PMC8342891 DOI: 10.3389/fimmu.2021.721970] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022] Open
Abstract
Extracellular cold-inducible RNA-binding protein (eCIRP), a new damage-associated molecular pattern (DAMP), has been recently shown to play a critical role in promoting the development of bleomycin-induced pulmonary fibrosis. Although fibroblast activation is a critical component of the fibrotic process, the direct effects of eCIRP on fibroblasts have never been examined. We studied eCIRP’s role in the induction of inflammatory phenotype in pulmonary fibroblasts and its connection to bleomycin-induced pulmonary fibrosis in mice. We found that eCIRP causes the induction of proinflammatory cytokines and differentially expression-related pathways in a TLR4-dependent manner in pulmonary fibroblasts. Our analysis further showed that the accessory pathways MD2 and Myd88 are involved in the induction of inflammatory phenotype. In order to study the connection of the enrichment of these pathways in priming the microenvironment for pulmonary fibrosis, we investigated the gene expression profile of lung tissues from mice subjected to bleomycin-induced pulmonary fibrosis collected at various time points. We found that at day 14, which corresponds to the inflammatory-to-fibrotic transition phase after bleomycin injection, TLR4, MD2, and Myd88 were induced, and the transcriptome was differentially enriched for genes in those pathways. Furthermore, we also found that inflammatory cytokines gene expressions were induced, and the cellular responses to these inflammatory cytokines were differentially enriched on day 14. Overall, our results show that eCIRP induces inflammatory phenotype in pulmonary fibroblasts in a TLR4 dependent manner. This study sheds light on the mechanism by which eCIRP induced inflammatory fibroblasts, contributing to pulmonary fibrosis.
Collapse
Affiliation(s)
- Siavash Bolourani
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ezgi Sari
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Max Brenner
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.,Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.,Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
13
|
Radaei Z, Zamani A, Najafi R, Saidijam M, Jalilian FA, Ezati R, Solgi G, Amini R. Promising Effects of Zerumbone on the Regulation of Tumor-promoting Cytokines Induced by TNF-α-activated Fibroblasts. Curr Med Sci 2021; 40:1075-1084. [PMID: 33428135 DOI: 10.1007/s11596-020-2289-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/26/2019] [Indexed: 11/28/2022]
Abstract
Inflammation plays an important role in the development of several cancers. Inflammatory cytokines, including tumor necrosis factor-α (TNF-α), are associated with the induction of inflammation. Chronic inflammation contributes to the progression of cancer through several mechanisms, including increased cytokine production and activation of transcription factors, such as nuclear factor-κB (NF-κB). Zerumbone (ZER), a component of subtropical ginger (Zingiber zerumbet Smith), seems to have anti-inflammatory, anti-cancer, and antioxidant activities. In this study, we aimed to explore the protective function and mechanisms of ZER against TNF-α-induced cancer-promoting cytokines. We found that the viability of stimulated human fibroblast cell lines was reduced after treatment with ZER (IC50=18 µmol/L), compared to un-stimulated fibroblasts (IC50=40 µmol/L). Besides, ZER inhibited mRNA expression and protein secretion of transforming growth factor-β (TGF-β), interleukin-33 (IL-33), monocyte chemoattractant protein-1 (MCP-1), and stromal cell-derived factor 1 (SDF-1), which were produced by TNF-α-induced fibroblasts, as measured by quantitative real time-PCR (qRT-PCR) and ELISA assays. The mRNA expression levels of TGF-β, IL-33, SDF-1, and MCP-1 showed 8, 5, 2.5, and 4-fold reductions, respectively. Moreover, secretion of TGF-β, IL-33, SDF-1, and MCP-1 was reduced to 3.65±0.34 ng/mL, 6.3±0.26, 1703.6±295.2, and 5.02±0.18 pg/mL, respectively, compared to the untreated group. In addition, the conditioned media (CM) of TNF-α-stimulated fibroblasts increased the NF-κB expression in colorectal cancer cell lines (HCT-116 and Sw48), while in the vicinity of ZER, the expression of NF-κB was reversed. Considering the significant effects of ZER, this component can be used as an appropriate alternative herbal treatment for cancer-related chronic inflammation.
Collapse
Affiliation(s)
- Zahra Radaei
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 65178, Iran
| | - Alireza Zamani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 65178, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, 65178, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, 65178, Iran
| | - Farid Azizi Jalilian
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 65178, Iran
| | - Razieh Ezati
- Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, 14965, Iran
| | - Ghasem Solgi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, 65178, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, 65178, Iran.
| |
Collapse
|
14
|
Long-Term Helicobacter pylori Infection Switches Gastric Epithelium Reprogramming Towards Cancer Stem Cell-Related Differentiation Program in Hp-Activated Gastric Fibroblast-TGFβ Dependent Manner. Microorganisms 2020; 8:microorganisms8101519. [PMID: 33023180 PMCID: PMC7599721 DOI: 10.3390/microorganisms8101519] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori (Hp)-induced inflammatory reaction leads to a persistent disturbance of gastric mucosa and chronic gastritis evidenced by deregulation of tissue self-renewal and local fibrosis with the crucial role of epithelial–mesenchymal transition (EMT) in this process. As we reported before, Hp activated gastric fibroblasts into cells possessing cancer-associated fibroblast properties (CAFs), which secreted factors responsible for EMT process initiation in normal gastric epithelial RGM1 cells. Here, we showed that the long-term incubation of RGM1 cells in the presence of Hp-activated gastric fibroblast (Hp-AGF) secretome induced their shift towards plastic LGR5+/Oct4high/Sox-2high/c-Mychigh/Klf4low phenotype (l.t.EMT+RGM1 cells), while Hp-non-infected gastric fibroblast (GF) secretome prompted a permanent epithelial–myofibroblast transition (EMyoT) of RGM1 cells favoring LGR−/Oct4high/Sox2low/c-Myclow/Klf4high phenotype (l.t.EMT−RGM1 cells). TGFβ1 rich secretome from Hp-reprogrammed fibroblasts prompted phenotypic plasticity and EMT of gastric epithelium, inducing pro-neoplastic expansion of post-EMT cells in the presence of low TGFβR1 and TGFβR2 activity. In turn, TGFβR1 activity along with GF-induced TGFβR2 activation in l.t.EMT−RGM1 cells prompted their stromal phenotype. Collectively, our data show that infected and non-infected gastric fibroblast secretome induces alternative differentiation programs in gastric epithelium at least partially dependent on TGFβ signaling. Hp infection-activated fibroblasts can switch gastric epithelium microevolution towards cancer stem cell-related differentiation program that can potentially initiate gastric neoplasm.
Collapse
|
15
|
Shoucair I, Weber Mello F, Jabalee J, Maleki S, Garnis C. The Role of Cancer-Associated Fibroblasts and Extracellular Vesicles in Tumorigenesis. Int J Mol Sci 2020; 21:ijms21186837. [PMID: 32957712 PMCID: PMC7555043 DOI: 10.3390/ijms21186837] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) play a key role in the communication between cancer cells and stromal components of the tumor microenvironment (TME). In this context, cancer cell-derived EVs can regulate the activation of a CAF phenotype in TME cells, which can be mediated by several EV cargos (e.g., miRNA, proteins, mRNA and lncRNAs). On the other hand, CAF-derived EVs can mediate several processes during tumorigenesis, including tumor growth, invasion, metastasis, and therapy resistance. This review aimed to discuss the molecular aspects of EV-based cross-talk between CAFs and cancer cells during tumorigenesis, in addition to assessing the roles of EV cargo in therapy resistance and pre-metastatic niche formation.
Collapse
Affiliation(s)
- Issraa Shoucair
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Fernanda Weber Mello
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
- Postgraduate Program in Dentistry, Federal University of Santa Catarina, Florianópolis 88.040-370, Brazil
| | - James Jabalee
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Saeideh Maleki
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; (I.S.); (F.W.M.); (J.J.); (S.M.)
| | - Cathie Garnis
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Correspondence:
| |
Collapse
|
16
|
Mechanisms of the Epithelial-Mesenchymal Transition and Tumor Microenvironment in Helicobacter pylori-Induced Gastric Cancer. Cells 2020; 9:cells9041055. [PMID: 32340207 PMCID: PMC7225971 DOI: 10.3390/cells9041055] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is one of the most common human pathogens, affecting half of the world’s population. Approximately 20% of the infected patients develop gastric ulcers or neoplastic changes in the gastric stroma. An infection also leads to the progression of epithelial–mesenchymal transition within gastric tissue, increasing the probability of gastric cancer development. This paper aims to review the role of H. pylori and its virulence factors in epithelial–mesenchymal transition associated with malignant transformation within the gastric stroma. The reviewed factors included: CagA (cytotoxin-associated gene A) along with induction of cancer stem-cell properties and interaction with YAP (Yes-associated protein pathway), tumor necrosis factor α-inducing protein, Lpp20 lipoprotein, Afadin protein, penicillin-binding protein 1A, microRNA-29a-3p, programmed cell death protein 4, lysosomal-associated protein transmembrane 4β, cancer-associated fibroblasts, heparin-binding epidermal growth factor (HB-EGF), matrix metalloproteinase-7 (MMP-7), and cancer stem cells (CSCs). The review summarizes the most recent findings, providing insight into potential molecular targets and new treatment strategies for gastric cancer.
Collapse
|
17
|
Das D, Fayazzadeh E, Li X, Koirala N, Wadera A, Lang M, Zernic M, Panick C, Nesbitt P, McLennan G. Quiescent hepatic stellate cells induce toxicity and sensitivity to doxorubicin in cancer cells through a caspase-independent cell death pathway: Central role of apoptosis-inducing factor. J Cell Physiol 2020; 235:6167-6182. [PMID: 31975386 DOI: 10.1002/jcp.29545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/03/2020] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major health problem worldwide and in the United States as its incidence has increased substantially within the past two decades. HCC therapy remains a challenge, primarily due to underlying liver disorders such as cirrhosis that determines treatment approach and efficacy. Activated hepatic stellate cells (A-HSCs) are the key cell types involved in hepatic fibrosis/cirrhosis. A-HSCs are important constituents of HCC tumor microenvironment (TME) and support tumor growth, chemotherapy resistance, cancer cell migration, and escaping immune surveillance. This makes A-HSCs an important therapeutic target in hepatic fibrosis/cirrhosis as well as in HCC. Although many studies have reported the role of A-HSCs in cancer generation and investigated the therapeutic potential of A-HSCs reversion in cancer arrest, not much is known about inactivated or quiescent HSCs (Q-HSCs) in cancer growth or arrest. Here we report that Q-HSCs resist cancer cell growth by inducing cytotoxicity and enhancing chemotherapy sensitivity. We observed that the conditioned media from Q-HSCs (Q-HSCCM) induces cancer cell death through a caspase-independent mechanism that involves an increase in apoptosis-inducing factor expression, nuclear localization, DNA fragmentation, and cell death. We further observed that Q-HSCCM enhanced the efficiency of doxorubicin, as measured by cell viability assay. Exosomes present in the conditioned media were not involved in the mechanism, which suggests the role of other factors (proteins, metabolites, or microRNA) secreted by the cells. Identification and characterization of these factors are important in the development of effective HCC therapy.
Collapse
Affiliation(s)
- Dola Das
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ehsan Fayazzadeh
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Section of Vascular and Interventional Radiology, Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, Ohio
| | - Xin Li
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nischal Koirala
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio
| | - Akshay Wadera
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,School of Medicine, New York Medical College, Valhalla, New York
| | - Min Lang
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maximilian Zernic
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Catherine Panick
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Dotter Department of Interventional Radiology, Oregon Health and Science University, Portland, Oregon
| | - Pete Nesbitt
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania
| | - Gordon McLennan
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Section of Vascular and Interventional Radiology, Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
18
|
Gorgel SN, Akin Y, Koc EM, Kose O, Ozcan S, Yilmaz Y. Retrospective study of systemic immune-inflammation index in muscle invasive bladder cancer: initial results of single centre. Int Urol Nephrol 2019; 52:469-473. [PMID: 31659597 DOI: 10.1007/s11255-019-02325-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022]
Abstract
PURPOSES We aimed to evaluate the prognostic value of the preoperative systemic immune-inflammation index (SII) in patients who underwent radical cystectomy due to muscle invasive bladder cancer (MIBC). METHODS We researched our cystectomy database between April 2006 and December 2018. Demographic data, operation and postoperative data were recorded. There were 191 MIBC patients who underwent radical cystectomy. After detailed analyses, preoperative SII was calculated by the formula as "(neutrophil) × (platelet)/(lymphocyte)". Cancer-specific survival (CSS) and overall survival (OS) were examined. The prognostic value of SII was analysed with univariate and multivariate Cox proportional hazards regression models. Receiver operating characteristic (ROC) was used to determine the optimum SII. Significant P was P < 0.05. RESULTS The mean follow-up was 37 ± 6.7 months. The mean age of patients was 62.1 ± 9 years. The optimal cutoff value of SII was determined as 843 in ROC curve (area under the curve: 0.9; P < 0.001). The CSS and OS were significantly poor in patients with higher SII level (respectively; P < 0.001, P = 0.04). Gender, lymph node involvement, pathologic stage, grade and SII were statistically significant in multivariate Cox proportional hazards regression model for CSS. CONCLUSIONS Preoperative elevated SII could be an independent prognostic factor in MIBC patients who underwent radical cystectomy. If SII > 843, CSS might be poor. Our results should be confirmed with randomised-controlled prospectively designed future studies with large cohorts.
Collapse
Affiliation(s)
- Sacit Nuri Gorgel
- Department of Urology, Izmir Katip Celebi University School of Medicine, 35620, Izmir, Turkey
| | - Yigit Akin
- Department of Urology, Izmir Katip Celebi University School of Medicine, 35620, Izmir, Turkey.
| | - Esra Meltem Koc
- Department of Family Medicine, Izmir Katip Celebi University School of Medicine, Izmir, Turkey
| | - Osman Kose
- Department of Urology, Izmir Katip Celebi University School of Medicine, 35620, Izmir, Turkey
| | - Serkan Ozcan
- Department of Urology, Izmir Katip Celebi University School of Medicine, 35620, Izmir, Turkey
| | - Yuksel Yilmaz
- Department of Urology, Izmir Katip Celebi University School of Medicine, 35620, Izmir, Turkey
| |
Collapse
|
19
|
Krzysiek-Maczka G, Wrobel T, Targosz A, Szczyrk U, Strzalka M, Ptak-Belowska A, Czyz J, Brzozowski T. Helicobacter pylori-activated gastric fibroblasts induce epithelial-mesenchymal transition of gastric epithelial cells in vitro in a TGF-β-dependent manner. Helicobacter 2019; 24:e12653. [PMID: 31411795 DOI: 10.1111/hel.12653] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Colonization of the gastric mucosa with Helicobacter pylori (Hp) leads to the cascade of pathologic events including local inflammation, gastric ulceration, and adenocarcinoma formation. Paracrine loops between tissue cells and Hp contribute to the formation of gastric cancerous loci; however, the specific mechanisms underlying existence of these loops remain unknown. We determined the phenotypic properties of gastric fibroblasts exposed to Hp (cagA+vacA+) infection and their influence on normal epithelial RGM-1 cells. MATERIALS AND METHODS RGM-1 cells were cultured in the media conditioned with Hp-activated gastric fibroblasts. Their morphology and phenotypical changes associated with epithelial-mesenchymal transition (EMT) were assessed by Nomarski and fluorescence microscopy and Western blot analysis. Motility pattern of RGM-1 cells was examined by time-lapse video microscopy and transwell migration assay. The content of TGF-β in Hp-activated fibroblast-conditioned media was determined by ELISA. RESULTS The supernatant from Hp-activated gastric fibroblasts caused the EMT-like phenotypic diversification of RGM-1 cells. The formation of fibroblastoid cell sub-populations, the disappearance of their collective migration, an increase in transmigration potential with downregulation of E-cadherin and upregulation of N-cadherin proteins, prominent stress fibers, and decreased proliferation were observed. The fibroblast (CAF)-like transition was manifested by increased secretome TGF-β level, α-SMA protein expression, and its incorporation into stress fibers, and the TGF-βR1 kinase inhibitor reduced the rise in Snail, Twist, and E-cadherin mRNA and increased E-cadherin expression induced by CAFs. CONCLUSION Gastric fibroblasts which are one of the main targets for Hp infection contribute to the paracrine interactions between Hp, gastric fibroblasts, and epithelial cells. TGF-β secreted by Hp-activated gastric fibroblasts prompting their differentiation toward CAF-like phenotype promotes the EMT-related phenotypic shifts in normal gastric epithelial cell populations. This mechanism may serve as the prerequisite for GC development.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Wrobel
- Department of Cell Biology, The Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Aneta Targosz
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Urszula Szczyrk
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Malgorzata Strzalka
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Agata Ptak-Belowska
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Jaroslaw Czyz
- Department of Cell Biology, The Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
20
|
Liao Z, Tan ZW, Zhu P, Tan NS. Cancer-associated fibroblasts in tumor microenvironment – Accomplices in tumor malignancy. Cell Immunol 2019; 343:103729. [DOI: https:/doi.org/10.1016/j.cellimm.2017.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
21
|
Di Benedetto P, Ruscitti P, Liakouli V, Del Galdo F, Giacomelli R, Cipriani P. Linking myofibroblast generation and microvascular alteration: The role of CD248 from pathogenesis to therapeutic target (Review). Mol Med Rep 2019; 20:1488-1498. [PMID: 31257535 DOI: 10.3892/mmr.2019.10429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/29/2019] [Indexed: 11/06/2022] Open
Abstract
Fibrosis is characterized by excessive extracellular matrix (ECM) deposition, and is the pathological outcome of tissue injury in a number of disorders. Accumulation of the ECM may disrupt the structure and function of native tissues and organs, including the lungs, heart, liver and skin, resulting in significant morbidity and mortality. On this basis, multiple lines of evidence have focused on the molecular pathways and cellular mechanisms involved in fibrosis, which has led to the development of novel antifibrotic therapies. CD248 is one of several proteins identified to be localized to the stromal compartment in cancers and fibroproliferative disease, and may serve a key role in myofibroblast generation and accumulation. Numerous studies have supported the contribution of CD248 to tumour growth and fibrosis, stimulating interest in this molecule as a therapeutic target. In addition, it has been revealed that CD248 may be involved in pathological angiogenesis. The present review describes the current understanding of the structure and function of CD248 during angiogenesis and fibrosis, supporting the hypothesis that blocking CD248 signalling may prevent both myofibroblast generation and microvascular alterations during tissue fibrosis.
Collapse
Affiliation(s)
- Paola Di Benedetto
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, L'Aquila I‑67100, Italy
| | - Piero Ruscitti
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, L'Aquila I‑67100, Italy
| | - Vasiliki Liakouli
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, L'Aquila I‑67100, Italy
| | - Francesco Del Galdo
- Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Roberto Giacomelli
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, L'Aquila I‑67100, Italy
| | - Paola Cipriani
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, L'Aquila I‑67100, Italy
| |
Collapse
|
22
|
Nissen NI, Karsdal M, Willumsen N. Collagens and Cancer associated fibroblasts in the reactive stroma and its relation to Cancer biology. J Exp Clin Cancer Res 2019; 38:115. [PMID: 30841909 PMCID: PMC6404286 DOI: 10.1186/s13046-019-1110-6] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/15/2019] [Indexed: 12/18/2022] Open
Abstract
The extracellular matrix (ECM) plays an important role in cancer progression. It can be divided into the basement membrane (BM) that supports epithelial/endothelial cell behavior and the interstitial matrix (IM) that supports the underlying stromal compartment. The major components of the ECM are the collagens. While breaching of the BM and turnover of e.g. type IV collagen, is a well described part of tumorigenesis, less is known regarding the impact on tumorigenesis from the collagens residing in the stroma. Here we give an introduction and overview to the link between tumorigenesis and stromal collagens, with focus on the fibrillar collagens type I, II, III, V, XI, XXIV and XXVII as well as type VI collagen. Moreover, we discuss the impact of the cells responsible for this altered stromal collagen remodeling, the cancer associated fibroblasts (CAFs), and how these cells are key players in orchestrating the tumor microenvironment composition and tissue microarchitecture, hence also driving tumorigenesis and affecting response to treatment. Lastly, we discuss how specific collagen-derived biomarkers reflecting the turnover of stromal collagens and CAF activity may be used as tools to non-invasively interrogate stromal reactivity in the tumor microenvironment and predict response to treatment.
Collapse
Affiliation(s)
- Neel I. Nissen
- Biomarkers and Research, Nordic Bioscience A/S, Herlev Hovedgade 205-207, 2730 Herlev, Denmark
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Morten Karsdal
- Biomarkers and Research, Nordic Bioscience A/S, Herlev Hovedgade 205-207, 2730 Herlev, Denmark
| | - Nicholas Willumsen
- Biomarkers and Research, Nordic Bioscience A/S, Herlev Hovedgade 205-207, 2730 Herlev, Denmark
| |
Collapse
|
23
|
Lin HW, Wang PH, Lee CY, Huang JY, Yang SF, Hsiao YH. The Risk of Gynecologic and Urinary Tract Cancer with Pelvic Inflammatory Disease: A Population-Based Cohort Study. J Cancer 2019; 10:28-34. [PMID: 30662522 PMCID: PMC6329849 DOI: 10.7150/jca.29278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/05/2018] [Indexed: 11/14/2022] Open
Abstract
Purpose: The aim of the study was to determine the association between pelvic inflammatory disease (PID) and breast, colorectal, gynecologic and urinary tract cancer. Methods: The source of data was a longitudinal dataset compiled by the Longitudinal Health Insurance Database 2000 (LHID2000) which was collected by the National Health Insurance program. Cases of PID, at least two outpatient visits and one admission, were diagnosed from 2000 to 2013. The data for controls, age matched women who were not diagnosed with PID from 2000 to 2013, were also obtained. Results: A total of 47,333 PID cases and 189,332 for control group were included in the study. The ectopic pregnancy incidence rate (per 10000 person months) was 1.912 and 0.595 in the PID and control group, respectively; the rate ratio was 3.211 (confidence interval, CI = 2.931-3.519). There were significantly different in gynecologic cancers and urinary tract cancers between the PID and control group; the rate ratios (95% C.I.) were 1.903 (1.672-2.166) and 1.566 (1.211-2.025), respectively. Conclusion: Our study found that PID was associated with increased risks of gynecologic and urinary tract cancer but not colorectal or breast cancer. The information may lead to a strategy for cancer prevention and a reasonable healthcare usage through understanding PID epidemiology and controlling the inflammatory responses.
Collapse
Affiliation(s)
- Hui-Wen Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Family Medicine, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chung-Yuan Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chiayi Chang Gung Memorial Hospital Chiayi, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, Chiayi, Taiwan
| | - Jing-Yang Huang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsuan Hsiao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| |
Collapse
|
24
|
Krzysiek‐Maczka G, Targosz A, Szczyrk U, Strzałka M, Sliwowski Z, Brzozowski T, Czyz J, Ptak‐Belowska A. Role of Helicobacter pylori infection in cancer-associated fibroblast-induced epithelial-mesenchymal transition in vitro. Helicobacter 2018; 23:e12538. [PMID: 30246423 PMCID: PMC6282800 DOI: 10.1111/hel.12538] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Major human gastrointestinal pathogen Helicobacter pylori (H. pylori) colonizes the gastric mucosa causing inflammation and severe complications including cancer, but the involvement of fibroblasts in the pathogenesis of these disorders in H. pylori-infected stomach has been little studied. Normal stroma contains few fibroblasts, especially myofibroblasts. Their number rapidly increases in the reactive stroma surrounding inflammatory region and neoplastic tissue; however, the interaction between H. pylori and fibroblasts remains unknown. We determined the effect of coincubation of normal rat gastric fibroblasts with alive H. pylori (cagA+vacA+) and H. pylori (cagA-vacA-) strains on the differentiation of these fibroblasts into cells possessing characteristics of cancer-associated fibroblasts (CAFs) able to induce epithelial-mesenchymal transition (EMT) of normal rat gastric epithelial cells (RGM-1). MATERIALS AND METHODS The panel of CAFs markers mRNA was analyzed in H. pylori (cagA+vacA+)-infected fibroblasts by RT-PCR. After insert coculture of differentiated fibroblasts with RGM-1 cells from 24 up to 48, 72, and 96 hours, the mRNA expression for EMT-associated genes was analyzed by RT-PCR. RESULTS The mRNA expression for CAFs markers was significantly increased after 72 hours of infection with H. pylori (cagA+vacA+) but not H. pylori (cagA-vacA-) strain. Following coculture with CAFs, RGM-1 cells showed significant decrease in E-cadherin mRNA, and the parallel increase in the expression of Twist and Snail transcription factors mRNA was observed along with the overexpression of mRNAs for TGFβR, HGFR, FGFR, N-cadherin, vimentin, α-SMA, VEGF, and integrin-β1. CONCLUSION Helicobacter pylori (cagA+vacA+) strain induces differentiation of normal fibroblasts into CAFs, likely to initiate the EMT process in RGM-1 epithelial cell line.
Collapse
Affiliation(s)
- Gracjana Krzysiek‐Maczka
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Aneta Targosz
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Urszula Szczyrk
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Malgorzata Strzałka
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Zbigniew Sliwowski
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Tomasz Brzozowski
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Jarosław Czyz
- Department of Cell BiologyThe Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityCracowPoland
| | - Agata Ptak‐Belowska
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| |
Collapse
|
25
|
Lee S, Lee E, Ko E, Ham M, Lee HM, Kim ES, Koh M, Lim HK, Jung J, Park SY, Moon A. Tumor-associated macrophages secrete CCL2 and induce the invasive phenotype of human breast epithelial cells through upregulation of ERO1-α and MMP-9. Cancer Lett 2018; 437:25-34. [PMID: 30165193 DOI: 10.1016/j.canlet.2018.08.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/25/2018] [Accepted: 08/21/2018] [Indexed: 12/19/2022]
Abstract
Tumor-associated macrophages (TAMs) are major components of tumor microenvironment that promote invasion and metastasis of cancer cells. In this study, we investigated the effect of TAMs on phenotypic conversion of non-neoplastic MCF10A human breast epithelial cells using an indirect co-culture system. Co-culture with TAMs induced epithelial-to-mesenchymal transition, invasive phenotype, and MMP-9 upregulation in MCF10A cells. Comparative proteomic analysis revealed that endoplasmic reticulum oxidoreductase (ERO)1-α was increased in MCF10A cells co-cultured with TAMs compared to that in mono-cultured cells. ERO1-α was crucial for TAMs-induced invasive phenotype and MMP-9 upregulation involving transcription factors c-fos and c-Jun. Cytokine array analysis showed that levels of interleukin (IL)-6, C-X-C motif ligand (CXCL)1, C-C motif ligand (CCL)2, growth-regulated protein (GRO), IL-8, and granulocyte-macrophage colony-stimulating factor (GM-CSF) were increased in conditioned media of co-cultured cells. Among these cytokines increased in conditioned media of co-cultured cells, CCL2 was secreted from TAMs, leading to induction of ERO1-α, MMP-9 upregulation, and invasiveness in MCF10A cells. Our findings elucidated a molecular mechanism underlying the aggressive phenotypic change of non-neoplastic breast cells by co-culture with TAMs, providing useful information for prevention or treatment of recurrent breast cancer.
Collapse
Affiliation(s)
- Seungeun Lee
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Eunhye Lee
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - EunYi Ko
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Mina Ham
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Hye Min Lee
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Eun-Sook Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Minsoo Koh
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Hyun Kyung Lim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Joohee Jung
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea.
| |
Collapse
|
26
|
Crosstalk between cancer cells and endothelial cells: implications for tumor progression and intervention. Arch Pharm Res 2018; 41:711-724. [DOI: 10.1007/s12272-018-1051-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
|
27
|
Cancer-associated fibroblasts in tumor microenvironment - Accomplices in tumor malignancy. Cell Immunol 2018; 343:103729. [PMID: 29397066 DOI: 10.1016/j.cellimm.2017.12.003] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/15/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022]
Abstract
There is much cellular heterogeneity in the tumor microenvironment. The tumor epithelia and stromal cells co-evolve, and this reciprocal relationship dictates almost every step of cancer development and progression. Despite this, many anticancer therapies are designed around druggable features of tumor epithelia, ignoring the supportive role of stromal cells. Cancer-associated fibroblasts (CAFs) are the dominant cell type within the reactive stroma of many tumor types. Numerous previous studies have highlighted a pro-tumorigenic role for CAFs via secretion of various growth factors, cytokines, chemokines, and the degradation of extracellular matrix. Recent works showed that CAFs secrete H2O2 to effect stromal-mediated field cancerization, transform primary epithelial cells, and aggravate cancer cell aggressiveness, in addition to inflammatory and mitogenic factors. Molecular characterization of CAFs also underscores the importance of Notch and specific nuclear receptor signaling in the activation of CAFs. This review consolidates recent findings of CAFs and highlights areas for future investigations.
Collapse
|
28
|
Chen L, Yan Y, Zhu L, Cong X, Li S, Song S, Song H, Xue Y. Systemic immune-inflammation index as a useful prognostic indicator predicts survival in patients with advanced gastric cancer treated with neoadjuvant chemotherapy. Cancer Manag Res 2017; 9:849-867. [PMID: 29276407 PMCID: PMC5733921 DOI: 10.2147/cmar.s151026] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND OBJECTIVE A novel systemic immune-inflammation index named SII (SII=N×P/L), which is based on neutrophil (N), platelet (P) and lymphocyte (L) counts, has emerged and reflects comprehensively the balance of host inflammatory and immune status. We aimed to evaluate the potential prognostic significance of SII in patients with advanced gastric cancer who received neoadjuvant chemotherapy. SUBJECTS AND METHODS The retrospective analysis included data from 107 patients with advanced gastric cancer undergoing neoadjuvant chemotherapy and 185 patients with pathology-proven gastric cancer. The optimal cutoff value of SII by receiver operating characteristic curve stratified patients into low SII (<600×109/L) and high SII (SII ≥600×109/L) groups. The clinical outcomes of disease-free survival (DFS) and overall survival (OS) were calculated by Kaplan-Meier survival curves and compared using log-rank test. Univariate and multivariate Cox proportional hazards regression models were used to analyze the prognostic value of SII. RESULTS The results indicated that SII had prognostic significance using the cutoff value of 600×109/L on DFS and OS in univariate and multivariate Cox regression survival analyses. Low SII was associated with prolonged DFS and OS, and the mean DFS and OS for patients with low SII were longer than for those with high SII (57.22 vs 41.56 months and 62.25 vs 45.60 months, respectively). Furthermore, we found that patients with low SII had better 1-, 3- and 5-year rates of DFS and OS than those with high SII. In addition, patients with low SII were likely to receive DFS and OS benefits from neoadjuvant chemotherapy and postoperative chemotherapy. CONCLUSION SII may qualify as a noninvasive, cost-effective, convenient and reproducible prognostic indicator for patients with advanced gastric cancer undergoing neoadjuvant chemotherapy. It may help clinicians to identify those patients who will benefit from treatment strategy decisions.
Collapse
Affiliation(s)
- Li Chen
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang
| | - Ying Yan
- Department of Internal Oncology, Harbin The First Hospital, Harbin, Heilongjiang
| | - Lihua Zhu
- Department of Pathogen Biology, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiliang Cong
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang
| | - Sen Li
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang
| | - Shubin Song
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang
| | - Hongjiang Song
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang
| | - Yingwei Xue
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang
| |
Collapse
|
29
|
Bull JMC. A review of immune therapy in cancer and a question: can thermal therapy increase tumor response? Int J Hyperthermia 2017; 34:840-852. [PMID: 28974121 DOI: 10.1080/02656736.2017.1387938] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immune therapy is a successful cancer treatment coming into its own. This is because checkpoint molecules, adoptive specific lymphocyte transfer and chimeric antigen T-cell (CAR-T) therapy are able to induce more durable responses in an increasing number of malignancies compared to chemotherapy. In addition, immune therapies are able to treat bulky disease, whereas standard cytotoxic therapies cannot treat large tumour burdens. Checkpoint inhibitor monoclonal antibodies are becoming widely used in the clinic and although more complex, adoptive lymphocyte transfer and CAR-T therapies show promise. We are learning that there are nuances to predicting the successful use of the checkpoint inhibitors as well as to specific-antigen adoptive and CAR-T therapies. We are also newly aware of a here-to-fore unrealised natural force, the status of the microbiome. However, despite better understanding of mechanisms of action of the new immune therapies, the best responses to the new immune therapies remain 20-30%. Likely the best way to improve this somewhat low response rate for patients is to increase the patient's own immune response. Thermal therapy is a way to do this. All forms of thermal therapy, from fever-range systemic thermal therapy, to high-temperature HIFU and even cryotherapy improve the immune response pre-clinically. It is time to test the immune therapies with thermal therapy in vivo to test for optimal timing of the combinations that will best enhance tumour response and then to begin to test the immune therapies with thermal therapy in the clinic as soon as possible.
Collapse
Affiliation(s)
- Joan M C Bull
- a Division of Oncology, Department of Internal Medicine , The University of Texas Medical School at Houston , Houston , TX , USA
| |
Collapse
|
30
|
Chen L, Qiu X, Wang X, He J. FAP positive fibroblasts induce immune checkpoint blockade resistance in colorectal cancer via promoting immunosuppression. Biochem Biophys Res Commun 2017; 487:8-14. [PMID: 28302482 DOI: 10.1016/j.bbrc.2017.03.039] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/12/2017] [Indexed: 12/17/2022]
Abstract
Immune checkpoint blockades that significantly prolonged survival of melanoma patients have been less effective on colorectal cancer (CRC) patients. Growing evidence suggested that fibroblast activation protein-alpha (FAP) on cancer associate fibroblasts (CAFs) has critical roles in regulating antitumor immune response by inducing tumor-promoting inflammation. In this study, we explored the roles of FAP in regulating the tumor immunity and immune checkpoint blockades resistance in CRC experimental systems. We found that CAFs with high FAP expression could induce immune checkpoint blockade resistance in CRC mouse model. Mechanistically, CAFs with high FAP expression promoted immunosuppression in the CRC tumor immune microenvironment by up-regulating CCL2 secretion, recruiting myeloid cells, and decreasing T-cell activity. In human CRC samples, FAP expression was proportional to myeloid cells number, but inversely related to T-cell number. High FAP expression also predicted poor survival of CRC patients. Taken together, our study suggested that high FAP expression in CAFs is one reason leading to immune checkpoint blockades resistance in CRC patients and FAP is an optional target for reversing immune checkpoint blockades resistance.
Collapse
Affiliation(s)
- Lingling Chen
- Department of Clinical Laboratory, Linyi Central Hospital, Shandong Province, China
| | - Xiangting Qiu
- Department of Clinical Laboratory, Linyi Central Hospital, Shandong Province, China
| | - Xinhua Wang
- Department of Clinical Laboratory, Linyi Central Hospital, Shandong Province, China
| | - Jian He
- Department of Clinical Neurosurgery, Linyi Central Hospital, Shandong Province, China.
| |
Collapse
|