1
|
Kirchweger B, Zwirchmayr J, Grienke U, Rollinger JM. The role of Caenorhabditis elegans in the discovery of natural products for healthy aging. Nat Prod Rep 2023; 40:1849-1873. [PMID: 37585263 DOI: 10.1039/d3np00021d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Covering: 2012 to 2023The human population is aging. Thus, the greatest risk factor for numerous diseases, such as diabetes, cancer and neurodegenerative disorders, is increasing worldwide. Age-related diseases do not typically occur in isolation, but as a result of multi-factorial causes, which in turn require holistic approaches to identify and decipher the mode of action of potential remedies. With the advent of C. elegans as the primary model organism for aging, researchers now have a powerful in vivo tool for identifying and studying agents that effect lifespan and health span. Natural products have been focal research subjects in this respect. This review article covers key developments of the last decade (2012-2023) that have led to the discovery of natural products with healthy aging properties in C. elegans. We (i) discuss the state of knowledge on the effects of natural products on worm aging including methods, assays and involved pathways; (ii) analyze the literature on natural compounds in terms of their molecular properties and the translatability of effects on mammals; (iii) examine the literature on multi-component mixtures with special attention to the studied organisms, extraction methods and efforts regarding the characterization of their chemical composition and their bioactive components. (iv) We further propose to combine small in vivo model organisms such as C. elegans and sophisticated analytical approaches ("wormomics") to guide the way to dissect complex natural products with anti-aging properties.
Collapse
Affiliation(s)
- Benjamin Kirchweger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Julia Zwirchmayr
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Ulrike Grienke
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Judith M Rollinger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
2
|
Hernández-Cruz E, Eugenio-Pérez D, Ramírez-Magaña KJ, Pedraza-Chaverri J. Effects of Vegetal Extracts and Metabolites against Oxidative Stress and Associated Diseases: Studies in Caenorhabditis elegans. ACS OMEGA 2023; 8:8936-8959. [PMID: 36936291 PMCID: PMC10018526 DOI: 10.1021/acsomega.2c07025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Oxidative stress is a natural physiological process where the levels of oxidants, such as reactive oxygen species (ROS) and nitrogen (RNS), exceed the strategy of antioxidant defenses, culminating in the interruption of redox signaling and control. Oxidative stress is associated with multiple pathologies, including premature aging, neurodegenerative diseases, obesity, diabetes, atherosclerosis, and arthritis. It is not yet clear whether oxidative stress is the cause or consequence of these diseases; however, it has been shown that using compounds with antioxidant properties, particularly compounds of natural origin, could prevent or slow down the progress of different pathologies. Within this context, the Caenorhabditis elegans (C. elegans) model has served to study the effect of different metabolites and natural compounds, which has helped to decipher molecular targets and the effect of these compounds on premature aging and some diseases such as neurodegenerative diseases and dyslipidemia. This article lists the studies carried out on C. elegans in which metabolites and natural extracts have been tested against oxidative stress and the pathologies associated with providing an overview of the discoveries in the redox area made with this nematode.
Collapse
Affiliation(s)
- Estefani
Yaquelin Hernández-Cruz
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biological Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Dianelena Eugenio-Pérez
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biochemical Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Karla Jaqueline Ramírez-Magaña
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biochemical Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| |
Collapse
|
3
|
Planococcus maritimu ML1206 Strain Enhances Stress Resistance and Extends the Lifespan in Caenorhabditis elegans via FOXO/DAF-16. Mar Drugs 2022; 21:md21010001. [PMID: 36662174 PMCID: PMC9866299 DOI: 10.3390/md21010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The antioxidant effect of probiotics has been widely recognized across the world, which is of great significance in food, medicine, and aquaculture. There are abundant marine microbial resources in the ocean, which provide a new space for humans to explore new probiotics. Previously, we reported on the anti-infective effects of Planococcus maritimu ML1206, a potential marine probiotic. The antioxidant activity of ML1206 in C. elegans was studied in this paper. The study showed that ML1206 could improve the ability of nematodes to resist oxidative stress and effectively prolong their lifespan. The results confirmed that ML1206 could significantly increase the activities of CAT and GSH-PX, and reduce the accumulation of reactive oxygen species (ROS) in nematodes under oxidative stress conditions. In addition, ML1206 promoted DAF-16 transfer to the nucleus and upregulated the expression of sod-3, hsp-16.2, and ctl-2, which are downstream antioxidant-related genes of DAF-16. Furthermore, the expression of the SOD-3::GFP and HSP-16.2::GFP was significantly higher in the transgenic strains fed with ML1206 than that in the control group fed with OP50, with or without stress. In summary, these findings suggest that ML1206 is a novel marine probiotic with an antioxidant function that stimulates nematodes to improve their defense abilities against oxidative stress and prolong the lifespan by regulating the translocation of FOXO/DAF-16. Therefore, ML1206 may be explored as a potential dietary supplement in aquaculture and for anti-aging and antioxidant purposes.
Collapse
|
4
|
Brazilin: Biological activities and therapeutic potential in chronic degenerative diseases and cancer. Pharmacol Res 2021; 175:106023. [PMID: 34883212 DOI: 10.1016/j.phrs.2021.106023] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/26/2022]
Abstract
Caesalpinia sappan and Haematoxylum brasiletto belong to the Fabaceae family, predominantly distributed in Southeast Asia and America. The isoflavonoid brazilin has been identified from the bark and heartwood of these plants. This review summarizes the studies describing the biological activities of these plants and brazilin. Mainly, brazilin protects cells from oxidative stress, shows anti-inflammatory and antibacterial properties, and hypoglycemic effect. In addition, it has a biological impact on various pathologies such as Alzheimer's disease, Parkinson's disease, fibrillogenesis, and osteoarthritis. Interestingly, most of the antecedents are related to the anticancer effect of brazilin. In several cancers such as osteosarcoma, neuroblastoma, multiple myeloma, glioblastoma, bladder, melanoma, breast, tongue, colon, cervical, head, and neck squamous cell carcinoma, brazilin induces autophagy by increasing the levels of the LC3-II protein. Furthermore, it inhibits cell proliferation and induces apoptosis through increased expression of Bcl-2, Bcl-XL, p21, p27, activation of caspase-3 and -7, and the cleavage of PARP and inhibiting the expression of Bax. In addition, it blocks the expression of JNK and regulates the nuclear translocation of Nrf2. Together, these data positions brazilin as a compound of natural origin with multiple bioactivities and therapeutic potential in various chronic degenerative diseases and cancer.
Collapse
|
5
|
A novel thin-layer chromatography-based method for Brazilin quantification. JPC-J PLANAR CHROMAT 2021. [DOI: 10.1007/s00764-021-00131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Wang Y, Luo S, Xu Z, Liu L, Feng S, Chen T, Zhou L, Yuan M, Huang Y, Ding CB. The potential antioxidant ability of hydroxytyrosol on Caenorhabditis elegans against oxidative damage via the insulin signaling pathway. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
7
|
Wang L, Zuo X, Ouyang Z, Qiao P, Wang F. A Systematic Review of Antiaging Effects of 23 Traditional Chinese Medicines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5591573. [PMID: 34055012 PMCID: PMC8143881 DOI: 10.1155/2021/5591573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Aging is an inevitable stage of body development. At the same time, aging is a major cause of cancer, cardiovascular disease, and neurodegenerative diseases. Chinese herbal medicine is a natural substance that can effectively delay aging and is expected to be developed as antiaging drugs in the future. Aim of the review. This paper reviews the antiaging effects of 23 traditional Chinese herbal medicines or their active components. Materials and methods. We reviewed the literature published in the last five years on Chinese herbal medicines or their active ingredients and their antiaging role obtained through the following databases: PubMed, EMBASE, Scopus, and Web of Science. RESULTS A total of 2485 papers were found, and 212 papers were screened after removing the duplicates and reading the titles. Twenty-three studies met the requirements of this review and were included. Among these studies, 13 articles used Caenorhabditis elegans as the animal model, and 10 articles used other animal models or cell lines. CONCLUSION Chinese herbal medicines or their active components play an antiaging role by regulating genes related to aging through a variety of signaling pathways. Chinese herbal medicines are expected to be developed as antiaging drugs or used in the medical cosmetology industry.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xu Zuo
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zhuoer Ouyang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ping Qiao
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
8
|
Antioxidant Activities of Commiphora leptophloeos (Mart.) J. B. Gillett) (Burseraceae) Leaf Extracts Using In Vitro and In Vivo Assays. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3043720. [PMID: 33986915 PMCID: PMC8093066 DOI: 10.1155/2021/3043720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 03/03/2021] [Accepted: 04/03/2021] [Indexed: 11/30/2022]
Abstract
Commiphora leptophloeos is widely used in folk medicine without any scientific basis. Considering this, the aim of this study was to evaluate the chemical profile and the antioxidant activity of C. leptophloeos leaf extracts using in vitro and in vivo assays. Six extracts were obtained from fresh leaves using a serial extraction (nonpolar to polar solvents). These extracts were first evaluated with the presence of phytochemical compounds using the methods thin layer chromatography (TLC), ultrahigh performance liquid chromatography (UHPLC-DAD), and high performance liquid chromatography, both with diode array detection (HPLC-DAD). Based on the compounds identified, it was used some bioinformatics tools in order to identify possible pathway and gene targets. After that, the antioxidant capacity from these extracts was analysed by in vitro assays and in vivo assays using Caenorhabditis elegans model. Phytochemical analyses showed the presence of polyphenols, such as rutin, vitexin, and quercetin diglycosides in all extracts, especially in ethanol extract (EE) and methanol extract (EM). Bioinformatics analysis showed these polyphenols linked to antioxidant pathways. Furthermore, EE and EM displayed a high antioxidant capacity in DPPH and superoxide radical scavenging assays. They also had no effect on cell viability for 3T3 nontumour cell. However, for B16-F10 tumour cell lines, these extracts had toxicity effect. In vivo assays using C. elegans N2 showed that EE was not toxic, and it did not affect its viability nor its development. Besides, EE increased worm survival under oxidative stress and reduced intracellular reactive oxygen species (ROS) levels by 50%. Thus, C. leptophloeos EE displayed an important in vitro and in vivo antioxidant capacity. The EE extract has polyphenols, suggesting that these compounds may be responsible for a myriad of biological activities having this potential to be used in various biotechnological applications.
Collapse
|
9
|
Health and longevity studies in C. elegans: the "healthy worm database" reveals strengths, weaknesses and gaps of test compound-based studies. Biogerontology 2021; 22:215-236. [PMID: 33683565 PMCID: PMC7973913 DOI: 10.1007/s10522-021-09913-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/20/2021] [Indexed: 12/11/2022]
Abstract
Several biogerontology databases exist that focus on genetic or gene expression data linked to health as well as survival, subsequent to compound treatments or genetic manipulations in animal models. However, none of these has yet collected experimental results of compound-related health changes. Since quality of life is often regarded as more valuable than length of life, we aim to fill this gap with the “Healthy Worm Database” (http://healthy-worm-database.eu). Literature describing health-related compound studies in the aging model Caenorhabditis elegans was screened, and data for 440 compounds collected. The database considers 189 publications describing 89 different phenotypes measured in 2995 different conditions. Besides enabling a targeted search for promising compounds for further investigations, this database also offers insights into the research field of studies on healthy aging based on a frequently used model organism. Some weaknesses of C. elegans-based aging studies, like underrepresented phenotypes, especially concerning cognitive functions, as well as the convenience-based use of young worms as the starting point for compound treatment or phenotype measurement are discussed. In conclusion, the database provides an anchor for the search for compounds affecting health, with a link to public databases, and it further highlights some potential shortcomings in current aging research.
Collapse
|
10
|
Qi B, Zhang X, Yu H, Bao Y, Wu N, Jia D. Brazilin prevents against myocardial ischemia-reperfusion injury through the modulation of Nrf2 via the PKC signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:312. [PMID: 33708939 PMCID: PMC7944319 DOI: 10.21037/atm-20-4414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Brazilin, a major ingredient of Caesalpinia sappan L., possesses multiple pharmaceutical activities, although whether or not brazilin exerts any protective effect on myocardial ischemia-reperfusion injury (MIRI) has not yet been reported. The present study determined the cardioprotective effects of brazilin, and elucidated the role of nuclear factor E2-associated factor 2 (Nrf2) in this process. Methods Following treatment with brazilin, H9c2 cells were subjected to 6 h of hypoxia/3 h of reoxygenation. CCK-8 assay and flow cytometry were employed to detect cell viability and apoptosis, respectively. Furthermore, after brazilin treatment, isolated rat hearts underwent 30 min of ischemia, followed by 90 min of reperfusion. Triphenyltetrazolium chloride (TTC) and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining were performed to measure myocardial infarct size and apoptosis, respectively. The changes in the levels of proteins were detected by western blotting. Results Brazilin treatment dose-dependently led to a significant enhancement in cell viability, a reduction in myocardial infarct size, and a decrease in release of creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH). Moreover, brazilin also remarkably inhibited apoptosis and led to various improvements in cardiac function. Additionally, brazilin treatment caused a marked alleviation of oxidative stress, as evidenced by the fact that brazilin reduced the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), while enhancing the activities of superoxide dismutase (SOD) and glutathione peroxidase (GXH-Px). Mechanistically, it was found that brazilin induced Nrf2 nuclear translocation, with a concomitant upregulation of both heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase (NQO1) expression. Furthermore, the phosphorylation level and transcriptional activity of Nrf2 were enhanced by brazilin, although these enhancements were abrogated by treatment with a protein kinase C (PKC) inhibitor. Finally, it was observed that the protective effects of brazilin could be negated through inhibition of Nrf2, which suggested that the cardioprotection afforded by brazilin was Nrf2-dependent. Conclusions Taken together, our results have demonstrated that brazilin may afford protection against MIRI through the activation of Nrf2 via the PKC signaling pathway. These results may lay the foundation for the further use of brazilin in the prevention of MIRI in clinical practice.
Collapse
Affiliation(s)
- Bin Qi
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaowen Zhang
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hang Yu
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yandong Bao
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Nan Wu
- The Central Laboratory of the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dalin Jia
- Department of Cardiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Martel J, Wu CY, Peng HH, Ko YF, Yang HC, Young JD, Ojcius DM. Plant and fungal products that extend lifespan in Caenorhabditis elegans. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 7:255-269. [PMID: 33015140 PMCID: PMC7517010 DOI: 10.15698/mic2020.10.731] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
The nematode Caenorhabditis elegans is a useful model to study aging due to its short lifespan, ease of manipulation, and available genetic tools. Several molecules and extracts derived from plants and fungi extend the lifespan of C. elegans by modulating aging-related pathways that are conserved in more complex organisms. Modulation of aging pathways leads to activation of autophagy, mitochondrial biogenesis and expression of antioxidant and detoxifying enzymes in a manner similar to caloric restriction. Low and moderate concentrations of plant and fungal molecules usually extend lifespan, while high concentrations are detrimental, consistent with a lifespan-modulating mechanism involving hormesis. We review here molecules and extracts derived from plants and fungi that extend the lifespan of C. elegans, and explore the possibility that these natural substances may produce health benefits in humans.
Collapse
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Yeu Wu
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Hsin Peng
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Laboratory Animal Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Chang Gung Biotechnology Corporation, Taipei, Taiwan
- Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - John D. Young
- Chang Gung Biotechnology Corporation, Taipei, Taiwan
| | - David M. Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA
| |
Collapse
|
12
|
Chen XY, Liao DC, Yu YT, Wei CM, Xuan LY, Li S, Wang HB. Coix seed oil prolongs lifespan and enhances stress resistance in Caenorhabditis elegans. Biogerontology 2020; 21:245-256. [PMID: 31960183 DOI: 10.1007/s10522-020-09857-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
Abstract
Coix seed oil (CSO) has many beneficial effects, but there is limited research on its influence on the processes and mechanisms related to senescence. Here, we used Caenorhabditis elegans as an in vivo model to investigate CSO's bioeffects on longevity. CSO (1 mg/mL) significantly extended the mean lifespan of C. elegans by over 22.79% and markedly improved stress resistance. Gene-specific mutant studies showed that the CSO-mediated increase in life expectancy was dependent on mev-1, hsf-1 and daf-16, but not daf-2. Furthermore, CSO significantly upregulated stress-inducible genes, including daf-16 and its downstream genes (sod-3, hsp-16.2 and gst-4). In addition, four major fatty acids, linoleic, oleic, palmitic and stearic, played leading roles in C. elegans' extended lifespan. Thus, CSO increased the life expectancy of, and enhanced the stress resistance in, C. elegans mainly through daf-16 and its downstream genes, but not through the insulin/insulin-like growth factor 1 signaling pathway.
Collapse
Affiliation(s)
- Xin-Yan Chen
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - De-Chun Liao
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ying-Ting Yu
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Cong-Min Wei
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ling-Yan Xuan
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shan Li
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Hong-Bing Wang
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
13
|
Abegaz BM, Kinfe HH. Naturally Occurring Homoisoflavonoids: Phytochemistry, Biological Activities, and Synthesis (Part II). Nat Prod Commun 2019. [DOI: 10.1177/1934578x19845813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This review documents all the new homoisoflavonoids (HIFs) that have been reported since 2007, whose total number has grown from 159 in 2007 to 295 at the present time. This review contains their structures, biological sources, plant parts they are obtained from, and, if reported, their optical rotations and melting points. The same classification is followed as an earlier review to ease reference to both reviews. This review takes note of the recent revision of plant families that were known to contain HIFs that have now been merged into one big family, Asparagaceae. Homoisoflavonoids also occur in Fabaceae and others. Two taxa, Ophiopogoan japonicus (Asparagaceae) and Caesalpinia sappan (Fabaceae), have been the source of many HIFs. These are briefly summarized. The biological properties of HIFs are also reviewed under the topics such as antioxidant, anti-inflammatory, antimicrobial, antidiabetic, and cytotoxic. The review also surveys the total synthesis of natural HIFs. All new compounds are classified and tabulated following the same style as the previous review. Dedicated to Professor Andrew Paul Krapcho on the occasion of his 87th Birthday.
Collapse
Affiliation(s)
- Berhanu M Abegaz
- Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, South Africa
- Department of Chemistry, Center of Synthesis and Catalysis, University of Johannesburg, South Africa
| | - Henok H Kinfe
- Department of Chemistry, Center of Synthesis and Catalysis, University of Johannesburg, South Africa
| |
Collapse
|
14
|
Zhou L, Wang L, Zhang J, Li J, Bai S, Ma J, Fu X. Didymin improves UV irradiation resistance in C. elegans. PeerJ 2019; 6:e6218. [PMID: 30643686 PMCID: PMC6330030 DOI: 10.7717/peerj.6218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022] Open
Abstract
Didymin, a type of flavono-o-glycoside compound naturally present in citrus fruits, has been reported to be an effective anticancer agent. However, its effects on stress resistance are unclear. In this study, we treated Caenorhabditis elegans with didymin at several concentrations. We found that didymin reduced the effects of UV stressor on nematodes by decreasing reactive oxygen species levels and increasing superoxide dismutase (SOD) activity. Furthermore, we found that specific didymin-treated mutant nematodes daf-16(mu86) & daf-2(e1370), daf-16(mu86), akt-1(ok525), akt-2(ok393), and age-1(hx546) were susceptible to UV irradiation, whereas daf-2(e1371) was resistant to UV irradiation. In addition, we found that didymin not only promoted DAF-16 to transfer from cytoplasm to nucleus, but also increased both protein and mRNA expression levels of SOD-3 and HSP-16.2 after UV irradiation. Our results show that didymin affects UV irradiation resistance and it may act on daf-2 to regulate downstream genes through the insulin/IGF-1-like signaling pathway.
Collapse
Affiliation(s)
- Lin Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Lu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jialing Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Jiahe Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Shuju Bai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Junfeng Ma
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| | - Xueqi Fu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
15
|
Mi XN, Wang LF, Hu Y, Pan JP, Xin YR, Wang JH, Geng HJ, Hu SH, Gao Q, Luo HM. Methyl 3,4-Dihydroxybenzoate Enhances Resistance to Oxidative Stressors and Lifespan in C. elegans Partially via daf-2/daf-16. Int J Mol Sci 2018; 19:ijms19061670. [PMID: 29874838 PMCID: PMC6032309 DOI: 10.3390/ijms19061670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 11/16/2022] Open
Abstract
Genetic studies have elucidated mechanisms that regulate aging; however, there has been little progress in identifying drugs that retard ageing. Caenorhabditis elegans is among the classical model organisms in ageing research. Methyl 3,4-dihydroxybenzoate (MDHB) can prolong the life-span of C. elegans, but the underlying molecular mechanisms are not yet fully understood. Here, we report that MDHB prolongs the life-span of C. elegans and delays age-associated declines of physiological processes. Besides, MDHB can lengthen the life-span of eat-2 (ad1113) mutations, revealing that MDHB does not work via caloric restriction (CR). Surprisingly, the life-span–extending activity of MDHB is completely abolished in daf-2 (e1370) mutations, which suggests that daf-2 is crucial for a MDHB-induced pro-longevity effect in C. elegans. Moreover, MDHB enhances the nuclear localization of daf-16/FoxO, and then modulates the expressions of genes that positively correlate with defenses against stress and longevity in C. elegans. Therefore, our results indicate that MDHB at least partially acts as a modulator of the daf-2/daf-16 pathway to extend the lifespan of C. elegans, and MDHB might be a promising therapeutic agent for age-related diseases.
Collapse
Affiliation(s)
- Xiang-Nan Mi
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Li-Fang Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China.
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510632, China.
| | - Yang Hu
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Jun-Ping Pan
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Yi-Rong Xin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Jia-Hui Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Hai-Ju Geng
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Song-Hui Hu
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Qin Gao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Huan-Min Luo
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou 510632, China.
- Institute of Brain Sciences, Jinan University, Guangzhou 510632, China.
| |
Collapse
|